Nothing Special   »   [go: up one dir, main page]

JP2001336435A - Six-cycle internal combustion engine - Google Patents

Six-cycle internal combustion engine

Info

Publication number
JP2001336435A
JP2001336435A JP2000153433A JP2000153433A JP2001336435A JP 2001336435 A JP2001336435 A JP 2001336435A JP 2000153433 A JP2000153433 A JP 2000153433A JP 2000153433 A JP2000153433 A JP 2000153433A JP 2001336435 A JP2001336435 A JP 2001336435A
Authority
JP
Japan
Prior art keywords
stroke
combustion
fuel
engine
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000153433A
Other languages
Japanese (ja)
Inventor
Shigeo Yamamoto
茂雄 山本
Jun Takemura
純 竹村
Osamu Nakayama
修 中山
Hiromitsu Ando
弘光 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000153433A priority Critical patent/JP2001336435A/en
Publication of JP2001336435A publication Critical patent/JP2001336435A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a six-cycle internal combustion engine with intake and exhaust and engine control mechanisms of simple structure, thereby inhibiting the increase in costs and making the engine operate more efficiently so as to enhance fuel economy and emission control properties. SOLUTION: A six-cycle internal combustion engine performs in sequence a series of operations of an intake stroke, a first compression stroke, a first expansion stroke, a second compression stroke, a second expansion stroke, and an exhaust stroke. The engine is so constituted that it has a first combustion stage where the fuel is burned in the state of a thin layer at a lean air-fuel ratio through the intake stroke, the first compression stroke, and the first expansion stroke, and a second combustion stage where an additional fuel is injected into the gas burned in the first combustion stage, and at the same time, the additional fuel is burned through the second compression stroke and the second expansion stroke.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、筒内噴射内燃機関
に用いて好適の6サイクル内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a six-cycle internal combustion engine suitable for use in a direct injection internal combustion engine.

【0002】[0002]

【従来の技術】近年、筒内噴射内燃機関において燃焼サ
イクルを6サイクルと特異なものにして、より完全な燃
焼を実現できるようにして、排ガスの浄化を図った技術
が提案されている。例えば特開平9−291830号公
報には、1回目の吸気行程→圧縮行程→膨張行程→1回
目の排気行程→2回目の吸気行程→2回目の排気行程の
順で計6行程で1回の燃焼周期を完了する筒内噴射6サ
イクルガソリンエンジンが開示されている。この技術に
よれば、1回の燃焼周期内で吸気行程,排気行程をそれ
ぞれ2回行なって、燃焼後の排ガスを筒内から完全に除
去して次の燃焼にそなえるようにすることで、燃焼を完
全燃焼に近づけて、燃焼効率の向上や排ガス浄化の促進
を図ろうとしている。
2. Description of the Related Art In recent years, there has been proposed a technique for purifying exhaust gas by making a combustion cycle unique to a 6-cycle in-cylinder injection internal combustion engine so that more complete combustion can be realized. For example, Japanese Patent Application Laid-Open No. 9-291830 discloses that the first intake stroke → compression stroke → expansion stroke → first exhaust stroke → second intake stroke → second exhaust stroke in order of six strokes in total. A direct injection six-cycle gasoline engine that completes a combustion cycle is disclosed. According to this technique, the intake stroke and the exhaust stroke are each performed twice within one combustion cycle, and the exhaust gas after combustion is completely removed from the cylinder to prepare for the next combustion. Is approaching complete combustion to improve combustion efficiency and promote exhaust gas purification.

【0003】また、特開平11−62614号公報に
は、吸気行程→第1圧縮行程→減圧行程→第2圧縮行程
→膨張行程→排気行程の順で計6行程で1回の燃焼周期
を完了する6サイクルの直噴式エンジンが開示されてい
る。この技術によれば、第1圧縮行程で噴射された液体
の燃料がこの第1圧縮行程により一旦気化されるので燃
料の空気との均一な混合が実現し、これにより、燃焼効
率を高め黒鉛発生の抑制が可能になる。
Japanese Patent Application Laid-Open No. H11-62614 discloses that one combustion cycle is completed in a total of six strokes in the order of an intake stroke, a first compression stroke, a decompression stroke, a second compression stroke, an expansion stroke, and an exhaust stroke. A six-stroke direct injection engine is disclosed. According to this technique, the liquid fuel injected in the first compression stroke is once vaporized in the first compression stroke, so that uniform mixing with the fuel air is realized, thereby increasing the combustion efficiency and generating graphite. Can be suppressed.

【0004】また、特開平11−62614号公報に
は、さらに、減圧行程→第1圧縮行程→吸気行程→第2
圧縮行程→膨張行程→排気行程の順で計6行程で1回の
燃焼周期を完了する6サイクルの直噴式エンジンも開示
されている。この技術によれば、減圧行程で噴射された
液体の燃料がこの減圧行程により気化されるので燃料の
空気との均一な混合が実現し、これにより、燃焼効率を
高め黒鉛発生の抑制が可能になる。
Japanese Patent Application Laid-Open No. 11-62614 further discloses a pressure reduction stroke → first compression stroke → intake stroke → second stroke.
There is also disclosed a six-cycle direct injection engine that completes one combustion cycle in a total of six strokes in the order of compression stroke → expansion stroke → exhaust stroke. According to this technology, the liquid fuel injected in the decompression process is vaporized by the decompression process, so that uniform mixing of the fuel and the air is realized, thereby increasing the combustion efficiency and suppressing the generation of graphite. Become.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
各公報に記載された技術は、燃焼効率を向上させること
で排ガス浄化を促進させることができるとしても、6サ
イクル中に1回しか燃焼が行われないので、出力が不足
し易く、また、吸気や排気を2回としたものではポンピ
ングロスが大きくなって機関の効率悪化を招き、さら
に、排ガス浄化にも限度がある。
However, the technology described in each of the above publications can promote the purification of exhaust gas by improving the combustion efficiency, but combustion is performed only once in six cycles. Therefore, the output is likely to be insufficient, and if the intake and exhaust are performed twice, the pumping loss will increase, causing the efficiency of the engine to deteriorate, and the exhaust gas purification will be limited.

【0006】本発明は、上述の課題に鑑み創案されたも
ので、機関を効率良く作動させるようにして、燃費性能
や排ガス性能を向上させることができるようにした、6
サイクル内燃機関を提供することを目的とする。
The present invention has been made in view of the above problems, and has been made to improve the fuel efficiency and exhaust gas performance by operating an engine efficiently.
It is an object to provide a cycle internal combustion engine.

【0007】[0007]

【課題を解決するための手段】このため、請求項1記載
の本発明の6サイクル内燃機関では、吸気行程,第1圧
縮行程,第1膨張行程,第2圧縮行程,第2膨張行程,
排気行程を順次実行し、まず第1燃焼過程として、上記
の吸気行程,第1圧縮行程,第1膨張行程を経て燃料を
リーン空燃比で希薄層状燃焼させ、次に第2燃焼過程と
して、上記第1燃焼過程で発生した既燃ガス中に追加燃
料を噴射すると共に上記の第2圧縮行程,第2膨張行程
を経て上記追加燃料を燃焼させる。
Therefore, in the six-stroke internal combustion engine according to the present invention, the intake stroke, the first compression stroke, the first expansion stroke, the second compression stroke, the second expansion stroke,
The exhaust stroke is sequentially performed. First, as the first combustion process, the fuel is subjected to the lean stratified combustion at a lean air-fuel ratio through the intake stroke, the first compression stroke, and the first expansion stroke, and then the second combustion process is performed. The additional fuel is injected into the burned gas generated in the first combustion process, and the additional fuel is burned through the second compression stroke and the second expansion stroke.

【0008】したがって、ポンピングロスを伴う吸排気
行程が6サイクルに各1回になるのに対して、出力を発
生する燃焼が6サイクルに2回になるため、4サイクル
に比べて、効率が高くなり燃費も良好になる。また、第
2燃焼過程では、第1燃焼過程により発生した高温の既
燃ガス中に追加燃料を噴射するので、この追加燃料は高
温雰囲気で急速に気化,分解して活性し、極めて燃焼し
易くなる。このため、第2燃焼過程では、未燃ガスの再
反応が促進されて高効率な燃焼を実現することができ、
NOxやHCの排出も十分に抑制し得るようになる。
Accordingly, the intake and exhaust strokes with pumping loss are performed once every six cycles, whereas the combustion that generates output is performed twice every six cycles. Therefore, the efficiency is higher than in four cycles. The fuel efficiency is also improved. Further, in the second combustion process, the additional fuel is injected into the high-temperature burned gas generated in the first combustion process. Therefore, the additional fuel is quickly vaporized and decomposed in a high-temperature atmosphere to be activated, and extremely easily burned. Become. For this reason, in the second combustion process, re-reaction of the unburned gas is promoted, and highly efficient combustion can be realized.
The emission of NOx and HC can be sufficiently suppressed.

