JP2001503554A - Plasma generating method and plasma generating apparatus including inductively coupled plasma generating source - Google Patents
Plasma generating method and plasma generating apparatus including inductively coupled plasma generating sourceInfo
- Publication number
- JP2001503554A JP2001503554A JP53439897A JP53439897A JP2001503554A JP 2001503554 A JP2001503554 A JP 2001503554A JP 53439897 A JP53439897 A JP 53439897A JP 53439897 A JP53439897 A JP 53439897A JP 2001503554 A JP2001503554 A JP 2001503554A
- Authority
- JP
- Japan
- Prior art keywords
- induction coil
- plasma
- processing
- source
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000009616 inductively coupled plasma Methods 0.000 title description 12
- 238000012545 processing Methods 0.000 claims abstract description 136
- 230000006698 induction Effects 0.000 claims abstract description 129
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 68
- 235000012431 wafers Nutrition 0.000 description 26
- 239000000463 material Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 238000000992 sputter etching Methods 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000004377 microelectronic Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- -1 argon ions Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/507—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
- H01J37/32688—Multi-cusp fields
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】 少なくとも物品62の表面を一様なプラズマで処理する装置60は、内部に物品62が配置される処理室61と、プラズマ発生源とを含む。このプラズマ発生源は、処理室61の内壁面の一部を形成する第1面を有する誘電プレート76と、電気エネルギー源とを含んで成り、電気エネルギー源は無線周波数電源44および実質的に平坦な誘導コイル30とを含んで成り、誘導コイル30は誘電プレート76の第2面上に配置され、それに対して無線周波数電源44からのエネルギーがインピーダンス整合回路42を経て供給されるのが好ましい。実質的に平坦な誘導コイルは少なくとも2つの螺旋部分36,38を有しており、これらの部分は実質的に平坦な横の少なくとも1点のまわりで対称的とされており、連続した「S字形」を形成するのが好ましい。誘導コイル30の形状はその誘導コイル30とプラズマとの間の容量結合を最小化し、このようにしてプラズマシース電圧降下を最小化して、これにより装置を損傷する処理を改善し、また物品表面でのプラズマの一様性を向上させる。実質的に平坦な誘導コイルと無線周波数電源44との間に接続されたインピーダンス整合回路は先行技術の誘導コイルのリードを横断してしばしば生じている正味電圧降下を最小化し、このようにして物品表面でのプラズマの一様性をさらに向上させる。 (57) Abstract An apparatus 60 for treating at least the surface of an article 62 with uniform plasma includes a processing chamber 61 in which the article 62 is disposed, and a plasma generation source. The plasma source comprises a dielectric plate 76 having a first surface forming part of the inner wall surface of the processing chamber 61, and an electrical energy source, wherein the electrical energy source is a radio frequency power source 44 and a substantially flat surface. Preferably, the induction coil 30 is disposed on the second surface of the dielectric plate 76, to which energy from the radio frequency power supply 44 is supplied via the impedance matching circuit 42. The substantially flat induction coil has at least two helical portions 36, 38 which are symmetrical about at least one substantially flat lateral point and which are continuous "S". It is preferred to form a "figure". The shape of the induction coil 30 minimizes the capacitive coupling between the induction coil 30 and the plasma, thus minimizing the plasma sheath voltage drop, thereby improving the process of damaging the device and also improving the surface of the article. Plasma uniformity is improved. An impedance matching circuit connected between the substantially flat induction coil and the radio frequency power supply 44 minimizes the net voltage drop that often occurs across the leads of prior art induction coils, and thus reduces the The plasma uniformity at the surface is further improved.
Description
【発明の詳細な説明】 プラズマ発生方法、および誘導結合された プラズマ発生源を含むプラズマ発生装置 発明の背景 1.発明の分野 本発明はマイクロエレクトロニクス(超小型電子技術)による製造法のような 材料処理法に関する。さらに詳しくは、本発明は高密度プラズマで物品を処理す るために独特の誘導コイルを含んで成る方法および装置に関する。 2.一般的背景 半導体の製造処理にガスプラズマを使用することは周知である。一般に処理さ れるウェーハは、ウェーハと平行に配向される2つの反対電極を有する室内に置 かれる。その後この室は予め定めた真空レベルとなるまで真空排気され、そして アルゴンのような低圧供給ガスが室内に導入される。供給ガスが室内に導入され たならば、典型的には無線周波数(RF)範囲の電界が2つの電極間に加えられ る。この無線周波数の電界は電極間に電子流を誘起し、陰極から放出された高エ ネルギー電子(energetic electrons)が中性ガスの原子または分子と衝突して 中性ガスをイオン化して、陰極の近くにガスプラズマ(すなわちグロー放電)を 形成する。このガスプラズマのイオンはその後にエッチング、蒸着(deposition) 、またはそれらの処理法と同様な方法によるウェーハ処理に使用される。 高密度プラズマ発生源は材料処理、特にイオン注入(ion implantation)、エッ チングおよび蒸着のようなマイクロエレクトロニクス製造法にますます多くの応 用例が見出されている。それらの発生源には、電子サイクロトロン共鳴(ECR) 、ヘリコン波、および誘導結合(ICP)または変成器結合(TCP)されたプ ラズマ発生源がある。これらの発生源は、200mmまでの直径を有する現在の 超大規模集積回路(VLSI)および300mm程度の直径を有する将来の極超 大規模集積回路(ULSI)の製造において望まれ得る高速処理を得るために、 低圧(しばしば2.7×10-5kg/cm2(2×10-2Torr)未満)で高 密度 プラズマを発生させることができる。 ほとんど全ての材料処理の応用例において、また特に集積回路を形成するよう な半導体基材すなわちウェーハのエッチングおよび蒸着において、例えばウェー ハ面積部分においてエッチングおよび蒸着処理が一様に行われることを保証する ためには、処理すべき基材の表面に沿ってプラズマが一様であることが非常に重 要となる。さらに、ウェーハ面積部分に沿ってプラズマ処理が一様に行われるの を保証することは、ウェーハ上の細線による幾何学形状の限界寸法を制御するう えで重要である。 最近、比較的一様なプラズマを発生させることができる誘導結合(ICP)( および変成器結合(TCP))によるプラズマ発生源が紹介されている。このよう な誘導結合(ICP)(および変成器結合(TCP))によるプラズマ発生源の或る ものは、図1に見られるように螺旋アンテナすなわち誘導コイルの幾何学形状を 基本としている。先行技術の誘導結合(ICP)回路においては、作動周波数1 3.56MHzの電力を選択的に供給する接地された無線周波数(RF)電源1 0は、インピーダンス整合回路14を経て誘導コイル20のリード12に電力を 供給しており、リード16は接地(図2)されている。誘導コイル20は自己の 周囲に、供給された無線周波数(RF)エネルギーの周波数で時間的に変動する 磁界を発生する。この時間的に変動する磁界は、周知のマックスウェルの方程式 の1つ、ΔxE=−∂B/∂t、によってプラズマ室(図示せず)内に電界を誘 起する。したがって回路がこの時間的に変動する磁界の作用を受けるとその回路 に電流が誘起されるのであり、図1の誘導コイル20の場合には発生した電流は 特定瞬時に図2に示された方向へ流される。(当業者には認識されるように、従 来 から流れ出すことを示している。したがって図1に関しては、誘導結合(ICP )された誘導コイルを流れる発生電流は、経路BCDに沿って流れる)。 しかしながら、無線周波数(RF)電源10が誘導コイル20に接続されると いう方法のために、誘導コイル20の平面に沿ってリード12からリード16ま での間で正味電圧降下が生じることも認識されよう。このような正味電圧降下は 誘導コイル20を通る非対称な電流供給によって生じる。さらに詳しくは、電流 が一方のリードから他方のリードへ誘導コイル20を経て流されるとき、プラズ マと誘導コイル20との間が誘導結合であるために、幾分かの電力は周囲のプラ ズマへ向けて失われる。リード12とリード16との間における電力のこの差は 、図2に示された方向におけるリード間の電圧に対応した差を生じることになる 。このような電圧は、プラズマの一様性に、それ故にプラズマ処理に、望ましく ない劣化を生じることになる。 図1および図2の先行技術のコイルによって生じる他の問題は、プラズマとコ イルとの間に生じる容量結合である。この容量結合はさらに、プラズマシース電 圧(すなわち、陰極表面とその陰極付近のグロー放電(すなわちプラズマ)との 間の領域であるプラズマシースを横断しての電圧降下)に望ましくない上昇を生 じる。プラズマシース電圧の上昇はさらにイオンを基材に衝突させるエネルギー 量を増大し、これはしばしば処理時に損傷する装置数を増大させることになる。 容量結合の影響を最小限とするために、ファラデーシールドが先行技術のコイル を有する装置にしばしば使用されている。このようなシールドは、装置の或る方 向の電界したがって電圧を幾分か減少してそのような容量結合を最小化させるた めに、一般に誘導コイル20の直ぐ下側に配置される。しかしながらファラデー シールドは費用および複雑さを処理装置全体に加えるので、経済面および全体的 な製造上の展望の面から望ましくない。 このようにして、大きな表面積を有する材料、特に大きな表面積を有する半導 体基材に沿って低圧で一様な高密度プラズマを形成することのできる効率的で低 費用のプラズマ発生源を提供することが望ましい。 発明の概要 したがって本発明の1つの目的は、材料処理装置において、半導体ウェーハの ような大きな表面積を有する材料に沿って一様性が向上された高密度プラズマを 形成することである。 本発明の他の目的は、材料処理装置において、半導体ウェーハのような材料の 表面におけるプラズマ処理の一様性を向上させることである。 本発明のさらに他の目的は、半導体ウェーハの表面におけるプラズマ処理の一 様性を向上させる独特な誘導コイルを材料処理装置に備えることである。 本発明のさらに他の目的は、半導体ウェーハや他の材料の処理時に発生し得る 損傷装置の発生数を減少させるために、プラズマと誘導コイルとの間の容量結合 を最小化させる独特な誘導コイルを材料処理装置に備えることである。 本発明のさらに他の目的は、プラズマと誘導コイルのとの間の容量結合を最小 化させ、これにより材料処理装置の費用および複雑さを減少させる独特の誘導コ イルを材料処理装置に備えることである。 本発明のさらに他の目的は、材料処理装置における先行技術の誘導コイルの平 面内で生じる正味電圧降下を解消し、それ故に半導体ウェーハのような処理され る材料の表面におけるプラズマ処理の一様性を向上させるために、独特な誘導コ イルおよびおよびそれに接続されたインピーダンス整合回路を材料処理装置に備 えることである。 それ故に、本発明の1つの概念によれば、処理室内に置かれた物品の少なくと も表面を処理するようなプラズマをその処理室内に発生させるためのプラズマ発 生源が提供される。このプラズマ発生源は、第1面が処理室の内壁面の一部を形 成する誘電プレートを含み、またこの誘電プレートを経て処理室内部にエネルギ ーを与えるために、処理室外部に配置された電気エネルギー源をさらに含む。好 ましい実施例において、電気エネルギー源は無線周波数電源と実質的に平坦な誘 導コイルとを含んで成り、誘導コイルは実質的に平坦なその誘導コイルの少なく とも一点のまわりに対称的な少なくとも2つの螺旋部分を有している。実質的に 平坦な誘導コイルは誘電プレートの第2面上に配置され、これにより物品の表面 の直ぐ近くに高密度プラズマを形成し、その表面に衝突して物品表面に沿って実 質的に一様な処理速度を生じるようにさせる。 本発明の他の概念によれば、実質的に平坦な誘導コイルを含んで成るプラズマ 発生源は、処理ガスから形成されたプラズマによって少なくとも物品の表面を処 理する装置に使用される。