【0009】しかも、第1燃焼過程では、リーン空燃比
での燃焼を行なうので、ポンピングロスがより小さくな
りより効率の良い燃焼を実現でき、第1燃焼過程後、既
燃ガス中に酸素が多く残存するので、第2燃焼過程での
燃焼効率をより向上させることができる。そのうえ、第
1燃焼過程では、希薄層状燃焼を行なうので、より一層
効率の良い燃焼を実現でき、第1燃焼過程後に、未燃物
と酸素とがより共存し易くなり、第2燃焼過程での燃焼
効率をより一層向上させることができる。
Moreover, in the first combustion step, the combustion is performed at a lean air-fuel ratio, so that the pumping loss is reduced and more efficient combustion can be realized. After the first combustion step, the burned gas contains a large amount of oxygen. Since it remains, the combustion efficiency in the second combustion process can be further improved. In addition, in the first combustion process, lean stratified combustion is performed, so that more efficient combustion can be realized. After the first combustion process, unburned matter and oxygen are more likely to coexist, and the second combustion process has The combustion efficiency can be further improved.

【0010】また、請求項2記載の本発明の6サイクル
内燃機関では、吸気行程,第1圧縮行程,第1膨張行
程,第2圧縮行程,第2膨張行程,排気行程を順次実行
し、まず第1燃焼過程として、上記の吸気行程,第1圧
縮行程,第1膨張行程を経て燃料を燃焼させ、次に第2
燃焼過程として、上記第1燃焼過程で発生した既燃ガス
中に追加燃料を噴射すると共に上記の第2圧縮行程,第
2膨張行程を経て上記追加燃料を燃焼させる。この際、
第1燃焼過程で燃焼させる燃料と第2燃焼過程で燃焼さ
せる燃料との総合空燃比がストイキになるように制御す
る。
In the six-stroke internal combustion engine according to the present invention, the intake stroke, the first compression stroke, the first expansion stroke, the second compression stroke, the second expansion stroke, and the exhaust stroke are sequentially executed. As a first combustion process, the fuel is burned through the above-described intake stroke, first compression stroke, and first expansion stroke.
As a combustion process, additional fuel is injected into the burned gas generated in the first combustion process, and the additional fuel is burned through the second compression stroke and the second expansion stroke. On this occasion,
Control is performed so that the total air-fuel ratio of the fuel burned in the first combustion process and the fuel burned in the second combustion process becomes stoichiometric.

【0011】したがって、ポンピングロスを伴う吸排気
行程が6サイクルに各1回になるのに対して、出力を発
生する燃焼が6サイクルに2回になるため、4サイクル
に比べて、効率が高くなり燃費も良好になる。また、第
2燃焼過程では、第1燃焼過程により発生した高温の既
燃ガス中に追加燃料を噴射するので、この追加燃料は高
温雰囲気で急速に気化,分解して活性し、極めて燃焼し
易くなる。このため、第2燃焼過程では、未燃ガスの再
反応が促進されて高効率な燃焼を実現することができ、
NOxやHCの排出も十分に抑制し得るようになる。こ
の結果、低燃費と排ガス浄化とを高次元で両立できるよ
うになる。
Therefore, the intake and exhaust strokes with pumping loss are performed once every six cycles, whereas the combustion that generates output is performed twice every six cycles. Therefore, the efficiency is higher than in four cycles. The fuel efficiency is also improved. Further, in the second combustion process, the additional fuel is injected into the high-temperature burned gas generated in the first combustion process. Therefore, the additional fuel is quickly vaporized and decomposed in a high-temperature atmosphere to be activated, and extremely easily burned. Become. For this reason, in the second combustion process, re-reaction of the unburned gas is promoted, and highly efficient combustion can be realized.
The emission of NOx and HC can be sufficiently suppressed. As a result, both low fuel consumption and exhaust gas purification can be achieved at a high level.

【0012】しかも、第1燃焼過程で燃焼させる燃料と
第2燃焼過程で燃焼させる燃料との総合空燃比がストイ
キとされるので、効率良く排ガス浄化を行なえ、三元触
媒や空燃比フィードバック制御の適用が容易になる。こ
の場合、排気空燃比検出手段を設けて、第1燃焼過程で
燃焼させる燃料と第2燃焼過程で燃焼させる燃料との総
和が吸気量に対してストイキとなるように上記の追加燃
料噴射の量を制御することが好ましく、これにより、排
気空燃比を効率良くストイキにフィードバック制御する
ことができる。
Further, since the total air-fuel ratio of the fuel burned in the first combustion process and the fuel burned in the second combustion process is stoichiometric, the exhaust gas can be efficiently purified and the three-way catalyst and the air-fuel ratio feedback control can be performed. Easy application. In this case, an exhaust air-fuel ratio detecting means is provided, and the amount of the additional fuel injection is set so that the sum of the fuel burned in the first combustion process and the fuel burned in the second combustion process becomes stoichiometric with respect to the intake air amount. Is preferably controlled, whereby the exhaust air-fuel ratio can be feedback controlled efficiently and stoichiometrically.

【0013】請求項3記載の本発明の6サイクル内燃機
関では、吸気行程,第1圧縮行程,第1膨張行程,第2
圧縮行程,第2膨張行程,排気行程を順次実行し、まず
第1燃焼過程として、上記の吸気行程,第1圧縮行程,
第1膨張行程を経て燃料を燃焼させ、次に第2燃焼過程
として、上記第1燃焼過程で発生した既燃ガス中に追加
燃料を噴射すると共に上記の第2圧縮行程,第2膨張行
程を経て上記追加燃料を燃焼させる。この際、第1燃焼
過程での燃焼は火花点火燃焼とし、上記第2燃焼過程で
の燃焼は圧縮着火燃焼とする。
In the six-stroke internal combustion engine of the present invention, the intake stroke, the first compression stroke, the first expansion stroke, and the second
The compression stroke, the second expansion stroke, and the exhaust stroke are sequentially performed. First, as the first combustion process, the intake stroke, the first compression stroke,
The fuel is burned through a first expansion stroke, and then, as a second combustion process, additional fuel is injected into the burned gas generated in the first combustion process, and the second compression stroke and the second expansion stroke are performed. Then, the additional fuel is burned. At this time, the combustion in the first combustion process is spark ignition combustion, and the combustion in the second combustion process is compression ignition combustion.

【0014】したがって、ポンピングロスを伴う吸排気
行程が6サイクルに各1回になるのに対して、出力を発
生する燃焼が6サイクルに2回になるため、4サイクル
に比べて、効率が高くなり燃費も良好になる。また、第
2燃焼過程では、第1燃焼過程により発生した高温の既
燃ガス中に追加燃料を噴射するので、この追加燃料は高
温雰囲気で急速に気化,分解して活性し、極めて燃焼し
易くなる。このため、第2燃焼過程では、未燃ガスの再
反応が促進されて高効率な燃焼を実現することができ、
NOxやHCの排出も十分に抑制し得るようになる。こ
の結果、低燃費と排ガス浄化とを高次元で両立できるよ
うになる。
Therefore, the intake and exhaust strokes with pumping loss are performed once every six cycles, whereas the combustion that generates output is performed twice every six cycles. Therefore, the efficiency is higher than that in four cycles. The fuel efficiency is also improved. Further, in the second combustion process, the additional fuel is injected into the high-temperature burned gas generated in the first combustion process. Therefore, the additional fuel is quickly vaporized and decomposed in a high-temperature atmosphere to be activated, and extremely easily burned. Become. For this reason, in the second combustion process, re-reaction of the unburned gas is promoted, and highly efficient combustion can be realized.
The emission of NOx and HC can be sufficiently suppressed. As a result, both low fuel consumption and exhaust gas purification can be achieved at a high level.

【0015】しかも、第1燃焼過程での燃焼は火花点火
燃焼とするので、第1燃焼過程での燃焼タイミングを適
切に制御でき、第2燃焼過程での燃焼は圧縮着火燃焼
(自己着火)とするので、NOxやHCの排出レベルを
効率良く低下させることができる。この場合、第1膨張
行程後半から第2膨張行程後半までの間に追加燃料を噴
射するのが好ましく、これにより、既燃ガスと追加燃料
との混合をより均質なものにすることができ、第2燃焼
過程での燃焼を確実に予混合圧縮着火燃焼とすることが
でき、第2燃焼過程の燃焼を多点着火としてNOxやH
Cの排出レベルをより効率良く低下させることができ
る。
Furthermore, since the combustion in the first combustion process is spark ignition combustion, the combustion timing in the first combustion process can be appropriately controlled, and the combustion in the second combustion process is compression ignition combustion (self ignition). Therefore, the emission levels of NOx and HC can be efficiently reduced. In this case, it is preferable to inject the additional fuel between the latter half of the first expansion stroke and the latter half of the second expansion stroke, whereby the mixture of the burned gas and the additional fuel can be made more uniform, Combustion in the second combustion process can be surely made as homogeneous charge compression ignition combustion, and NOx or H
The C emission level can be reduced more efficiently.