このような装置はスパッターエッチング装置とされる ことができ、この装置は処理室を含んで成り、処理室は処理空間を画成すると共 に、プラズマによって物品を処理するために処理ガスを処理空間内へ導入するた めの少なくとも1つの入口ポートを有している。本発明のプラズマ発生源は処理 室の一端に連結されて処理室を密閉し、物品の表面の直ぐ近くにプラズマの形成 を誘起させ、これによりその表面に衝突して物品表面に沿って実質的に一様な処 理速度を生じさせることを含む。 本発明のさらに他の概念によれば、インピーダンス整合回路は本発明のプラズ マ発生源と無線周波数電源との間に接続され、誘導コイルとこの無線周波数電源 との間に最大源の電力伝達を与えるようになされる。好ましい実施例において、 本発明の誘導コイルはインピーダンス整合回路に接続された第1および第2リー ドを有しており、さらにまたこのインピーダンス整合回路を経て、誘導コイルの 2つの部分が1点のまわりで対称的となるようなその1点において接地されてい る。これが、これまでの平坦な誘導コイルの平面を横断して生じる正味電圧降下 を減少し、これによりプラズマならびにプラズマ処理の一様性を向上させる。 新規であると考えられる本発明の特徴は、添付された請求の範囲の欄に詳細に 記載されている。しかしながら本発明そのものは、添付図面に関連した以下の説 明を参照することで最もよく理解される。 図面の簡単な説明 図1は先行技術の誘導結合されたプラズマ発生源(ICP)の誘導コイルを示 す。 図2は図1aの線AA’に沿う誘導コイルの横断面概略図を示し、この図はま た変動磁界を形成するためにこのコイルに無線周波数(RF)電源を接続する従 来方法、コイルを通る電流の流れ方向、および無線周波数(RF)電源がコイル に接続される方法により生じる正味電圧降下の方向を破線で示す。 図3は本発明の誘導結合されたプラズマ発生源(ICP)の1つの実施例を示 す。 図4aは図3の線AA’に沿う誘導コイルの横断面概略図を示し、この図はま た本発明の1つの実施例によるインピーダンス整合回路を経て誘導コイルに無線 周波数(RF)電源を接続する概略図も示す。 図4bは図3の線AA’に沿う誘導コイルの横断面概略図を示し、この図はま た本発明の他の実施例による誘導コイルに無線周波数(RF)電源を接続する概 略図も示す。 図5は図3の誘導結合(ICP)された誘導コイルを使用するスパッターエッ チング装置の概略図を示す。 図6aは図5のスパッター装置の周囲に配置され、プラズマの一様性をさらに 向上させるのに使用された複磁極構造の概略図を示す。 図6bは複磁極構造の磁力線に沿うプラズマ電子の移動路の概略図を示してい る図6aの複磁極の拡大部分96の頂平面図である。 発明の詳細な説明 図3を参照して見られるように、本発明の誘導コイル30は第1リード32お よび第2リード34を有するコイルである。さらに詳しくは、誘導コイル30は 第1部分36および第2部分38を有する連続「S字形」コイルとして想定する ことができ、この各部分は螺旋形すなわちインボリュート形に巻かれている。部 分36,38は実質的に同じとされ、誘導コイル30の少なくとも中央点40の まわりに対称的であるのが好ましい。(図3では、部分36,38の各々は3つ の周回部分を有しているのが見られるが、誘導コイル30における周回数は前述 した説明のパラメータ内で変更することができることは認識されよう)。誘導コ イル30は中空の銅製チューブで作られ、その内部を通して水が流されるのが好 ましく、この水は誘導コイル30を冷却し、これと同時に無線周波数の電力がそ れを通して伝達される。 図4aおよび図4bに見られるように、図3の誘導コイル30は無線周波数( RF)エネルギー電源44に接続され、そこからエネルギーを受取るようにでき る。図4aに示される実施例において、リード34は接地される一方、リード3 2はインピーダンス整合回路42を経て無線周波数(RF)エネルギー電源44 に接続されており、インピーダンス整合回路42は無線周波数(RF)エネルギ ー電源44と誘導コイル30との間で最大限の電力伝達を可能にするように設計 されている。インピーダンス整合回路42は通常のL形またはΠ形の回路のいず れかとされるが、回路のQ係数が大きいこと、調波の抑制が良好なこと、したが って誘導コイル30からプラズマに電力が効率的に伝達されることに照らしてL 形回路が好ましい。それ故に図4aに示す実施例では、発生した電流は誘導コイ ル30を通ってリード32からリード34へと経路EFGHIに沿って流れる。 図3の誘導コイルは図4aに見られるように無線周波数(RF)エネルギー電 源44に接続できるが、この電源に対しては図4bに示されるように接続される のが好ましい。この実施例では、リード32はインピーダンス整合回路42の第 1端子に接続される一方、リード34はインピーダンス整合回路42の第2端子 に接続されている。再び述べるが、インピーダンス整合回路はL形またはΠ形の 回路のいずれかとされるが、L形回路の方が好ましい。非対称の供給が望まれる ならば、インピーダンス整合回路42の最終段階は中央接地の、すなわち誘導コ イル30の点40が接地(図5点線で示されている)された変成器とされ得る。 (これに代えて変成器は無線周波数(RF)電源44に接続された中央タップを 有することができ、リード32,34は接地される)。この回路構成により、第 1電流はリード32からインピーダンス整合回路42へ向かって移動路EFGに 沿って誘導コイル30を流れる。さらに、第2電流はリード34からインピーダ ンス整合回路42へ向かって移動路IHGに沿って流れる(図4b)。 電流は提供された誘導コイル30の2つの反対方向に巻かれた部分36,38 の各々を通って反対方向へ向かって流れるので(図4b)、これにより発生される 電界は互いに打ち消し合い、コイルとプラズマとの間の容量結合を最小化させる ことが認識されよう。それ故に、最小化された容量結合によってプラズマシース 電圧降下が減少され、したがって処理時に発生し得る損傷装置の数が減少される 。さらに、最小化された容量結合は、図1の先行技術の誘導コイル20に関連し て使用されるようなファラデーシースの必要性をなくす。ファラデーシースの削 除は誘導コイルおよび付属回路の費用および複雑さを減少させる。さらに、本発 明の誘導コイル30が実質的に平坦とされる設計に照らして、このような誘導コ イル30は、マイクロエレクトロニクス工業界で300mmウェーハを処理する 応用例のように、大面積を処理するように容易に尺度を定めることができる。 さらに、図4bの整合ネットワークすなわちインピーダンス整合回路42を経 て誘導コイル30に電流を対称的に供給する理由で、図1の先行技術の誘導コイ ル20の平面に沿って通常は生じる正味電圧降下が排除される。これにより非容 量性のプラズマ、したがって低いプラズマシース電圧が形成される。先に説明し たように、低いプラズマシース電圧は基材に対してイオンを衝突させるエネルギ ー量を減少し、したがって処理時に発生する損傷装置の数を改善する。 本発明の誘導コイル30の適用は、図5のスパッターエッチング装置における 使用を参照して説明される。誘導コイル30の適用例の説明はスパッターエッチ ング装置60に関して与えられるが、誘導コイル30の使用はこれに限定されず 、イオン注入やプラズマ蒸着のような先行技術で周知の他の材料処理の適用例に おいて使用できることが理解されよう。 スパッターエッチング処理は、帯電ガスプラズマのイオン化粒子を使用して基 材すなわちウェーハの表面に衝突させ、これにより基材から粒子を放出すなわち 「スパッター(飛散)」させることは周知である。さらに詳しくは、スパッターエ ッチング処理時に基材すなわちウェーハ62は装置60のスパッターエッチング 室61の一端で支持台64上に置かれ、また静電チャックすなわちウェーハクラ ンプ66を使用して所定位置に保持されるのが好ましい。その後、例えば周波数 13.56MHzの無線周波数電力が供給源70から付与されることで、支持基 部64上に置かれたウェーハ台68を横断してバイアス電圧が印加される。絶縁 キャパシタ72が無線周波数供給源70とウェーハ台68との間に接続され、無 線周波数供給源70から無線周波数信号のDC成分を遮断するようになされる。 円筒形の石英スリーブ74がスパッターエッチング室61の内径面の内側に挿入 されて、ウェーハ62から放出された材料から室壁面を保護するようになされる 。この石英スリーブ74は定期的な間隔の保守において清浄とされ、または交換 される。 誘電プレート76および本発明の誘導コイル30(図3)を含んで成るプラズ マ発生源はスパッターエッチング室61の他端または頂端に配置される。ウェー ハ台68から7〜20cmの距離に配置されるのが好ましい誘電プレート76は スパッターエッチング室61の金属製室壁面78に結合され、気密な真空シール を形成する。図5から分かるように、誘導コイル30は誘電プレート76上に直 接に係止され、それらの両方とも実質的に平坦であるのが好ましい。しかしなが ら誘電プレート76はスパッターエッチング室61の内部へ向かって突出する一 般に凸状の内面と、一般に凹状の外面とを有し、その誘導コイル30の形状は本 発明の出願人に譲渡されている「誘導ポケットおよび形成されたプラズマ発生源 とを有するスパッターエッチング装置」と題するガンバリ氏に付与された米国特 許出願第08/410362号明細書に一層詳細に説明されている。 作動に置いて、スパッターエッチング室61は分子ポンプすなわち低温ポンプ (図示せず)によって例えば1.36×10-10kg/cm2(1×10-7Tor r)の基本真空レベルまでポンプ排気され、そしてプラズマガス、好ましくはス パッターエッチングの適用例においてはアルゴンガスが、典型的に10〜100 sccmの流量にてパッターエッチング室61の頂部付近のガス供給入口ポート 80を通して導入されて、典型的に1.36×10-6〜54.4×10-6kg/ cm2(1×10-3〜40×10-3Torr)の作動圧力を形成するようになさ れる。この作動圧力は、スパッターエッチング室61における供給ガスの滞留時 間を制御するゲートバルブ機構(図示せず)によって制御される。 安定作動圧力が得られたならば、無線周波数電源44からの電力がインピーダ ンス整合回路42(図4bのインピーダンス整合回路42であるのが好ましいが 、図4aのインピーダンス整合回路とされることができる)を経て誘導コイル3 0に付与される。無線周波数電源44は作動周波数が2〜13.56MHzのそ のような電力を供給する。上述で説明したように、誘導コイル30を経た無線周 波数エネルギーは誘導コイル30の直ぐ近くに時間的に変動する磁界を形成し、 この磁界は方程式ΔxE=−∂B/∂tに従ってスパッターエッチング室61の 内部に電界Eを誘起させる。この誘起された電界Eは、周囲に存在する宇宙線お よび他の電磁発生源によって中性ガスがイオン化される結果として、スパッター エッチング室61の内部に滞留している少数の電子を加速する。加速された電子 はガスの中性分子に衝突して、イオンおよび更なる電子を発生させる。この処理 は継続し、電子およびイオンの電子なだれを形成する。このようにして誘電プレ ート76の下側の誘導コイル30の面積部分においてスパッターエッチング室6 1の内部にプラズマを形成する。その後プラズマは拡散し、スパッターエッチン グ室61を充満する。 ウェーハ台68へ向かってプラズマが拡散すると、プラズマ中の、およびウェ ーハ台68の近くのガスイオン(例えばアルゴンイオン)は、それに容量結合さ れた他の無線周波数(RF)供給源70によってウェーハ台68に発生されたバ イアスにより加速される。加速されたアルゴンイオンはウェーハに衝突し、ウェ ーハ62から材料の幾分かを放出すなわち「スパッター(飛散)」させる。エッチ ングによる副産物は真空ポンプ(図示せず)によってスパッターエッチング室6 1からポンプ排出される。 スパッターエッチング装置60は、プラズマの一様性を向上させるために、図 6aの点線で説明したように周囲に配置された複磁極構造90を有することがで きる。図6aに見られるように、複磁極構造90はスパッターエッチング装置6 0を取囲んでおり、垂直方向に整列された交互の磁極とされる細長い領域92, 94を有するのが好ましい。スパッターエッチング装置60の頂部からウェーハ 台68へ向かって見下ろしたときの部分96の拡大図が図6bに示されている。 この複磁極構造90によって形成された磁界、すなわちマグネチック・カスプは 、図6bに示されるように磁力線100に対する電子移動路102を制限してお り、周知の「磁気ミラー」と同じ概念および原理のもとで作用する。この結果、 スパッターエッチング室61における電子の滞留時間は増大され、内側の室を取 囲む石英スリーブ74に対する電子の損失速度は減少される。電子損失速度の減 少は、プラズマ密度が最も希薄となる傾向を示す誘導コイル30の境界面近くの プラズマ密度を増大させる。誘導コイル30の境界面でのプラズマ密度を増大さ せることにより、プラズマの一様性およびこの処理の一様性は向上される。 それ故に本発明によれば、目的、意図および利点を完全に満たす実施例が上述 されたことは明白である。本発明は特定の実施例に関連して説明されたが、前述 の説明に照らして当業者に多くの代替例、変更例、交換例および変形例が明白と なることは明らかである。例えば、本発明の誘導コイルの適用例の説明はスパッ ターエッチング装置に関して与えられたが、本発明の誘導コイルの使用はこれに 限定されず、例えばイオン注入やプラズマ蒸着のようなこの分野で周知の他の材 料処理の適用例に使用できる。さらに、本発明の誘導コイルおよびそれを支持す る誘電プレートは実質的に平坦であるのが好ましく、誘電プレートはスパッター エッチング室内に延在される一般に凸状の内面と、一般に凹状の外面とを有し、 その形状に本発明の誘導コイルは追従する。他の実施例が当業者によって実現さ れ得る。したがって、本発明は添付の請求の範囲に含まれるそのような全ての代 替例、変更例および変形例を包含することが意図される。Detailed Description of the Invention Plasma Generation Method and Plasma Generation Apparatus Including Inductively Coupled Plasma Source FIELD OF THE INVENTION The present invention relates to material processing methods such as microelectronics (microelectronics) manufacturing methods. More particularly, the present invention relates to a method and apparatus comprising a unique induction coil for treating an article with a high density plasma. 