【0016】なお、上記の第1燃焼過程での燃料噴射で
は、第1圧縮行程において内燃機関の筒内に燃料を直接
噴射するように構成するのが好ましく、これにより、第
1燃焼過程の既燃ガス中に未燃物と酸素とがより共存し
易くなり、第2燃焼過程での燃焼効率をより一層向上さ
せることができる。また、上記の第2燃焼過程での追加
燃料噴射では、第1膨張行程又は第2圧縮行程又はこれ
らの両行程において、内燃機関の筒内に燃料を直接噴射
するように構成するのが好ましく、これにより、追加燃
料を効率良く燃焼させることができる。
In the fuel injection in the first combustion step, it is preferable that the fuel be injected directly into the cylinder of the internal combustion engine in the first compression stroke. Unburned matter and oxygen are more likely to coexist in the combustion gas, and the combustion efficiency in the second combustion process can be further improved. Further, in the additional fuel injection in the second combustion process, it is preferable that fuel be directly injected into a cylinder of the internal combustion engine in the first expansion stroke, the second compression stroke, or both strokes, Thereby, the additional fuel can be efficiently burned.

【0017】また、機関の高負荷時には、燃焼を4サイ
クルに1回とする4サイクル運転に変更するように構成
してもよい。この場合、機関の高負荷時に出力を効率良
く確保することができる。また、上記の請求項1,2記
載の発明において、上記の第2燃焼過程での燃焼を、火
花点火燃焼とすれば、第2燃焼過程の燃焼タイミングを
適切に制御でき、既燃ガス中のCO2が希釈されてNO
xの排出レベルを効率良く低下させることができる。さ
らに、第1燃焼過程での燃焼を火花点火燃焼とすれば、
燃焼タイミングを適切に制御でき、より確実に燃焼させ
ることができる。
When the engine is under a high load, the operation may be changed to a four-cycle operation in which combustion is performed once every four cycles. In this case, the output can be efficiently secured when the engine is under a high load. Further, in the inventions according to the first and second aspects, if the combustion in the second combustion process is spark ignition combustion, the combustion timing in the second combustion process can be appropriately controlled, and CO 2 is diluted and NO
The emission level of x can be efficiently reduced. Furthermore, if the combustion in the first combustion process is spark ignition combustion,
Combustion timing can be appropriately controlled, and combustion can be performed more reliably.

【0018】あるいは、上記の第2燃焼過程での燃焼
を、圧縮自着火燃焼とすればNOxやHCの排出の排出
レベルを効率良く低下させることができる。この場合
も、第1燃焼過程での燃焼については火花点火燃焼とし
て、燃焼タイミングを適切に制御できるようにして、よ
り確実に燃焼させることが好ましい。
Alternatively, if the combustion in the second combustion process is compression ignition combustion, the emission levels of NOx and HC emissions can be efficiently reduced. Also in this case, it is preferable that the combustion in the first combustion process is spark ignition combustion so that the combustion timing can be appropriately controlled and combustion is performed more reliably.

【0019】[0019]

【発明の実施の形態】以下、図面により、本発明の実施
の形態について説明すると、図1〜図6は本発明の一実
施形態としての6サイクル内燃機関を示すものである。
まず、本実施形態にかかる筒内噴射型の6サイクル内燃
機関(以下、6サイクルエンジン又は単にエンジンとも
いう)の構成について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1 to 6 show a six-cycle internal combustion engine as an embodiment of the present invention.
First, a configuration of a direct injection type 6-cycle internal combustion engine (hereinafter, also referred to as a 6-cycle engine or simply an engine) according to the present embodiment will be described.

【0020】図1に示すように、エンジン1のシリンダ
ヘッド2には、各シリンダ3毎に点火プラグ4と燃焼室
5内に直接開口する燃料噴射手段としての燃料噴射弁6
とが設けられ、点火プラグ4は点火コイル4Aにより燃
料噴射弁6はドライバ6Aによりそれぞれ駆動される。
シリンダ3内には、クランクシャフト7に連結されたピ
ストン8が装備され、このピストン8の頂面には半球状
に窪んだキャビティ9が形成されている。
As shown in FIG. 1, the cylinder head 2 of the engine 1 has a spark plug 4 for each cylinder 3 and a fuel injection valve 6 as a fuel injection means which opens directly into the combustion chamber 5.
The ignition plug 4 is driven by an ignition coil 4A, and the fuel injection valve 6 is driven by a driver 6A.
A piston 8 connected to a crankshaft 7 is provided in the cylinder 3, and a hemispherically concave cavity 9 is formed on a top surface of the piston 8.

【0021】シリンダヘッド2には、吸気弁10を介し
て燃焼室5と連通しうる吸気ポート11と排気弁12を
介して燃焼室5と連通しうる排気ポート13とが形成さ
れている。吸気ポート11は燃焼室5上方に略鉛直に配
設され、ピストン8の頂面のキャビティ9と協働して燃
焼室5内で吸気による逆タンブル流を形成させる。ま
た、シリンダ3外周のウォータジャケット15には冷却
水温を検出する水温センサ16が設けられ、クランクシ
ャフト7には所定のクランク角位置で信号を出力するク
ランク角センサ17が、吸気弁10,排気弁12を駆動
するカムシャフト18,19にはカムシャフト位置に応
じた気筒識別信号を出力する気筒識別センサ(カム角セ
ンサ)20が、それぞれ付設されている。
The cylinder head 2 has an intake port 11 that can communicate with the combustion chamber 5 through an intake valve 10 and an exhaust port 13 that can communicate with the combustion chamber 5 through an exhaust valve 12. The intake port 11 is disposed substantially vertically above the combustion chamber 5, and cooperates with the cavity 9 on the top surface of the piston 8 to form a reverse tumble flow by intake air in the combustion chamber 5. A water temperature sensor 16 for detecting a cooling water temperature is provided on a water jacket 15 on the outer periphery of the cylinder 3, and a crank angle sensor 17 for outputting a signal at a predetermined crank angle position is provided on the crankshaft 7. Each of the camshafts 18 and 19 for driving the cylinder 12 is provided with a cylinder identification sensor (cam angle sensor) 20 for outputting a cylinder identification signal according to the position of the camshaft.

【0022】また、カムシャフト18,19と吸気弁1
0,排気弁12との間には、可変動弁機構41が装備さ
れており、一般的な4サイクル運転に対応した作動モー
ド、つまり、クランクシャフト7が2回転したときに吸
気弁10,排気弁12がいずれも1回転するモードと、
後述の6サイクル運転に対応した作動モード、つまり、
クランクシャフト7が3回転したときに吸気弁10,排
気弁12がいずれも1回転するモードとを選択的に切り
換えることができるようになっている。この可変動弁機
構41には、公知の種々のものを適用できるので説明は
省略する。
The camshafts 18, 19 and the intake valve 1
0 and an exhaust valve 12, a variable valve operating mechanism 41 is provided, which operates in a mode corresponding to a general four-cycle operation, that is, when the crankshaft 7 rotates twice, the intake valve 10 and the exhaust valve A mode in which each of the valves 12 makes one rotation,
An operation mode corresponding to the 6-cycle operation described later, that is,
When the crankshaft 7 rotates three times, the mode in which both the intake valve 10 and the exhaust valve 12 make one rotation can be selectively switched. Since various known mechanisms can be applied to the variable valve mechanism 41, the description is omitted.

【0023】吸気系は、上流側からエアクリーナ21,
吸気管22,スロットルボディ23,サージタンク2
4,吸気マニホールド25の順に構成され、吸気マニホ
ールド25の下流端部に吸気ポート11が設けられてい
る。スロットルボディ23には、燃焼室5内へ流入する
空気量を調整する空気量調整手段としての電子制御式ス
ロットル弁(ETV)30がそなえられ、このETV3
0の開度制御は、アクセル開度に応じた制御のみなら
ず、アイドルスピード制御や、後述するリーン運転時の
大量吸気導入の制御も行なえるようになっている。さら
に、エアクリーナ21の直ぐ下流部分には吸入空気流量
を検出するエアフローセンサ37が、スロットルボディ
23にはETV30のスロットル開度を検出するスロッ
トルポジションセンサ38とETV30の全閉を検出し
てアイドル信号を出力するアイドルスイッチ39とがそ
れぞれ設けられている。
The intake system includes an air cleaner 21,
Intake pipe 22, throttle body 23, surge tank 2
4, the intake manifold 25 is arranged in this order, and the intake port 11 is provided at the downstream end of the intake manifold 25. The throttle body 23 is provided with an electronically controlled throttle valve (ETV) 30 as air amount adjusting means for adjusting the amount of air flowing into the combustion chamber 5.
The opening degree control of 0 can perform not only control according to the accelerator opening degree, but also idle speed control and control for introducing a large amount of intake air during lean operation, which will be described later. Further, an air flow sensor 37 for detecting an intake air flow rate is provided immediately downstream of the air cleaner 21, a throttle position sensor 38 for detecting a throttle opening of the ETV 30 and a fully closed ETV 30 for the throttle body 23 to output an idle signal. An output idle switch 39 is provided.