2. General Background The use of gas plasmas in semiconductor manufacturing processes is well known. Generally, a wafer to be processed is placed in a chamber having two opposite electrodes oriented parallel to the wafer. The chamber is then evacuated to a predetermined vacuum level, and a low pressure feed gas such as argon is introduced into the chamber. Once the feed gas has been introduced into the chamber, an electric field, typically in the radio frequency (RF) range, is applied between the two electrodes. This radio-frequency electric field induces a flow of electrons between the electrodes, and high-energy electrons emitted from the cathode collide with atoms or molecules of the neutral gas to ionize the neutral gas, thereby causing the neutral gas to flow near the cathode. To form a gas plasma (ie, glow discharge). The ions of this gas plasma are then used for wafer processing by etching, deposition, or similar methods. High-density plasma sources are finding more and more applications in material processing, especially in microelectronics manufacturing processes such as ion implantation, etching and deposition. These sources include electron cyclotron resonance (ECR), helicon waves, and inductively coupled (ICP) or transformer coupled (TCP) plasma sources. These sources are needed to obtain the high speed processing that may be desired in the manufacture of current very large scale integrated circuits (VLSI) with diameters up to 200 mm and future very large scale integrated circuits (ULSI) with diameters on the order of 300 mm. A high-density plasma can be generated at a low pressure (often less than 2.7 × 10 −5 kg / cm 2 (2 × 10 −2 Torr)). In almost all material processing applications, and especially in the etching and deposition of semiconductor substrates or wafers to form integrated circuits, for example, to ensure that the etching and deposition processes are performed uniformly over the wafer area. It is very important that the plasma be uniform along the surface of the substrate to be treated. Furthermore, ensuring that the plasma process is uniform along the wafer area is important in controlling the critical dimension of the geometry due to fine lines on the wafer. Recently, inductively coupled (ICP) (and transformer coupled (TCP)) plasma sources have been introduced that can generate relatively uniform plasma. Certain of such inductively coupled (ICP) (and transformer coupled (TCP)) plasma sources are based on the geometry of a spiral antenna or induction coil, as seen in FIG. In a prior art inductively coupled (ICP) circuit, a grounded radio frequency (RF) power supply 10 that selectively supplies power at an operating frequency of 13.56 MHz is connected to a lead of an induction coil 20 via an impedance matching circuit 14. 12, and the lead 16 is grounded (FIG. 2). The induction coil 20 generates a magnetic field around itself that varies over time at the frequency of the supplied radio frequency (RF) energy. This time-varying magnetic field induces an electric field in a plasma chamber (not shown) according to one of the well-known Maxwell's equations, ΔxE = −∂B / ∂t. Therefore, when the circuit is affected by the time-varying magnetic field, a current is induced in the circuit. In the case of the induction coil 20 shown in FIG. 1, the generated current instantaneously changes in the direction shown in FIG. Flowed to (As will be appreciated by those skilled in the art, Indicates that it flows out of Thus, with respect to FIG. 1, the generated current flowing through the inductively coupled (ICP) induction coil flows along path BCD). However, it will also be appreciated that the manner in which the radio frequency (RF) power supply 10 is connected to the induction coil 20 causes a net voltage drop from lead 12 to lead 16 along the plane of the induction coil 20. . Such a net voltage drop is caused by an asymmetric current supply through the induction coil 20. More specifically, when current is passed through the induction coil 20 from one lead to the other, some power is directed to the surrounding plasma due to the inductive coupling between the plasma and the induction coil 20. Lost. This difference in power between leads 12 and 16 will result in a corresponding difference in voltage between the leads in the direction shown in FIG. Such voltages will cause undesirable degradation of the plasma uniformity and therefore of the plasma processing. Another problem caused by the prior art coils of FIGS. 1 and 2 is the capacitive coupling created between the plasma and the coil. This capacitive coupling also causes an undesirable increase in the plasma sheath voltage (ie, the voltage drop across the plasma sheath, the area between the cathode surface and the glow discharge (ie, plasma) near the cathode). Increasing the plasma sheath voltage further increases the amount of energy that bombards the ions with the substrate, which often increases the number of devices that are damaged during processing. Faraday shields are often used in devices with prior art coils to minimize the effects of capacitive coupling. Such a shield is generally located just below the induction coil 20 to somewhat reduce the electric field and hence voltage in one direction of the device to minimize such capacitive coupling. However, Faraday shield adds cost and complexity to the overall processing equipment, and is therefore undesirable from an economic and overall manufacturing perspective. In this manner, it is desirable to provide an efficient, low cost plasma source capable of forming a low pressure, uniform high density plasma along a high surface area material, especially a high surface area semiconductor substrate. desirable. SUMMARY OF THE INVENTION It is therefore an object of the present invention to form a high density plasma with improved uniformity in a material processing apparatus along a material having a large surface area, such as a semiconductor wafer. Another object of the present invention is to improve the uniformity of plasma processing on a surface of a material such as a semiconductor wafer in a material processing apparatus. Yet another object of the present invention is to provide a material processing apparatus with a unique induction coil that improves the uniformity of plasma processing on the surface of a semiconductor wafer. It is yet another object of the present invention to provide a unique induction coil that minimizes capacitive coupling between the plasma and the induction coil to reduce the number of damage devices that can occur during processing of semiconductor wafers and other materials. Is provided in the material processing apparatus. Yet another object of the present invention is to provide a material processing device with a unique induction coil that minimizes capacitive coupling between the plasma and the induction coil, thereby reducing the cost and complexity of the material processing device. is there. Yet another object of the present invention is to eliminate the net voltage drop that occurs in the plane of prior art induction coils in a material processing apparatus, and therefore the uniformity of plasma processing on the surface of the material being processed, such as a semiconductor wafer. To provide a material processing device with a unique induction coil and an impedance matching circuit connected to it, in order to improve the efficiency. Thus, according to one aspect of the present invention, there is provided a plasma source for generating a plasma in a processing chamber that treats at least a surface of an article placed in the processing chamber. The plasma generating source includes a dielectric plate having a first surface forming a part of an inner wall surface of the processing chamber, and an electric source disposed outside the processing chamber to apply energy to the inside of the processing chamber via the dielectric plate. Further includes an energy source. In a preferred embodiment, the electrical energy source comprises a radio frequency power supply and a substantially flat induction coil, the induction coil comprising at least two spirals symmetric about at least one point of the substantially flat induction coil. Has a part. A substantially flat induction coil is disposed on the second surface of the dielectric plate, thereby forming a high-density plasma in close proximity to the surface of the article and impinging on that surface substantially along the surface of the article. To achieve a similar processing speed. In accordance with another aspect of the invention, a plasma source comprising a substantially flat induction coil is used in an apparatus for treating at least the surface of an article with a plasma formed from a process gas. Such an apparatus can be a sputter etching apparatus, which includes a processing chamber, which defines a processing space and passes processing gas within the processing space to process articles by plasma. It has at least one inlet port for introduction into the vessel. The plasma source of the present invention is coupled to one end of the processing chamber to seal the processing chamber and induce the formation of a plasma in the immediate vicinity of the surface of the article, thereby impacting the surface and substantially along the article surface. To produce a uniform processing speed. According to yet another aspect of the invention, an impedance matching circuit is connected between the plasma source of the invention and a radio frequency power supply to provide maximum source power transfer between the induction coil and the radio frequency power supply. It is done as follows. In a preferred embodiment, the induction coil of the present invention has first and second leads connected to an impedance matching circuit, and through which the two portions of the induction coil are rotated about a point. At one point so as to be symmetrical. This reduces the net voltage drop that occurs across the plane of the previously flat induction coil, thereby improving the plasma as well as the plasma processing uniformity. The features of the invention which are believed to be novel are set forth with particularity in the appended claims. However, the invention itself is best understood by reference to the following description taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an induction coil of a prior art inductively coupled plasma source (ICP). FIG. 2 shows a schematic cross-sectional view of an induction coil along line AA 'of FIG. 1a, which also passes through the coil, a conventional method of connecting a radio frequency (RF) power supply to the coil to form a fluctuating magnetic field Dashed lines indicate the direction of current flow and the direction of the net voltage drop caused by the way a radio frequency (RF) power supply is connected to the coil. FIG. 3 shows one embodiment of the inductively coupled plasma source (ICP) of the present invention. FIG. 4a shows a schematic cross-sectional view of the induction coil along line AA 'of FIG. 3, which also connects a radio frequency (RF) power supply to the induction coil via an impedance matching circuit according to one embodiment of the present invention. A schematic diagram is also shown. FIG. 4b shows a schematic cross-sectional view of the induction coil along line AA 'of FIG. 3, which also shows a schematic view of connecting a radio frequency (RF) power supply to the induction coil according to another embodiment of the present invention. FIG. 5 shows a schematic diagram of a sputter etching apparatus using the inductively coupled (ICP) induction coil of FIG. FIG. 6a shows a schematic diagram of a double pole structure placed around the sputter apparatus of FIG. 5 and used to further improve the plasma uniformity. FIG. 6b is a top plan view of an enlarged portion 96 of the double pole of FIG. 6a showing a schematic view of the path of plasma electrons along the field lines of the double pole structure. DETAILED DESCRIPTION OF THE INVENTION As can be seen with reference to FIG. 3, the induction coil 30 of the present invention is a coil having a first lead 32 and a second lead. More specifically, the induction coil 30 can be envisioned as a continuous "S-shaped" coil having a first portion 36 and a second portion 38, each of which is wound in a spiral or involute shape. The portions 36, 38 are preferably substantially the same and are preferably symmetric about at least the central point 40 of the induction coil 30. (In FIG. 3, it is seen that each of the portions 36, 38 has three turns, but it will be appreciated that the number of turns in the induction coil 30 can be varied within the parameters described above. ). The induction coil 30 is made of a hollow copper tube through which water is preferably flowed, which cools the induction coil 30 and at the same time transmits radio frequency power. As seen in FIGS. 4a and 4b, the induction coil 30 of FIG. 3 can be connected to and receive energy from a radio frequency (RF) energy source 44. In the embodiment shown in FIG. 4a, lead 34 is grounded, while lead 32 is connected to a radio frequency (RF) energy source 44 via impedance matching circuit 42, and impedance matching circuit 42 is connected to radio frequency (RF). ) Designed to allow maximum power transfer between the energy source 44 and the induction coil 30. The impedance matching circuit 42 is either a normal L-shaped circuit or a Π-shaped circuit. An L-shaped circuit is preferred in view of the transmission. Thus, in the embodiment shown in FIG. 4a, the generated current flows through the induction coil 30 from the lead 32 to the lead 34 along the path EFGHI. The induction coil of FIG. 3 can be connected to a radio frequency (RF) energy power supply 44 as seen in FIG. 4a, but is preferably connected to this power supply as shown in FIG. 4b. In this embodiment, lead 32 is connected to a first terminal of impedance matching circuit 42, while lead 34 is connected to a second terminal of impedance matching circuit 42. Again, the impedance matching circuit may be either an L-shaped or a Π-shaped circuit, but an L-shaped circuit is preferred. If an asymmetrical supply is desired, the final stage of the impedance matching circuit 42 may be a center grounded transformer, ie, the point 40 of the induction coil 30 is grounded (shown in dashed lines in FIG. 5). (Alternatively, the transformer can have a center tap connected to a radio frequency (RF) power supply 44, and leads 32 and 34 are grounded). With this circuit configuration, the first current flows through the induction coil 30 along the movement path EFG from the lead 32 to the impedance matching circuit 42. Further, the second current flows from the lead 34 to the impedance matching circuit 42 along