【0024】排気系は、上流側から排気ポート12を有
する排気マニホールド26,排気管27の順に構成さ
れ、排気管27には排ガス浄化用の三元触媒29が介装
され、排気マニホールド26には、O2センサ40が設
けられている。なお、燃料供給系については図示しない
が、圧力が所定の高圧力〔数十気圧(例えば2〜7MP
a)程度〕に調整された燃料が燃料噴射弁6に導かれ、
燃料噴射弁6から高圧燃料が噴射されるようになってい
る。
The exhaust system includes an exhaust manifold 26 having an exhaust port 12 and an exhaust pipe 27 in this order from the upstream side. A three-way catalyst 29 for purifying exhaust gas is interposed in the exhaust pipe 27, and the exhaust manifold 26 is provided in the exhaust manifold 26. , O 2 sensor 40 are provided. Although the fuel supply system is not shown, the pressure is a predetermined high pressure [several tens of atmospheres (for example, 2 to 7MPa).
a) is adjusted to the fuel injection valve 6,
High-pressure fuel is injected from the fuel injection valve 6.

【0025】そして、点火プラグ4,燃料噴射弁6,E
TV30といった各エンジン制御要素の作動を制御する
ために、内燃機関の制御手段としての機能を有する電子
制御ユニット(ECU)60がそなえられている。この
ECU60には、入出力装置,制御プログラムや制御マ
ップ等の記憶を行なう記憶装置,中央処理装置,タイマ
やカウンタ等がそなえられており、前述の種々のセンサ
類からの検出情報やキースイッチの位置情報等に基づい
て、このECU60が、上述の各エンジン制御要素の制
御を行なうようになっている。
Then, the spark plug 4, the fuel injection valve 6, E
In order to control the operation of each engine control element such as the TV 30, an electronic control unit (ECU) 60 having a function as control means of the internal combustion engine is provided. The ECU 60 includes an input / output device, a storage device for storing a control program, a control map, and the like, a central processing unit, a timer and a counter, and the like. The ECU 60 controls each of the above-described engine control elements based on position information and the like.

【0026】特に、本エンジンは、筒内噴射エンジンで
あり、燃料噴射を自由なタイミングで実施でき、吸気行
程を中心とした燃料噴射によって均一混合させ均一燃焼
を行なうほか、圧縮行程を中心とした燃料噴射によって
前述の逆タンブル流を利用して層状燃焼を行なうことが
できる。本エンジンの空燃比に関する運転モードとして
は、O2センサ40の検出情報に基づいたフィードバッ
ク制御により空燃比を理論空燃比近傍に保持するストイ
キ運転モードと、空燃比を理論空燃比よりもリッチにす
るエンリッチ運転モードと、空燃比を理論空燃比よりも
リーンにして希薄燃焼させるリーン運転モードとが設け
られている。
In particular, the present engine is a direct injection engine, which can perform fuel injection at an arbitrary timing, performs uniform mixing and uniform combustion by fuel injection mainly in the intake stroke, and also performs injection mainly in the compression stroke. By the fuel injection, stratified combustion can be performed using the above-mentioned reverse tumble flow. The operation mode related to the air-fuel ratio of the present engine includes a stoichiometric operation mode in which the air-fuel ratio is kept close to the stoichiometric air-fuel ratio by feedback control based on information detected by the O 2 sensor 40, and an air-fuel ratio richer than the stoichiometric air-fuel ratio. An enrich operation mode and a lean operation mode in which the air-fuel ratio is made leaner than the stoichiometric air-fuel ratio to perform lean combustion are provided.

【0027】また、上記のエンリッチ運転モードは、1
燃焼サイクルを吸気行程,圧縮行程,膨張行程,排気行
程の4行程によって行なう一般的な4サイクル運転であ
るが、本エンジンの場合、1燃焼サイクルにおいて圧縮
行程,膨張行程をそれぞれ2回ずつ行なう6サイクル運
転も可能になっており、上記のリーン運転モードはこの
6サイクル運転を含む。この6サイクル運転モードは、
層状燃焼を主体とした第1燃焼過程と均一燃焼主体とし
た第2燃焼過程との2つの燃焼過程を1燃焼サイクル内
にそなえている。また、上記のストイキ運転モードで
は、ストイキ運転モード領域内の低負荷領域(目標Pe
が所定値Pe0未満)で6サイクル運転が実行され、ス
トイキ運転モード領域内の高負荷領域(目標Peが所定
値Pe0以上)で4サイクル運転が実行される。なお、
6サイクルのストイキ運転モード時には、総合空燃比が
ストイキに制御される。
The above-mentioned enrichment operation mode includes
This is a general four-cycle operation in which the combustion cycle is performed by four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. In the case of the present engine, the compression stroke and the expansion stroke are each performed twice in one combustion cycle. Cycle operation is also possible, and the above-mentioned lean operation mode includes this six-cycle operation. This 6 cycle operation mode
Two combustion processes, a first combustion process mainly composed of stratified combustion and a second combustion process mainly composed of uniform combustion, are provided in one combustion cycle. In the stoichiometric operation mode, the low load region (target Pe) in the stoichiometric operation mode region is used.
There 6 cycles operating at less than the predetermined value Pe 0) is executed, the high-load region (target Pe stoichiometric operation mode area is 4-cycle operation at a predetermined value Pe 0 or more) is performed. In addition,
In the six-cycle stoichiometric operation mode, the total air-fuel ratio is controlled to stoichiometric.

【0028】ECU60では、図示しないマップに基づ
いて、エンジン回転速度(以下、エンジン回転数とい
う)Ne及びエンジン負荷状態を示す平均有効圧Peの
目標値(目標Pe)に応じていずれかの運転モードを選
択するようになっており、エンジン回転数Neが小さく
目標Peもごく小さい状態ではリーン運転モード(6サ
イクル)又は圧縮リーン運転モード(4サイクル)を選
択し、エンジン回転数Neや目標Peが増加していくに
つれて、ストイキ(6サイクル),ストイキ(4サイク
ル),エンリッチ(4サイクル)の順に運転モードを選
択していく。このとき、4サイクルと6サイクルとの切
り換えは可変動弁機構41を用いて行なう。
In the ECU 60, based on a map (not shown), one of the operation modes according to the engine rotation speed (hereinafter referred to as the engine rotation speed) Ne and the target value (target Pe) of the average effective pressure Pe indicating the engine load state. When the engine speed Ne is small and the target Pe is very small, the lean operation mode (6 cycles) or the compression lean operation mode (4 cycles) is selected, and the engine speed Ne and the target Pe are changed. As the number increases, the operation mode is selected in the order of stoichiometry (6 cycles), stoichiometry (4 cycles), and enrichment (4 cycles). At this time, switching between the four cycles and the six cycles is performed using the variable valve mechanism 41.

【0029】上述のように、このエンジンの場合、6サ
イクル運転のモードは、目標Peが所定値Pe0以上の
高負荷時を除いた部分負荷時に行なうようになってい
る。ここで、本エンジンの6サイクル運転について説明
すると、この運転は、図2に示すように、吸気行程,
第1圧縮行程,第1膨張行程,第2圧縮行程,第
2膨張行程,排気行程を順次実行するようになって
おり、吸気行程,第1圧縮行程,第1膨張行程を
経て燃料をリーン空燃比で希薄層状燃焼させる第1燃焼
過程と、この第1燃焼過程で発生した既燃ガス中に追加
燃料を噴射して、第2圧縮行程,第2膨張行程を経
て上記追加燃料を燃焼させる第2燃焼過程とをそなえて
いる。これらの各行程は、図4(図4は両対数グラフ)
のPV線図に示すようになる。
As described above, in the case of this engine, the mode of the six-cycle operation is performed when the target Pe is a partial load except for a high load having a predetermined value Pe 0 or more. Here, the six-cycle operation of the engine will be described. As shown in FIG.
The first compression stroke, the first expansion stroke, the second compression stroke, the second expansion stroke, and the exhaust stroke are sequentially executed, and the fuel is emptied through the intake stroke, the first compression stroke, and the first expansion stroke. A first combustion process of performing lean stratified combustion at a fuel ratio; and a second combustion process of injecting additional fuel into burned gas generated in the first combustion process to burn the additional fuel through a second compression stroke and a second expansion stroke. It has two combustion processes. Each of these steps is shown in Figure 4 (Figure 4 is a log-log graph)
As shown in the PV diagram of FIG.

【0030】図2に示すように、第1燃焼過程において
は、吸気行程,第1圧縮行程の内のいずれかの時点
で燃料噴射を行なうことが可能であるが、本実施形態で
は、第1圧縮行程中に主燃料噴射(1回目の噴射)を
行なう例を示している。また、第1燃焼過程において
は、第1膨張行程,第2圧縮行程の内のいずれかの
時点で燃料噴射を行なうことが可能であるが、本実施形
態では、第1膨張行程中に追加燃料噴射(2回目の噴
射)を行なう例を示している。
As shown in FIG. 2, in the first combustion process, fuel injection can be performed at any time during the intake stroke or the first compression stroke. An example is shown in which the main fuel injection (first injection) is performed during the compression stroke. In the first combustion process, fuel injection can be performed at any time during the first expansion stroke and the second compression stroke. However, in this embodiment, additional fuel is injected during the first expansion stroke. An example is shown in which injection (second injection) is performed.