the movement path IHG (FIG. 4B). As current flows in opposite directions through each of the two oppositely wound portions 36, 38 of the provided induction coil 30 (FIG. 4b), the electric fields generated thereby cancel each other out and the coil It will be appreciated that capacitive coupling between the plasma and the plasma is minimized. Hence, the minimized capacitive coupling reduces the plasma sheath voltage drop, and thus reduces the number of damaged devices that can occur during processing. Furthermore, minimized capacitive coupling eliminates the need for a Faraday sheath as used in connection with the prior art induction coil 20 of FIG. Elimination of the Faraday sheath reduces the cost and complexity of the induction coil and associated circuitry. In addition, in light of the design of the present invention where the induction coil 30 is substantially flat, such an induction coil 30 processes large areas, such as the 300 mm wafer processing application in the microelectronics industry. Scale can be easily determined. Furthermore, the net voltage drop that normally occurs along the plane of the prior art induction coil 20 of FIG. 1 is eliminated because of the symmetrical supply of current to the induction coil 30 via the matching network or impedance matching circuit 42 of FIG. 4b. Is done. This creates a non-capacitive plasma and thus a low plasma sheath voltage. As explained above, a low plasma sheath voltage reduces the amount of energy that bombards the ions with the substrate, thus improving the number of damage devices that occur during processing. The application of the induction coil 30 of the present invention is described with reference to its use in the sputter etching apparatus of FIG. Although a description of the application of the induction coil 30 is given with respect to the sputter etcher 60, the use of the induction coil 30 is not limited to this, and other material processing applications well known in the prior art, such as ion implantation and plasma deposition. It will be appreciated that it can be used in It is well known that sputter etching uses ionized particles of a charged gas plasma to impinge on the surface of a substrate or wafer, thereby releasing or "sputtering" the particles from the substrate. More specifically, during the sputter etching process, the substrate or wafer 62 is placed on a support 64 at one end of the sputter etching chamber 61 of the apparatus 60 and held in place using an electrostatic chuck or wafer clamp 66. Is preferred. Thereafter, for example, a radio frequency power having a frequency of 13.56 MHz is applied from the supply source 70 to apply a bias voltage across the wafer table 68 placed on the support base 64. An insulating capacitor 72 is connected between the radio frequency source 70 and the wafer stage 68 to cut off the DC component of the radio frequency signal from the radio frequency source 70. A cylindrical quartz sleeve 74 is inserted inside the inner diameter surface of the sputter etching chamber 61 to protect the chamber wall from the material released from the wafer 62. This quartz sleeve 74 is cleaned or replaced at regular interval maintenance. A plasma source comprising the dielectric plate 76 and the induction coil 30 of the present invention (FIG. 3) is located at the other end or top of the sputter etch chamber 61. A dielectric plate 76, preferably located at a distance of 7 to 20 cm from the wafer stage 68, is bonded to the metal chamber wall 78 of the sputter etch chamber 61 to form a hermetic vacuum seal. As can be seen from FIG. 5, the induction coil 30 is locked directly on the dielectric plate 76, both of which are preferably substantially flat. However, the dielectric plate 76 has a generally convex inner surface protruding into the sputter etch chamber 61 and a generally concave outer surface, and the shape of the induction coil 30 is assigned to the assignee of the present invention. A more detailed description is found in U.S. patent application Ser. No. 08 / 410,362, issued to Gambari, entitled "Sputter Etching Apparatus with Induction Pocket and Formed Plasma Source." In operation, the sputter etch chamber 61 is pumped down to a basic vacuum level of, for example, 1.36 × 10 −10 kg / cm 2 (1 × 10 −7 Torr) by a molecular or low temperature pump (not shown). And a plasma gas, preferably argon gas in sputter etching applications, is introduced through a gas supply inlet port 80 near the top of the putter etch chamber 61, typically at a flow rate of 10-100 sccm. And an operating pressure of 1.36 × 10 −6 to 54.4 × 10 −6 kg / cm 2 (1 × 10 −3 to 40 × 10 −3 Torr). This operating pressure is controlled by a gate valve mechanism (not shown) for controlling the residence time of the supply gas in the sputter etching chamber 61. Once a stable operating pressure has been obtained, the power from the radio frequency power supply 44 is supplied to the impedance matching circuit 42 (preferably the impedance matching circuit 42 of FIG. 4b, but can be the impedance matching circuit of FIG. , And is applied to the induction coil 30. Radio frequency power supply 44 provides such power with an operating frequency of 2 to 13.56 MHz. As explained above, the radio frequency energy passing through the induction coil 30 forms a time-varying magnetic field in the immediate vicinity of the induction coil 30, which magnetic field is generated according to the equation ΔxE = -∂B / ∂t. An electric field E is induced inside the device. The induced electric field E accelerates a small number of electrons staying inside the sputter etching chamber 61 as a result of ionizing the neutral gas by cosmic rays and other electromagnetic sources existing around. The accelerated electrons collide with the neutral molecules of the gas, generating ions and additional electrons. This process continues and forms an avalanche of electrons and ions. In this way, plasma is formed inside the sputter etching chamber 61 in the area of the induction coil 30 below the dielectric plate 76. Thereafter, the plasma diffuses and fills the sputter etching chamber 61. As the plasma diffuses toward the wafer stage 68, gas ions (eg, argon ions) in the plasma and near the wafer stage 68 are exposed to the wafer stage 68 by another radio frequency (RF) source 70 capacitively coupled thereto. Is accelerated by the generated bias. The accelerated argon ions bombard the wafer, releasing or "sputtering" some of the material from the wafer 62. By-products of the etching are pumped out of the sputter etching chamber 61 by a vacuum pump (not shown). The sputter etching apparatus 60 may have a double pole structure 90 arranged around as described by the dotted line in FIG. 6a to improve the uniformity of the plasma. As can be seen in FIG. 6a, the double pole structure 90 surrounds the sputter etch apparatus 60 and preferably has elongated regions 92, 94 which are vertically aligned alternating poles. An enlarged view of the portion 96 when looking down from the top of the sputter etching apparatus 60 toward the wafer stage 68 is shown in FIG. 6b. The magnetic field, or magnetic cusp, created by this double pole structure 90 restricts the electron travel path 102 for the magnetic field lines 100, as shown in FIG. 6b, and has the same concept and principles as the well-known "magnetic mirror". Acts on its own. As a result, the residence time of electrons in the sputter etching chamber 61 is increased, and the rate of electron loss to the quartz sleeve 74 surrounding the inner chamber is reduced. The reduction in electron loss rate increases the plasma density near the interface of the induction coil 30 where the plasma density tends to be the leanest. By increasing the plasma density at the interface of the induction coil 30, the uniformity of the plasma and of this process is improved. Thus, it is apparent that there has been described above in accordance with the present invention an embodiment that fully satisfies the objects, aims and advantages. Although the present invention has been described in relation to particular embodiments, it is evident that many alternatives, modifications, exchanges and variations will be apparent to those skilled in the art in light of the foregoing description. For example, while the description of the application of the induction coil of the present invention has been given with respect to a sputter etching apparatus, the use of the induction coil of the present invention is not limited to this, and is well known in the art such as ion implantation and plasma deposition. It can be used for other material processing applications. Further, the induction coil of the present invention and the dielectric plate supporting it are preferably substantially flat, the dielectric plate having a generally convex inner surface extending into the sputter etch chamber and a generally concave outer surface. Then, the induction coil of the present invention follows the shape. Other embodiments can be implemented by those skilled in the art. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG),EA(AM,AZ,BY,KG,KZ ,MD,RU,TJ,TM),AL,AM,AT,AU ,AZ,BA,BB,BG,BR,BY,CA,CH, CN,CU,CZ,DE,DK,EE,ES,FI,G B,GE,GH,HU,IL,IS,JP,KE,KG ,KP,KR,KZ,LC,LK,LR,LS,LT, LU,LV,MD,MG,MK,MN,MW,MX,N O,NZ,PL,PT,RO,RU,SD,SE,SG ,SI,SK,TJ,TM,TR,TT,UA,UG, UZ,VN,YU 【要約の続き】 に接続されたインピーダンス整合回路は先行技術の誘導 コイルのリードを横断してしばしば生じている正味電圧 降下を最小化し、このようにして物品表面でのプラズマ の一様性をさらに向上させる。────────────────────────────────────────────────── ─── Continuation of front page (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, KE, LS, MW, S D, SZ, UG), EA (AM, AZ, BY, KG, KZ , MD, RU, TJ, TM), AL, AM, AT, AU , AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G B, GE, GH, HU, IL, IS, JP, KE, KG , KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N O, NZ, PL, PT, RO, RU, SD, SE, SG , SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU [Continuation of summary] The impedance matching circuit connected to the The net voltage often occurring across the coil leads The descent is minimized and thus the plasma on the article surface Is further improved.
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/624,010 US5669975A (en) | 1996-03-27 | 1996-03-27 | Plasma producing method and apparatus including an inductively-coupled plasma source |
US08/624,010 | 1996-03-27 | ||
PCT/US1997/003048 WO1997036022A1 (en) | 1996-03-27 | 1997-03-04 | Plasma producing method and apparatus including an inductively-coupled plasma source |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001503554A true JP2001503554A (en) | 2001-03-13 |
JP3653524B2 JP3653524B2 (en) | 2005-05-25 |
Family
ID=24500251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53439897A Expired - Fee Related JP3653524B2 (en) | 1996-03-27 | 1997-03-04 | Plasma generation method and plasma generation apparatus including inductively coupled plasma generation source |
Country Status (8)
Country | Link |
---|---|
US (1) | US5669975A (en) |
JP (1) | JP3653524B2 (en) |
AU (1) | AU2058397A (en) |
CH (1) | CH696036A5 (en) |
DE (2) | DE19781667T1 (en) |
GB (1) | GB2326974B (en) |
TW (1) | TW340295B (en) |
WO (1) | WO1997036022A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002508883A (en) * | 1997-07-05 | 2002-03-19 | サーフィス テクノロジー システムズ ピーエルシー | Plasma processing equipment |
JP2008515163A (en) * | 2004-09-30 | 2008-05-08 | 東京エレクトロン株式会社 | Surface wave plasma processing system and method of use |
KR101669083B1 (en) | 2009-11-27 | 2016-10-25 | 주식회사 원익아이피에스 | Apparatus for generating plasma |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2748886B1 (en) * | 1996-05-15 | 1998-08-21 | Automa Tech Sa | PLATE HOLDER DEVICE FOR PLANT EXPOSURE TO LIGHT |
US6170428B1 (en) * | 1996-07-15 | 2001-01-09 | Applied Materials, Inc. | Symmetric tunable inductively coupled HDP-CVD reactor |
JPH10223607A (en) * | 1997-02-03 | 1998-08-21 | Mitsubishi Electric Corp | Plasma treating apparatus |
US6210539B1 (en) | 1997-05-14 | 2001-04-03 | Applied Materials, Inc. | Method and apparatus for producing a uniform density plasma above a substrate |
US6077402A (en) * | 1997-05-16 | 2000-06-20 | Applied Materials, Inc. | Central coil design for ionized metal plasma deposition |
US6361661B2 (en) | 1997-05-16 | 2002-03-26 | Applies Materials, Inc. | Hybrid coil design for ionized deposition |
US6479785B1 (en) | 1998-07-09 | 2002-11-12 | Richard J. Fugo | Device for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator |
US5958266A (en) * | 1997-10-24 | 1999-09-28 | Fugo; Richard J. | Method of plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator |
BR9813268A (en) * | 1997-10-24 | 2000-08-22 | Richard J Fugo | Plasma incision method of matter with a specially tuned radiofrequency electromagnetic field generator |
JPH11135438A (en) * | 1997-10-28 | 1999-05-21 | Nippon Asm Kk | Semiconductor plasma processing apparatus |
US6506287B1 (en) | 1998-03-16 | 2003-01-14 | Applied Materials, Inc. | Overlap design of one-turn coil |
US6085688A (en) | 1998-03-27 | 2000-07-11 | Applied Materials, Inc. | Method and apparatus for improving processing and reducing charge damage in an inductively coupled plasma reactor |
US6146508A (en) * | 1998-04-22 | 2000-11-14 | Applied Materials, Inc. | Sputtering method and apparatus with small diameter RF coil |
US6787730B2 (en) | 1998-07-09 | 2004-09-07 | Damian Coccio | Device for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator |
US6660134B1 (en) | 1998-07-10 | 2003-12-09 | Applied Materials, Inc. | Feedthrough overlap coil |
WO2000032839A1 (en) * | 1998-12-01 | 2000-06-08 | Silicon Genesis Corporation | Enhanced plasma mode, method, and system for plasma immersion ion implantation |
US6254745B1 (en) * | 1999-02-19 | 2001-07-03 | Tokyo Electron Limited | Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source |
US6474258B2 (en) * | 1999-03-26 | 2002-11-05 | Tokyo Electron Limited | Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma |
US6237526B1 (en) | 1999-03-26 | 2001-05-29 | Tokyo Electron Limited | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma |
DE19933841A1 (en) * | 1999-07-20 | 2001-02-01 | Bosch Gmbh Robert | Device and method for etching a substrate by means of an inductively coupled plasma |
US6341574B1 (en) | 1999-11-15 | 2002-01-29 | Lam Research Corporation | Plasma processing systems |