【0031】そして、6サイクルのストイキ運転モード
の場合、ECU60では、主燃料噴射(1回目の噴射)
と追加燃料噴射(2回目の噴射)との噴射燃料の総和量
が、吸気行程で吸入された空気量に対してストイキ(化
学量論空燃比)を与えるように、燃料噴射量の総和を制
御するようになっている。本実施形態では、主燃料噴射
で略1/2弱の量の燃料を噴射し(即ち、筒内当量比を
略0.5とし)、追加燃料噴射で残りの略1/2強の量
の燃料を噴射し(即ち、筒内当量比を1.0とし)て、
ストイキ運転を行なうようにしている。
In the six-cycle stoichiometric operation mode, the ECU 60 sets the main fuel injection (first injection).
And the additional fuel injection (second injection) controls the total fuel injection amount so that the total amount of injected fuel gives stoichiometric (stoichiometric air-fuel ratio) to the amount of air taken in during the intake stroke. It is supposed to. In the present embodiment, approximately a little less than half of fuel is injected by the main fuel injection (that is, the in-cylinder equivalence ratio is set to approximately 0.5), and the remaining approximately half of the slightly more amount is injected by additional fuel injection. By injecting fuel (that is, the in-cylinder equivalent ratio is set to 1.0),
The stoichiometric operation is performed.

【0032】つまり、総合空燃比(吸入空気量/噴射燃
料の総和量)をストイキにするには、一般的なストイキ
運転と同様に、O2センサ40の検出情報で燃料噴射量
をフィードバック制御すれば良く、噴射燃料の総和量は
一般的なストイキ運転と同様のフィードバック制御によ
って設定し得る。そして、設定した噴射燃料の総和量の
半分ずつの量の燃料を主燃料噴射と追加燃料噴射と噴射
すれば良い。
That is, in order to make the total air-fuel ratio (intake air amount / total amount of injected fuel) stoichiometric, the fuel injection amount is feedback-controlled based on the information detected by the O 2 sensor 40 as in the general stoichiometric operation. It is sufficient that the total amount of the injected fuel can be set by the same feedback control as in the general stoichiometric operation. Then, the main fuel injection and the additional fuel injection may be performed by injecting half the amount of the set total amount of the injected fuel.

【0033】さらに、より精度良くかかる6サイクルに
よるストイキ運転を行なうには、主燃料噴射の時点前に
得られたO2センサ40の情報から暫定的な噴射燃料の
総和量を設定しこれに基づいた量(ここでは総和量の1
/2弱の量)の燃料を噴射して(1回目の噴射)、その
後の追加燃料噴射の直前に得られたO2センサ40の情
報から最終的な噴射燃料の総和量を設定しこの総和量か
ら1回目の噴射を減算した量の燃料を追加噴射する(2
回目の噴射)ように構成すればよい。
Further, in order to perform the stoichiometric operation in six cycles with higher accuracy, a provisional total amount of the injected fuel is set from the information of the O 2 sensor 40 obtained before the time of the main fuel injection, and based on this, Amount (here, the sum of 1
) (A little less than / 2) (the first injection), and the final total amount of the injected fuel is set from the information of the O 2 sensor 40 obtained immediately before the subsequent additional fuel injection, and the total amount is set. Additional fuel is injected with the amount obtained by subtracting the first injection from the amount (2
The second injection).

【0034】なお、リーン運転モードの場合、噴射燃料
の総和量が吸入空気量に対してリーンとなるように1回
目の噴射量と2回目の噴射量とが目標Pe及びエンジン
回転数Neに応じてオープン制御されると同時に、電子
スロットルによって吸入空気量も制御される。また、本
実施形態では、図2に示すように、第1燃焼過程におい
ては、第1圧縮行程の上死点直前に点火プラグ4によ
る点火を行ない、第2燃焼過程においては、第2圧縮行
程の上死点直前に点火プラグ4による点火を行なうよ
うになっている。ただし、第2燃焼過程においては、筒
内温度が十分に高ければ圧縮行程で自着火するので、圧
縮自着火によって確実に燃焼できる場合には、図3に示
すように、点火プラグ4による点火を行なわないようよ
うにする。この圧縮自着火が可能になるか否かはエンジ
ンの回転速度やエンジン負荷や1回目と2回目との燃料
噴射量の割合等に依存する。なお、ガソリンエンジンの
場合、第1燃焼過程においては、一般に筒内温度は自着
火するほど高くならないので、点火プラグ4により確実
に点火を行なうのが望ましい。
In the lean operation mode, the first injection amount and the second injection amount are determined according to the target Pe and the engine speed Ne so that the total amount of the injected fuel becomes lean with respect to the intake air amount. At the same time, the intake air amount is controlled by the electronic throttle. Further, in the present embodiment, as shown in FIG. 2, in the first combustion process, ignition is performed by the spark plug 4 immediately before the top dead center of the first compression stroke, and in the second combustion process, the second compression stroke is performed. Immediately before top dead center. However, in the second combustion process, if the in-cylinder temperature is sufficiently high, self-ignition occurs in the compression stroke. Therefore, if combustion can be reliably performed by compression self-ignition, ignition by the ignition plug 4 is performed as shown in FIG. Try not to do it. Whether or not compression self-ignition is possible depends on the engine speed, engine load, the ratio of the first and second fuel injection amounts, and the like. In the case of a gasoline engine, in the first combustion process, the in-cylinder temperature generally does not become so high as to cause self-ignition.

【0035】なお、ストイキ運転モードにおける高負荷
時やエンリッチ運転モードでは、6サイクル運転ではな
く通常の4サイクル運転を行なうようになっている。本
発明の一実施形態としての6サイクル内燃機関は、上述
のように構成されているので、目標Peが所定値Pe0
未満の部分負荷時には、図2に示すように、吸気行程
,第1圧縮行程,第1膨張行程,第2圧縮行程
,第2膨張行程,排気行程の順に6サイクル運転
を行なう。
In the stoichiometric operation mode, when the load is high or in the enrichment operation mode, normal four-cycle operation is performed instead of six-cycle operation. Since the six-cycle internal combustion engine as one embodiment of the present invention is configured as described above, the target Pe is set to the predetermined value Pe 0.
At a partial load of less than, as shown in FIG. 2, six cycles of operation are performed in the order of the intake stroke, the first compression stroke, the first expansion stroke, the second compression stroke, the second expansion stroke, and the exhaust stroke.

【0036】つまり、まず、ピストン8の下降時に吸気
弁10を開放(勿論、排気弁12は閉)して空気を吸入
する(吸気行程)。ついで、ピストン8の上昇時に吸
気弁10,排気弁12を共に閉じて、図5(a)に示す
ように、ピストン8が上昇する過程で燃料噴射弁6から
燃料を噴射(主燃料噴射)する(第1圧縮行程)。ス
トイキ運転モードの場合、この主燃料噴射は、筒内当量
比が略0.5となるように、吸気行程で吸入された空
気量に対して空燃比をストイキとする燃料量の略1/2
の量の燃料を噴射する。また、リーン運転モードの場合
は、目標となるリーン空燃比に相当する燃料量の略1/
2の量の燃料が噴射される。
That is, first, when the piston 8 is lowered, the intake valve 10 is opened (the exhaust valve 12 is closed, of course) to suck air (intake stroke). Next, when the piston 8 rises, both the intake valve 10 and the exhaust valve 12 are closed, and as shown in FIG. 5A, fuel is injected from the fuel injection valve 6 (main fuel injection) while the piston 8 rises. (First compression stroke). In the stoichiometric operation mode, this main fuel injection is performed so that the air-fuel ratio becomes approximately に 対 し て of the stoichiometric amount with respect to the amount of air taken in during the intake stroke so that the in-cylinder equivalent ratio becomes approximately 0.5.
Amount of fuel is injected. Further, in the case of the lean operation mode, approximately 1 / l of the fuel amount corresponding to the target lean air-fuel ratio.
Two quantities of fuel are injected.

【0037】さらに、ピストン8が圧縮上死点の近傍に
到達したら点火プラグ4によって火花点火を行なう。こ
れによって、図5(b)に示すように、1回目の燃焼が
行なわれる。この1回目の燃焼は、図5(c)に示すよ
うに、全体の空燃比をリーンとしながら点火プラグ4の
近傍に着火可能な燃料濃度の高い混合気を集めて行な
う、希薄層状燃焼(希薄成層燃焼)となって、第1膨張
行程が行なわれる。
Further, when the piston 8 reaches the vicinity of the compression top dead center, spark ignition is performed by the spark plug 4. Thus, the first combustion is performed as shown in FIG. As shown in FIG. 5C, the first combustion is performed by collecting a ignitable mixture having a high fuel concentration near the spark plug 4 while keeping the overall air-fuel ratio lean. (Stratified combustion), and the first expansion stroke is performed.

【0038】図5(d)に示すように、この1回目の燃
焼(第1燃焼過程)後の第1膨張行程の途中、又は図
示しないが第2圧縮行程の途中で、高温の既燃ガス中
に追加燃料を噴射すると、筒内には、燃料と既燃ガス中
の多くの活性種(燃焼可能な成分)と余剰酸素とが高温
雰囲気下で共存する。その後の第2圧縮行程では、上
記の高温ガスが圧縮されるため、図5(e)に示すよう
に、高温,高圧下で燃料の分解も促進されて且つ空気と
燃料との混合も促進されて、第2圧縮行程の上死点近
傍で点火プラグ4により火花点火すれば極めて効率良
く、2回目の燃焼(第2燃焼過程)が行なわれる。
As shown in FIG. 5D, during the first expansion stroke after the first combustion (first combustion process), or during the second compression stroke (not shown), the high-temperature burned gas is discharged. When additional fuel is injected into the cylinder, the fuel, many active species (combustible components) in the burned gas, and excess oxygen coexist in a high-temperature atmosphere in the cylinder. In the subsequent second compression stroke, the high-temperature gas is compressed, so that the decomposition of the fuel is promoted at a high temperature and a high pressure, and the mixing of the air and the fuel is also promoted, as shown in FIG. Thus, if spark ignition is performed by the spark plug 4 near the top dead center of the second compression stroke, the second combustion (second combustion process) is performed extremely efficiently.

【0039】また、筒内温度が十分に高ければ、図5
(f)に示すように、点火プラグ4により火花点火しな
くとも圧縮行程の末期(第2圧縮行程の上死点近傍)
に筒内の燃料は温度と圧力とによって自ら着火する。こ
の場合、燃料の追加噴射終了から第2圧縮行程の上死
点までのインターバルが十分にあれば燃料と既燃ガスと
の混合が進んで均質な混合気となって、筒内(燃焼室)
内の各部で着火する多点自着火となって、極めて効率良
く、2回目の燃焼(第2燃焼過程)が行なわれる。
If the in-cylinder temperature is sufficiently high, FIG.
As shown in (f), the end of the compression stroke (near top dead center of the second compression stroke) without spark ignition by the spark plug 4.
The fuel in the cylinder is ignited by the temperature and pressure. In this case, if the interval from the end of the additional fuel injection to the top dead center of the second compression stroke is sufficient, the mixing of the fuel and the burned gas proceeds to form a homogeneous mixture, and the mixture in the cylinder (combustion chamber)
The multi-point self-ignition ignited at each part in the inside makes the second combustion (second combustion process) extremely efficient.

【0040】このように行なわれる本エンジンの6サイ
クル運転によれば、吸気行程直後の圧縮行程噴射(主燃
料噴射)による希薄成層火花点火燃焼(第1燃焼過程で
の燃焼)は、ポンピングロスが小さく、効率の高い燃焼
となる。第1燃焼過程での燃焼直後に行なわれる第2燃
焼過程での燃焼では、反応途中の活性の高い大量の未燃
物と酸素とを含んだ高温の既燃ガス中にさらに燃料が噴
射され、この噴射された燃料自身も高温雰囲気で急速に
気化,分解して活性化するので、極めて燃焼しやすくな
る。この燃焼(第2燃焼過程での燃焼)によれば、HC
やNOxを含んだ上記の未燃物も同時に再反応するの
で、極めて高効率な運転となって排ガス中の浄化すべき
成分(エミッション)は極めて低レベルなものになる。
According to the six-cycle operation of the present engine performed as described above, the lean stratified spark ignition combustion (combustion in the first combustion process) by the compression stroke injection (main fuel injection) immediately after the intake stroke has a pumping loss. Small and highly efficient combustion. In the combustion in the second combustion process performed immediately after the combustion in the first combustion process, fuel is further injected into a high-temperature burned gas containing a large amount of highly active unburned matter and oxygen during the reaction, The injected fuel itself is rapidly vaporized and decomposed and activated in a high-temperature atmosphere, so that it becomes extremely easy to burn. According to this combustion (combustion in the second combustion process), HC
Since the above-mentioned unburned matter containing NOx and NOx also reacts at the same time, the operation becomes extremely efficient, and the component (emission) to be purified in the exhaust gas becomes extremely low.

【0041】この第2燃焼過程での燃焼を火花点火で行
なう場合には、残留ガス中のNOxが残留ガス中のCO
2によって希釈されてNOxの排出レベルを低レベルに
することができる。一方、第2燃焼過程での燃焼を圧縮
自着火で行なう場合には、上述のように予混合気の多点
着火となるので、NOxやHCの排出量は共に極めて低
いレベルにすることができ、燃焼効率は高められる。
When the combustion in the second combustion process is performed by spark ignition, NOx in the residual gas is changed to CO2 in the residual gas.
It can be diluted by 2 to lower NOx emission levels. On the other hand, when the combustion in the second combustion process is performed by the compression ignition, since the multi-point ignition of the premixed gas is performed as described above, the emission amounts of both NOx and HC can be extremely low. , Combustion efficiency is increased.

【0042】しかも、第1燃焼過程及び第2燃焼過程の
結果の排ガスは、上記のような燃焼後の排気行程で排
出されるので、エンジン外に排出される実際のエミッシ
ョンは極めて低レベルなものになる。特に、6サイクル
のストイキ運転モードでは、前述のようにO2センサに
よるフィードバック制御を適用でき、また、一般に排ガ
ス浄化率が95%程度と高い三元触媒29も適用できる
ため、最終的に排気管27から排出されるエミッション
は一層低減される。
Further, since the exhaust gas resulting from the first combustion process and the second combustion process is discharged in the exhaust stroke after the combustion as described above, the actual emission discharged outside the engine is extremely low. become. In particular, in the six-cycle stoichiometric operation mode, the feedback control by the O 2 sensor can be applied as described above, and the three-way catalyst 29 which generally has a high exhaust gas purification rate of about 95% can be applied. Emissions emitted from 27 are further reduced.

【0043】しかも、ポンピングロスを伴う吸排気行程
が6サイクル(6行程)に各1回であり4サイクルエン
ジンの場合の2/3となり、出力を発生する燃焼が6サ
イクル(6行程)に2回であり4サイクルエンジンの場
合の3/4となるため、4サイクルに比べて、効率が高
くなり、したがって、良好な燃費特性が得られるように
なる。
In addition, the intake and exhaust strokes with pumping loss are performed once in each of six cycles (six strokes), which is two thirds of that in the case of a four-stroke engine, and the combustion that generates output is two in six cycles (six strokes). Since the number of times is four times, which is three-fourths of the case of a four-cycle engine, the efficiency is higher than that of a four-cycle engine, so that good fuel economy characteristics can be obtained.

【0044】さらに、吸気系に外部EGRを導入するこ
とを廃止することも可能になり、吸気系の汚損や吸気系
内へのカーボン堆積を回避することができる。また、リ
ーンNOx触媒を廃止することも可能になるので、コス
トを削減でき、また、エンジンの制御も簡素化できる。
なお、図6はNOx排出量,HC排出量,正味燃費率を
示す図であり、a線は4サイクル予混合燃焼に関し、b
線は4サイクル希薄成層燃焼に関し、c線は本6サイク
ル運転に関している。また、1はNOx排出量に関し、
2はHC排出量に関し、3は正味燃費率に関している。
図6より、本6サイクル運転によれば、広い軸トルク範
囲(エンジン負荷範囲)で、NOx排出量,HC排出
量,正味燃費率が向上することがわかる。
Further, it is possible to abolish the introduction of the external EGR into the intake system, and it is possible to avoid the contamination of the intake system and the accumulation of carbon in the intake system. Further, since the lean NOx catalyst can be eliminated, the cost can be reduced and the control of the engine can be simplified.
FIG. 6 is a diagram showing NOx emissions, HC emissions, and net fuel consumption rates.
The line relates to four-cycle lean stratified combustion, and the line c relates to the present six-cycle operation. 1 is for NOx emission,
2 relates to the amount of HC emissions, and 3 relates to the net fuel efficiency.
FIG. 6 shows that according to the six-cycle operation, the NOx emission, HC emission, and net fuel efficiency are improved in a wide shaft torque range (engine load range).

【0045】ところで、本発明の6サイクル内燃機関
は、上記の実施形態に限定されるものではなく、本発明
の趣旨を逸脱しない範囲で種々変形して実施することが
できる。例えば上記の実施形態では、追加燃料の噴射タ
イミングを第1膨張行程中に行なっているが、この追加
燃料の噴射タイミングを図7,図8に示すような第1圧
縮行程中や、第1膨張行程から第2圧縮行程にかけて行
なっても、十分に追加燃料の活性化や空気との混合が図
れる場合も考えれ、かかる設定も可能である。
Incidentally, the six-cycle internal combustion engine of the present invention is not limited to the above embodiment, and can be implemented in various modifications without departing from the spirit of the present invention. For example, in the above embodiment, the injection timing of the additional fuel is performed during the first expansion stroke. However, the injection timing of the additional fuel is determined during the first compression stroke as shown in FIGS. Even if the process is performed from the stroke to the second compression stroke, it is conceivable that the additional fuel may be sufficiently activated or mixed with the air, and such a setting is also possible.

【0046】また、上記の実施形態では、主燃料噴射
(1回目の噴射)を総和量の1/2弱(当量比で0.5
弱)としているが、第1燃焼過程で行なう希薄成層燃焼
は、当量比が大き過ぎると大量の不活性ガスによって燃
焼が困難になり、また、当量比が小さすぎると安定した
着火ができないので、略0.1〜0.5程度の範囲に設
定することが望ましく、このような範囲内であれば適宜
設定し得る。
In the above-described embodiment, the main fuel injection (first injection) is made slightly less than half of the total amount (0.5 in equivalent ratio).
However, the lean stratified combustion performed in the first combustion process is difficult to burn with a large amount of inert gas if the equivalent ratio is too large, and stable ignition cannot be performed if the equivalent ratio is too small. It is desirable to set it in the range of about 0.1 to 0.5, and it can be set appropriately within such a range.

【0047】ただし、1回目の噴射燃料量と2回目の噴
射燃料量との割合は、1回目の燃焼と2回目の燃焼との
差に起因する振動や、2回目の燃焼の高温自着火を実現
するための残留ガス量や温度に影響を与える。1回目の
噴射燃料量をリッチにし過ぎると、残留ガス濃度が過大
(当量比0.5でEGR率100%に相当)となるの
で、この点からも1回目の噴射燃料量を制限することが
必要であり、これらを考慮すると、1回目の噴射燃料量
を制限し、この分2回目の噴射燃料量を増大して対応す
ることが望ましい。
However, the ratio between the first injected fuel amount and the second injected fuel amount depends on the vibration caused by the difference between the first combustion and the second combustion and the high-temperature self-ignition of the second combustion. Affects residual gas volume and temperature to achieve. If the first injection fuel amount is made too rich, the residual gas concentration becomes excessive (corresponding to an EGR rate of 100% at an equivalent ratio of 0.5). Therefore, the first injection fuel amount may be limited from this point as well. It is necessary, and in consideration of these, it is desirable to limit the first injected fuel amount and increase the second injected fuel amount accordingly.

【0048】また、本実施形態では、低負荷域のみに6
サイクルを適用しているが、これは負荷が大きいと吸気
量不足を招くため6サイクルの利点が得られないことを
考慮したもので、例えば過給などによって、大負荷域で
も十分な吸気量が得られれば、大負荷域に6サイクル運
転を適用しても良い。この場合、図6に鎖線で示すよう
に、軸トルクが大きい(エンジン高負荷)場合にも正味
燃費率が向上する。
Also, in this embodiment, only 6
Although the cycle is applied, this takes into account that if the load is large, the intake amount becomes insufficient, and the advantage of 6 cycles cannot be obtained. For example, due to supercharging, a sufficient intake amount can be obtained even in a large load region. If it is obtained, six-cycle operation may be applied to a large load region. In this case, as shown by the chain line in FIG. 6, even when the shaft torque is large (high engine load), the net fuel efficiency is improved.

【0049】また、6サイクル運転領域を全てストイキ
運転とする構成や、6サイクル運転のみ行なう(4サイ
クル運転は行なわない)構成も考えられる。
Further, a configuration in which all the six-cycle operation regions are set to the stoichiometric operation or a configuration in which only the six-cycle operation is performed (the four-cycle operation is not performed) is also conceivable.

【0050】[0050]

【発明の効果】以上詳述したように、請求項1〜3記載
の本発明の6サイクル内燃機関によれば、ポンピングロ
スを伴う吸排気行程が6サイクルに各1回になるのに対
して、出力を発生する燃焼が6サイクルに2回になるた
め、4サイクルに比べて、効率が高くなり燃費も良好に
なり、第2燃焼過程では、第1燃焼過程により発生した
高温の既燃ガス中に追加燃料を噴射するので、この追加
燃料は高温雰囲気で急速に気化,分解して活性し、極め
て燃焼し易くなって、未燃ガスの再反応が促進されて高
効率な燃焼を実現することができ、NOxやHCの排出
も十分に抑制し得るようになる。この結果、低燃費と排
ガス浄化とを高次元で両立できるようになる。
As described above in detail, according to the six-stroke internal combustion engine of the present invention according to the first to third aspects, the intake and exhaust strokes with pumping loss are performed once every six cycles. Since the combustion that generates output is performed twice in six cycles, the efficiency and fuel efficiency are improved as compared with four cycles, and the high temperature burned gas generated in the first combustion process is obtained in the second combustion process. Since the additional fuel is injected into the fuel, the additional fuel is rapidly vaporized and decomposed in a high-temperature atmosphere and activated, and becomes extremely easy to burn, and promotes the re-reaction of the unburned gas to achieve high-efficiency combustion. As a result, the emission of NOx and HC can be sufficiently suppressed. As a result, both low fuel consumption and exhaust gas purification can be achieved at a high level.

【0051】また、請求項1記載の本発明の6サイクル
内燃機関によれば、第1燃焼過程では、希薄層状燃焼を
行なうので、ポンピングロスがより小さくなるなどし
て、より一層効率の良い燃焼を実現でき、第1燃焼過程
後に、未燃物と酸素とがより共存し易くなり、第2燃焼
過程での燃焼効率をより一層向上させることができる。
また、請求項2記載の本発明の6サイクル内燃機関によ
れば、第1燃焼過程で燃焼させる燃料と第2燃焼過程で
燃焼させる燃料との総合空燃比がストイキとされるの
で、効率良く排ガス浄化を行なえ、三元触媒や空燃比フ
ィードバック制御の適用が容易になる。
Further, according to the six-stroke internal combustion engine of the present invention, in the first combustion process, the lean stratified combustion is performed, so that the pumping loss is reduced and the combustion is more efficiently performed. Can be realized, and the unburned matter and oxygen can coexist more easily after the first combustion process, and the combustion efficiency in the second combustion process can be further improved.
According to the six-stroke internal combustion engine of the present invention, the total air-fuel ratio of the fuel burned in the first combustion process and the fuel burned in the second combustion process is stoichiometric, so that the exhaust gas is efficiently exhausted. Purification can be performed, and application of three-way catalyst and air-fuel ratio feedback control becomes easy.

【0052】また、請求項3記載の本発明の6サイクル
内燃機関によれば、第1燃焼過程での燃焼タイミングを
適切に制御でき確実に燃焼させることができ、第2燃焼
過程での燃焼によりNOxやHCの排出レベルをより効
率良く低下させることができるようになる。
Further, according to the six-cycle internal combustion engine of the present invention, the combustion timing in the first combustion process can be appropriately controlled, and the combustion can be reliably performed. The emission levels of NOx and HC can be reduced more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態としての6サイクル内燃機
関を示す構成図である。
FIG. 1 is a configuration diagram showing a six-cycle internal combustion engine as one embodiment of the present invention.

【図2】本発明の一実施形態としての6サイクル内燃機
関の動作を示すタイムチャートである。
FIG. 2 is a time chart showing an operation of a six-cycle internal combustion engine as one embodiment of the present invention.

【図3】本発明の一実施形態としての6サイクル内燃機
関の動作を示すタイムチャートである。
FIG. 3 is a time chart showing an operation of a six-cycle internal combustion engine as one embodiment of the present invention.

【図4】本発明の一実施形態としての6サイクル内燃機
関の動作を示すPV線図である。
FIG. 4 is a PV diagram showing an operation of the six-cycle internal combustion engine as one embodiment of the present invention.

【図5】本発明の一実施形態としての6サイクル内燃機
関の動作を(a)〜(f)の順で示す模式的断面図であ
る。
FIG. 5 is a schematic sectional view showing the operation of a six-cycle internal combustion engine as one embodiment of the present invention in the order of (a) to (f).

【図6】本発明の一実施形態としての6サイクル内燃機
関の効果を示す図である。
FIG. 6 is a diagram showing an effect of a six-cycle internal combustion engine as one embodiment of the present invention.

【図7】本発明の一実施形態としての6サイクル内燃機
関の変形例の動作を示すタイムチャートである。
FIG. 7 is a time chart showing an operation of a modified example of the six-cycle internal combustion engine as one embodiment of the present invention.

【図8】本発明の一実施形態としての6サイクル内燃機
関の変形例の動作を示すタイムチャートである。
FIG. 8 is a time chart showing an operation of a modified example of the six-cycle internal combustion engine as one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 6サイクル内燃機関(エンジン) 4 点火プラグ 6 燃料噴射弁 41 可変動弁機構 60 ECU 1 6-cycle internal combustion engine (engine) 4 Spark plug 6 Fuel injection valve 41 Variable valve mechanism 60 ECU

フロントページの続き (72)発明者 中山 修 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 安東 弘光 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G301 HA00 HA04 JA02 JA24 JA25 JA26 ND01 NE14 PA01Z PA11Z PC02A PC02Z PD13Z PE01Z Continuing from the front page (72) Inventor Osamu Nakayama 5-33-8 Shiba, Minato-ku, Tokyo Inside Mitsubishi Motors Corporation (72) Inventor Hiromitsu Ando 3-33-8 Shiba 5-minute, Minato-ku, Tokyo Mitsubishi Motors Corporation F term in the company (reference) 3G301 HA00 HA04 JA02 JA24 JA25 JA26 ND01 NE14 PA01Z PA11Z PC02A PC02Z PD13Z PE01Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸気行程,第1圧縮行程,第1膨張行
程,第2圧縮行程,第2膨張行程,排気行程を順次実行
する6サイクル内燃機関であって、 上記の吸気行程,第1圧縮行程,第1膨張行程を経て燃
料をリーン空燃比で希薄層状燃焼させる第1燃焼過程
と、 上記第1燃焼過程で発生した既燃ガス中に追加燃料を噴
射すると共に上記の第2圧縮行程,第2膨張行程を経て
上記追加燃料を燃焼させる第2燃焼過程とをそなえたこ
とを特徴とする、6サイクル内燃機関。
1. A six-stroke internal combustion engine that sequentially executes an intake stroke, a first compression stroke, a first expansion stroke, a second compression stroke, a second expansion stroke, and an exhaust stroke. A first combustion process in which fuel is subjected to lean stratified combustion at a lean air-fuel ratio through a first expansion stroke; and additional fuel is injected into burned gas generated in the first combustion process, and the second compression stroke, A six-stroke internal combustion engine comprising a second combustion step of burning the additional fuel through a second expansion stroke.
【請求項2】 吸気行程,第1圧縮行程,第1膨張行
程,第2圧縮行程,第2膨張行程,排気行程を順次実行
する6サイクル内燃機関であって、 上記の吸気行程,第1圧縮行程,第1膨張行程を経て燃
料を燃焼させる第1燃焼過程と、 上記第1燃焼過程で発生した既燃ガス中に追加燃料を噴
射すると共に上記の第2圧縮行程,第2膨張行程を経て
上記追加燃料を燃焼させる第2燃焼過程とをそなえ、 上記第1燃焼過程で燃焼させる燃料と上記第2燃焼過程
で燃焼させる燃料との総合空燃比がストイキになるよう
に制御されることを特徴とする、6サイクル内燃機関。
2. A six-stroke internal combustion engine that sequentially executes an intake stroke, a first compression stroke, a first expansion stroke, a second compression stroke, a second expansion stroke, and an exhaust stroke, wherein the intake stroke, the first compression stroke, and the first compression stroke. A first combustion process in which fuel is burned through a first expansion process, additional fuel is injected into the burned gas generated in the first combustion process, and a second combustion process is performed through the second compression process and the second expansion process. A second combustion process for burning the additional fuel, wherein the total air-fuel ratio of the fuel burned in the first combustion process and the fuel burned in the second combustion process is controlled to be stoichiometric. 6-cycle internal combustion engine.
【請求項3】 吸気行程,第1圧縮行程,第1膨張行
程,第2圧縮行程,第2膨張行程,排気行程を順次実行
する6サイクル内燃機関であって、 上記の吸気行程,第1圧縮行程,第1膨張行程を経て燃
料を燃焼させる第1燃焼過程と、 上記第1燃焼過程で発生した既燃ガス中に追加燃料を噴
射すると共に上記の第2圧縮行程,第2膨張行程を経て
上記追加燃料を燃焼させる第2燃焼過程とをそなえ、 上記第1燃焼過程での燃焼は火花点火燃焼とし、上記第
2燃焼過程での燃焼は圧縮着火燃焼としたことを特徴と
する、6サイクル内燃機関。
3. A six-stroke internal combustion engine that sequentially executes an intake stroke, a first compression stroke, a first expansion stroke, a second compression stroke, a second expansion stroke, and an exhaust stroke, wherein the intake stroke, the first compression stroke, and the first compression stroke. A first combustion process in which fuel is burned through a first expansion process, additional fuel is injected into the burned gas generated in the first combustion process, and a second combustion process is performed through the second compression process and the second expansion process. A second combustion process for burning the additional fuel, wherein the combustion in the first combustion process is spark ignition combustion, and the combustion in the second combustion process is compression ignition combustion. Internal combustion engine.
JP2000153433A 2000-05-24 2000-05-24 Six-cycle internal combustion engine Withdrawn JP2001336435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153433A JP2001336435A (en) 2000-05-24 2000-05-24 Six-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153433A JP2001336435A (en) 2000-05-24 2000-05-24 Six-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001336435A true JP2001336435A (en) 2001-12-07

Family

ID=18658687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153433A Withdrawn JP2001336435A (en) 2000-05-24 2000-05-24 Six-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001336435A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323908A3 (en) * 2001-12-27 2003-10-29 AVL List GmbH Method for operating an engine
DE102004046951A1 (en) * 2004-09-28 2006-04-13 Volkswagen Ag Method for improving the efficiency of direct fuel injection IC engine by a two stage burn with a rich mixture followed by a lean mixture
JP2011017303A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Vehicle damping control device
JP2011231650A (en) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp Fuel control device of internal combustion engine
US8682546B2 (en) 2009-07-09 2014-03-25 Toyota Jidosha Kabushiki Kaisha Vehicular damping control system
CN106930852A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 The control method of many stroke cycle dual fuel engines, system and vehicle
WO2017152997A1 (en) * 2016-03-11 2017-09-14 Volvo Truck Corporation A method for operating an internal combustion piston engine
JP2017180189A (en) * 2016-03-29 2017-10-05 マツダ株式会社 Control device of engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323908A3 (en) * 2001-12-27 2003-10-29 AVL List GmbH Method for operating an engine
DE102004046951A1 (en) * 2004-09-28 2006-04-13 Volkswagen Ag Method for improving the efficiency of direct fuel injection IC engine by a two stage burn with a rich mixture followed by a lean mixture
JP2011017303A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Vehicle damping control device
US8682546B2 (en) 2009-07-09 2014-03-25 Toyota Jidosha Kabushiki Kaisha Vehicular damping control system
JP2011231650A (en) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp Fuel control device of internal combustion engine
CN106930852B (en) * 2015-12-29 2021-07-20 长城汽车股份有限公司 Control method and system of multi-stroke cycle dual-fuel engine and vehicle
CN106930852A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 The control method of many stroke cycle dual fuel engines, system and vehicle
WO2017152997A1 (en) * 2016-03-11 2017-09-14 Volvo Truck Corporation A method for operating an internal combustion piston engine
CN108779723A (en) * 2016-03-11 2018-11-09 沃尔沃卡车集团 The method for running piston internal-combustion engine
WO2017153525A1 (en) * 2016-03-11 2017-09-14 Volvo Truck Corporation A method for operating an internal combustion piston engine
US11230982B2 (en) 2016-03-11 2022-01-25 Volvo Truck Corporation Method for operating an internal combustion piston engine
CN108779723B (en) * 2016-03-11 2022-04-22 沃尔沃卡车集团 Method for operating a piston internal combustion engine
JP2017180189A (en) * 2016-03-29 2017-10-05 マツダ株式会社 Control device of engine

Similar Documents

Publication Publication Date Title
JP4134492B2 (en) In-cylinder internal combustion engine
US5535716A (en) Compression ignition type gasoline engine injecting fuel inside intake port during exhaust stroke
JP2004132191A (en) Control device for spark ignition type engine
US20100228466A1 (en) Internal combustion engine operational systems and meth0ds
JPS5872614A (en) Ignition and combustion method of internal-combustion engine
JP4479822B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4093074B2 (en) An internal combustion engine capable of self-ignition operation in which the air-fuel mixture is compressed and self-ignited
JP2001336435A (en) Six-cycle internal combustion engine
JP4093080B2 (en) Engine capable of compression ignition operation
US8539754B2 (en) Method for an emission-optimized transfer from a mode of an internal combustion engine to another mode
US10883439B2 (en) Internal combustion engine
JP4380465B2 (en) Control device for hydrogen fuel engine
JP2000257496A (en) Cylinder direct injection internal combustion engine
JP2002322928A (en) Combustion control device for compression ignition type engine
JP4078737B2 (en) In-cylinder injection type 4-cycle engine
JP4102268B2 (en) Compression ignition internal combustion engine
JP4168766B2 (en) Engine capable of compression ignition operation
JP3711941B2 (en) Control device for spark ignition engine
JP2004027959A (en) Compressive self-ignition-type internal combustion engine
JP2002054483A (en) Fuel control device for spark ignition type engine
JP3690329B2 (en) In-cylinder direct injection internal combustion engine
JP2000320345A (en) Compressed self-ignition type internal combustion engine
JP2006170109A (en) Ignition control device for cylinder direct injection type internal combustion engine
JPH0882234A (en) Intake device for engine
JPH05223015A (en) Combustion control device for engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807