US6320320B1 (en) | 1999-11-15 | 2001-11-20 | Lam Research Corporation | Method and apparatus for producing uniform process rates |
EP1230664B1 (en) * | 1999-11-15 | 2008-05-07 | Lam Research Corporation | Processing systems |
US6322661B1 (en) | 1999-11-15 | 2001-11-27 | Lam Research Corporation | Method and apparatus for controlling the volume of a plasma |
US7067034B2 (en) | 2000-03-27 | 2006-06-27 | Lam Research Corporation | Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma |
US6446572B1 (en) | 2000-08-18 | 2002-09-10 | Tokyo Electron Limited | Embedded plasma source for plasma density improvement |
US6459066B1 (en) * | 2000-08-25 | 2002-10-01 | Board Of Regents, The University Of Texas System | Transmission line based inductively coupled plasma source with stable impedance |
US6494998B1 (en) | 2000-08-30 | 2002-12-17 | Tokyo Electron Limited | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma using an internal inductive element |
TW529085B (en) * | 2000-09-22 | 2003-04-21 | Alps Electric Co Ltd | Method for evaluating performance of plasma treatment apparatus or performance confirming system of plasma treatment system |
US6673199B1 (en) | 2001-03-07 | 2004-01-06 | Applied Materials, Inc. | Shaping a plasma with a magnetic field to control etch rate uniformity |
US20030010775A1 (en) * | 2001-06-21 | 2003-01-16 | Hyoung June Kim | Methods and apparatuses for heat treatment of semiconductor films upon thermally susceptible non-conducting substrates |
US20050186723A1 (en) * | 2001-06-21 | 2005-08-25 | Kim Hyoung J. | Methods and apparatuses for heat treatment of semiconductor films upon thermally susceptible non-conducting substrates |
US7138336B2 (en) * | 2001-08-06 | 2006-11-21 | Asm Genitech Korea Ltd. | Plasma enhanced atomic layer deposition (PEALD) equipment and method of forming a conducting thin film using the same thereof |
US6820570B2 (en) | 2001-08-15 | 2004-11-23 | Nobel Biocare Services Ag | Atomic layer deposition reactor |
KR100760291B1 (en) * | 2001-11-08 | 2007-09-19 | 에이에스엠지니텍코리아 주식회사 | Method for forming thin film |
US20040247522A1 (en) * | 2001-11-14 | 2004-12-09 | Mills Randell L | Hydrogen power, plasma, and reactor for lasing, and power conversion |
US20030129117A1 (en) * | 2002-01-02 | 2003-07-10 | Mills Randell L. | Synthesis and characterization of a highly stable amorphous silicon hydride as the product of a catalytic hydrogen plasma reaction |
DE10210898A1 (en) * | 2002-03-08 | 2003-09-25 | Ruediger Haaga Gmbh | Device for sterilizing objects |
US6875624B2 (en) * | 2002-05-08 | 2005-04-05 | Taiwan Semiconductor Manufacturing Co. Ltd. | Combined E-beam and optical exposure semiconductor lithography |
US20040142558A1 (en) * | 2002-12-05 | 2004-07-22 | Granneman Ernst H. A. | Apparatus and method for atomic layer deposition on substrates |
GB2398166B (en) * | 2003-02-07 | 2007-03-28 | Trikon Technologies Ltd | Electrostatic clamping of thin wafers in plasma processing vacuum chamber |
DE102004002243A1 (en) * | 2003-02-07 | 2004-09-16 | Trikon Technologies Limited, Newport | Substrate e.g. silicon wafer, processing apparatus for use in e.g. power device, has dark space shield on zone side of chuck circumjacent and preventing presence of plasma between shield and periphery of substrate |
US7601223B2 (en) * | 2003-04-29 | 2009-10-13 | Asm International N.V. | Showerhead assembly and ALD methods |
US7537662B2 (en) * | 2003-04-29 | 2009-05-26 | Asm International N.V. | Method and apparatus for depositing thin films on a surface |
US7188033B2 (en) * | 2003-07-21 | 2007-03-06 | Blacklight Power Incorporated | Method and system of computing and rendering the nature of the chemical bond of hydrogen-type molecules and molecular ions |
US7773656B1 (en) | 2003-10-24 | 2010-08-10 | Blacklight Power, Inc. | Molecular hydrogen laser |
AU2005204618A1 (en) * | 2004-01-05 | 2005-07-28 | Blacklight Power, Inc. | Method and system of computing and rendering the nature of atoms and atomic ions |
JP3616088B1 (en) * | 2004-03-17 | 2005-02-02 | 独立行政法人科学技術振興機構 | Micro plasma jet generator |
US7689367B2 (en) * | 2004-05-17 | 2010-03-30 | Blacklight Power, Inc. | Method and system of computing and rendering the nature of the excited electronic states of atoms and atomic ions |
US7691243B2 (en) * | 2004-06-22 | 2010-04-06 | Tokyo Electron Limited | Internal antennae for plasma processing with metal plasma |
US20070198199A1 (en) * | 2004-07-19 | 2007-08-23 | Mills Randell L | Method and system of computing and rendering the nature of the chemical bond of hydrogen-type molecules and molecular ions |
KR100599092B1 (en) * | 2004-11-29 | 2006-07-12 | 삼성전자주식회사 | Electro-magnatic accelerator with driving frequency modulation |
WO2006106764A1 (en) * | 2005-03-30 | 2006-10-12 | Matsushita Electric Industrial Co., Ltd. | Transmission line |
US7396415B2 (en) * | 2005-06-02 | 2008-07-08 | Asm America, Inc. | Apparatus and methods for isolating chemical vapor reactions at a substrate surface |
TWI414618B (en) * | 2005-08-26 | 2013-11-11 | 尼康股份有限公司 | A holding device, an assembling system, a sputtering device, and a processing method and a processing device |
US20070264427A1 (en) * | 2005-12-21 | 2007-11-15 | Asm Japan K.K. | Thin film formation by atomic layer growth and chemical vapor deposition |
US20080304522A1 (en) * | 2006-04-04 | 2008-12-11 | Mills Randell L | Catalyst laser |
US8088126B2 (en) | 2006-08-17 | 2012-01-03 | Fugo Richard J | Method and apparatus for plasma incision of cardiovascular tissue |
TW200830941A (en) * | 2007-01-15 | 2008-07-16 | Jehara Corp | Plasma generating apparatus |
US20080241387A1 (en) * | 2007-03-29 | 2008-10-02 | Asm International N.V. | Atomic layer deposition reactor |
KR20090018290A (en) * | 2007-08-17 | 2009-02-20 | 에이에스엠지니텍코리아 주식회사 | Deposition apparatus |
US7678715B2 (en) | 2007-12-21 | 2010-03-16 | Applied Materials, Inc. | Low wet etch rate silicon nitride film |
KR100968132B1 (en) * | 2008-02-29 | 2010-07-06 | (주)얼라이드 테크 파인더즈 | Rotational antenna and semiconductor device including the same |
US8383525B2 (en) | 2008-04-25 | 2013-02-26 | Asm America, Inc. | Plasma-enhanced deposition process for forming a metal oxide thin film and related structures |
US20100266765A1 (en) * | 2009-04-21 | 2010-10-21 | White Carl L | Method and apparatus for growing a thin film onto a substrate |
DE202009013283U1 (en) | 2009-10-02 | 2009-12-10 | JUN XIANG INDUSTRIAL SEWING MACHINE CO., LTD., Shunlin City | Movable discharge device for fuselages |
DE202009013281U1 (en) | 2009-10-02 | 2009-12-10 | JUN XIANG INDUSTRIAL SEWING MACHINE CO., LTD., Shunlin City | Movable lint diversion device with guide elements |
US9490106B2 (en) | 2011-04-28 | 2016-11-08 | Lam Research Corporation | Internal Faraday shield having distributed chevron patterns and correlated positioning relative to external inner and outer TCP coil |
US9293353B2 (en) | 2011-04-28 | 2016-03-22 | Lam Research Corporation | Faraday shield having plasma density decoupling structure between TCP coil zones |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US9029267B2 (en) | 2013-05-16 | 2015-05-12 | Lam Research Corporation | Controlling temperature of a faraday shield |
KR20140137172A (en) * | 2013-05-22 | 2014-12-02 | 최대규 | Remote plasma system having self-management function and self management method of the same |
US9885493B2 (en) | 2013-07-17 | 2018-02-06 | Lam Research Corporation | Air cooled faraday shield and methods for using the same |
CN111192812B (en) * | 2020-01-07 | 2022-11-25 | 北京北方华创微电子装备有限公司 | Inductive coupling device and semiconductor processing equipment |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4422896A (en) * | 1982-01-26 | 1983-12-27 | Materials Research Corporation | Magnetically enhanced plasma process and apparatus |
US5091049A (en) * | 1989-06-13 | 1992-02-25 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
US4990229A (en) * | 1989-06-13 | 1991-02-05 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
US4948458A (en) * | 1989-08-14 | 1990-08-14 | Lam Research Corporation | Method and apparatus for producing magnetically-coupled planar plasma |
US5304279A (en) * | 1990-08-10 | 1994-04-19 | International Business Machines Corporation | Radio frequency induction/multipole plasma processing tool |
ATE127615T1 (en) * | 1991-05-21 | 1995-09-15 | Materials Research Corp | SANFTAETZ UNIT FOR MODULAR PROCESSING SYSTEMS AND ECR PLASMA GENERATOR FOR SUCH A UNIT. |
US6077384A (en) * | 1994-08-11 | 2000-06-20 | Applied Materials, Inc. | Plasma reactor having an inductive antenna coupling power through a parallel plate electrode |
US5226967A (en) * | 1992-05-14 | 1993-07-13 | Lam Research Corporation | Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber |
JP3254069B2 (en) * | 1993-01-12 | 2002-02-04 | 東京エレクトロン株式会社 | Plasma equipment |
US5401350A (en) * | 1993-03-08 | 1995-03-28 | Lsi Logic Corporation | Coil configurations for improved uniformity in inductively coupled plasma systems |
US5529657A (en) * | 1993-10-04 | 1996-06-25 | Tokyo Electron Limited | Plasma processing apparatus |
JPH07161493A (en) * | 1993-12-08 | 1995-06-23 | Fujitsu Ltd | Method and device for generating plasma |
CA2176032A1 (en) * | 1994-01-13 | 1995-07-20 | Bankers Trust Company | Cryptographic system and method with key escrow feature |
US5540824A (en) * | 1994-07-18 | 1996-07-30 | Applied Materials | Plasma reactor with multi-section RF coil and isolated conducting lid |
JP3105403B2 (en) * | 1994-09-14 | 2000-10-30 | 松下電器産業株式会社 | Plasma processing equipment |
DE69510427T2 (en) * | 1994-10-31 | 1999-12-30 | Applied Materials, Inc. | Plasma reactors for semiconductor wafer treatment |
US5688357A (en) * | 1995-02-15 | 1997-11-18 | Applied Materials, Inc. | Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor |
US5556521A (en) * | 1995-03-24 | 1996-09-17 | Sony Corporation | Sputter etching apparatus with plasma source having a dielectric pocket and contoured plasma source |
US5874704A (en) * | 1995-06-30 | 1999-02-23 | Lam Research Corporation | Low inductance large area coil for an inductively coupled plasma source |
US5716451A (en) * | 1995-08-17 | 1998-02-10 | Tokyo Electron Limited | Plasma processing apparatus |
-
1996
- 1996-03-27 US US08/624,010 patent/US5669975A/en not_active Expired - Lifetime
-
1997
- 1997-02-11 TW TW086101671A patent/TW340295B/en not_active IP Right Cessation
- 1997-03-04 CH CH01975/98A patent/CH696036A5/en not_active IP Right Cessation
- 1997-03-04 DE DE19781667T patent/DE19781667T1/en active Pending
- 1997-03-04 GB GB9820829A patent/GB2326974B/en not_active Expired - Fee Related
- 1997-03-04 JP JP53439897A patent/JP3653524B2/en not_active Expired - Fee Related
- 1997-03-04 AU AU20583/97A patent/AU2058397A/en not_active Abandoned
- 1997-03-04 DE DE19781667A patent/DE19781667B4/en not_active Expired - Fee Related
- 1997-03-04 WO PCT/US1997/003048 patent/WO1997036022A1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002508883A (en) * | 1997-07-05 | 2002-03-19 | サーフィス テクノロジー システムズ ピーエルシー | Plasma processing equipment |
JP2008515163A (en) * | 2004-09-30 | 2008-05-08 | 東京エレクトロン株式会社 | Surface wave plasma processing system and method of use |
KR101669083B1 (en) | 2009-11-27 | 2016-10-25 | 주식회사 원익아이피에스 | Apparatus for generating plasma |
Also Published As
Publication number | Publication date |
---|---|
JP3653524B2 (en) | 2005-05-25 |
GB2326974A (en) | 1999-01-06 |
DE19781667T1 (en) | 1999-04-08 |
DE19781667B4 (en) | 2007-07-05 |
CH696036A5 (en) | 2006-11-30 |
AU2058397A (en) | 1997-10-17 |
GB2326974B (en) | 2000-11-15 |
TW340295B (en) | 1998-09-11 |
GB9820829D0 (en) | 1998-11-18 |
US5669975A (en) | 1997-09-23 |
WO1997036022A1 (en) | 1997-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3653524B2 (en) | Plasma generation method and plasma generation apparatus including inductively coupled plasma generation source | |
EP0607797B1 (en) | An apparatus and method for enhanced inductive coupling to plasmas with reduced sputter contamination | |
US6030667A (en) | Apparatus and method for applying RF power apparatus and method for generating plasma and apparatus and method for processing with plasma | |
KR100590344B1 (en) | Apparatus and method for improving plasma distribution and performance in an inductively coupled plasms | |
US5650032A (en) | Apparatus for producing an inductive plasma for plasma processes | |
US5277751A (en) | Method and apparatus for producing low pressure planar plasma using a coil with its axis parallel to the surface of a coupling window | |
KR100712762B1 (en) | Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma | |
JP5315243B2 (en) | Inductively coupled coil and inductively coupled plasma apparatus using the inductively coupled coil | |
JP3097957B2 (en) | High quality inductively coupled plasma reactor | |
US20020187280A1 (en) | Method and system for reducing damage to substrates during plasma processing with a resonator source | |
US20020125828A1 (en) | Plasma processing apparatus and method | |
JP2004111960A (en) | Apparatus for producing inductively coupled plasma | |
KR20020068346A (en) | Method and apparatus for producing uniform process rates | |
WO1999001888A1 (en) | Apparatus and method for uniform, low-damage anisotropic plasma processing | |
JP2004140363A (en) | Inductive coupling plasma generator with meander coil antenna | |
JP2634313B2 (en) | Plasma processing method for semiconductor wafer production | |
KR100786537B1 (en) | Multi plasama source for process chamber of semiconductor device | |
KR20010108968A (en) | Plasma processing apparatus | |
JP2004014904A (en) | Simultaneous discharging apparatus | |
WO2008031320A1 (en) | Inductive coupling coil and inductive coupling plasma apparatus thereof | |
US6462483B1 (en) | Induction plasma processing chamber | |
KR100718576B1 (en) | Dry etching apparatus and a method of manufacturing a semiconductor device | |
JPH10284298A (en) | Plasma processing method and device | |
JP3368806B2 (en) | Plasma processing method and apparatus | |
KR100506561B1 (en) | Plasma generating method and apparatus including inductively coupled plasma source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040303 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040820 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |