Nothing Special   »   [go: up one dir, main page]

JP2001326506A - Array antenna - Google Patents

Array antenna

Info

Publication number
JP2001326506A
JP2001326506A JP2000144621A JP2000144621A JP2001326506A JP 2001326506 A JP2001326506 A JP 2001326506A JP 2000144621 A JP2000144621 A JP 2000144621A JP 2000144621 A JP2000144621 A JP 2000144621A JP 2001326506 A JP2001326506 A JP 2001326506A
Authority
JP
Japan
Prior art keywords
dielectric
power
waveguide
metal conductor
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000144621A
Other languages
Japanese (ja)
Other versions
JP3932767B2 (en
Inventor
Takehiro Sugiyama
剛博 杉山
Morihiko Ikegaya
守彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000144621A priority Critical patent/JP3932767B2/en
Publication of JP2001326506A publication Critical patent/JP2001326506A/en
Application granted granted Critical
Publication of JP3932767B2 publication Critical patent/JP3932767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an array antenna which reduces the radiation loss of branched parts and has a high gain and high efficiency. SOLUTION: A dielectric resonator 3 is arranged between dielectric waveguides 1, 1 that are parallelly arranged, and the power of one dielectric waveguide 1 is subjected to guided wave to the adjacent dielectric waveguide 1 via the resonator 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体導波路を用
いたアレイアンテナに係り、特に、分岐部の放射損失を
低減させた高利得・高効率なアレイアンテナに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an array antenna using a dielectric waveguide, and more particularly to a high gain and high efficiency array antenna in which radiation loss at a branch portion is reduced.

【0002】[0002]

【従来の技術】移動体通信および無線通信機器、車載レ
ーダ等に用いられる固定、半固定または移動端末の平面
アンテナに、誘電体導波路を用いたアレイアンテナ(誘
電体アンテナ)が適用される。
2. Description of the Related Art An array antenna (dielectric antenna) using a dielectric waveguide is applied to a fixed, semi-fixed or mobile terminal planar antenna used in mobile communication and radio communication equipment, on-vehicle radar and the like.

【0003】従来、小型化された移動端末、車載レーダ
等に用いられる平面アンテナは、導波系にマイクロスト
リップ線路やトリプレート線路等を用いたアンテナが主
流である。しかしながら、上記のような従来の平面アン
テナは、電磁波の伝送路に細い導体線を使用するため、
周波数の上昇とともに、導体に電磁波を励振した際に生
ずる損失(導体損失)や放射による損失(放射損失)が
大きくなり、高効率な送受信特性を得ることが困難とな
る。そこで、高い周波数で用いるアンテナにおいて、誘
電体導波路を用いたアレイアンテナが提案されている。
Conventional planar antennas used for miniaturized mobile terminals, on-vehicle radars, and the like have mainly used antennas using a microstrip line, a triplate line, or the like for a waveguide system. However, since the conventional planar antenna as described above uses a thin conductor wire for an electromagnetic wave transmission path,
As the frequency increases, a loss (conductor loss) generated when an electromagnetic wave is excited in the conductor and a loss due to radiation (radiation loss) increase, making it difficult to obtain highly efficient transmission / reception characteristics. Therefore, among antennas used at high frequencies, an array antenna using a dielectric waveguide has been proposed.

【0004】図5に示されるように、従来のアレイアン
テナは、誘電体導波路1と、誘電体導波路1とは異なる
誘電率の誘電体ブロック2と、金属導体板4と、金属導
体ピン6とにより構成されており、誘電体導波路1は金
属導体板4の上面に密着して配置されており、誘電体導
波路1は複数の分岐を有し、誘電体導波路1の一端に外
部電力源(図示せず)から供給された電力を各分岐に導
波させ、分岐上の誘電体ブロック2を配置した部分から
外部空間に電力を放射するものである。
As shown in FIG. 5, a conventional array antenna comprises a dielectric waveguide 1, a dielectric block 2 having a dielectric constant different from that of the dielectric waveguide 1, a metal conductor plate 4, and a metal conductor pin. 6, the dielectric waveguide 1 is disposed in close contact with the upper surface of the metal conductor plate 4, and the dielectric waveguide 1 has a plurality of branches, and is provided at one end of the dielectric waveguide 1. The power supplied from an external power source (not shown) is guided to each branch, and the power is radiated to the external space from the portion where the dielectric block 2 on the branch is arranged.

【0005】[0005]

【発明が解決しようとする課題】従来技術では、誘電体
導波路による分岐構造に屈曲部9が存在するため、この
屈曲部9から導波するべき電磁波がアンテナ外部に放射
されてしまい、アンテナ全体の効率を低下させてしまう
問題がある。
In the prior art, since the bent portion 9 exists in the branch structure formed by the dielectric waveguide, the electromagnetic wave to be guided from the bent portion 9 is radiated to the outside of the antenna. However, there is a problem that the efficiency of the method is reduced.

【0006】そこで、本発明の目的は、上記課題を解決
し、分岐部の放射損失を低減させた高利得・高効率なア
レイアンテナを提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a high-gain and high-efficiency array antenna in which radiation loss at a branch portion is reduced.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、誘電体導波路と、該誘電体導波路とは誘電
率の異なる誘電体ブロックと、円筒形の誘電体共振器
と、金属導体板と、外部電力源から電力を供給する給電
素子とにより構成されており、前記金属導体板の上面に
は複数の前記誘電体導波路が互いに平行になるよう配置
されており、これら誘電体導波路の上面には複数の前記
誘電体ブロックが該誘電体導波路に密着して配置されて
おり、前記平行に配置した誘電体導波路の間にはそれぞ
れ誘電体導波路に近接して前記誘電体共振器が配置され
ており、ひとつの誘電体導波路には前記給電素子が取り
付けられており、該給電素子によって外部電力源から供
給された電力を当該誘電体導波路に導波させ、かつその
電力を前記誘電体共振器を介して隣接した誘電体導波路
に導波させ、これら誘電体導波路の前記誘電体ブロック
を配置した部分から外部空間に電力を放射するものであ
る。
In order to achieve the above object, the present invention provides a dielectric waveguide, a dielectric block having a different dielectric constant from the dielectric waveguide, and a cylindrical dielectric resonator. , A metal conductor plate, and a feed element that supplies power from an external power source, and a plurality of the dielectric waveguides are arranged on the upper surface of the metal conductor plate so as to be parallel to each other. On the upper surface of the dielectric waveguide, a plurality of the dielectric blocks are disposed in close contact with the dielectric waveguide, and between the dielectric waveguides arranged in parallel, each of the dielectric blocks is close to the dielectric waveguide. The dielectric resonator is disposed, and the feed element is attached to one dielectric waveguide, and the power supplied from the external power source by the feed element is guided to the dielectric waveguide. And share the power with the dielectric Vessels were guided to the adjacent dielectric waveguide through, is to radiate power from said portion of the dielectric block and the arrangement of these dielectric waveguide to an external space.

【0008】また、誘電体導波路と、円筒形の誘電体共
振器と、金属導体板と、外部電力源から電力を供給する
給電素子とにより構成されており、前記金属導体板の上
面には複数の前記誘電体導波路が互いに平行になるよう
配置されており、これら誘電体導波路の上面には複数の
凹部が設けられており、前記平行に配置した誘電体導波
路の間にはそれぞれ誘電体導波路に近接して前記誘電体
共振器が配置されており、ひとつの誘電体導波路には前
記給電素子が取り付けられており、該給電素子によって
外部電力源から供給された電力を当該誘電体導波路に導
波させ、かつその電力を前記誘電体共振器を介して隣接
した誘電体導波路に導波させ、これら誘電体導波路上の
前記凹部から外部空間に電力を放射するものである。
[0008] Further, it is composed of a dielectric waveguide, a cylindrical dielectric resonator, a metal conductor plate, and a power supply element for supplying power from an external power source. A plurality of the dielectric waveguides are arranged so as to be parallel to each other, a plurality of concave portions are provided on the upper surface of these dielectric waveguides, and a space is provided between the dielectric waveguides arranged in parallel. The dielectric resonator is disposed in proximity to the dielectric waveguide, the feed element is attached to one dielectric waveguide, and the power supplied from the external power source by the feed element is applied to the dielectric resonator. A waveguide that guides power to a dielectric waveguide, and guides the power to an adjacent dielectric waveguide via the dielectric resonator, and radiates power from the recess on the dielectric waveguide to an external space. It is.

【0009】また、片面に複数の直線状の凸部を設けた
誘電体基板と、該誘電体基板とは誘電率の異なる誘電体
ブロックと、円筒形の誘電体共振器と、金属導体板と、
外部電力源から電力を供給する給電素子とにより構成さ
れており、前記誘電体基板の凸部の無い面には前記金属
導体板が密着して取り付けられており、前記誘電体基板
の前記凸部の上面には複数の前記誘電体ブロックが前記
凸部に密着して配置されており、前記凸部の間にはそれ
ぞれ凸部に近接して前記誘電体共振器が配置されてお
り、前記誘電体基板の一部には前記給電素子が取り付け
られており、該給電素子によって外部電力源から供給さ
れた電力を前記凸部に導波させ、かつその電力を前記誘
電体共振器を介して隣接した凸部に導波させ、これら凸
部の前記誘電体ブロックを配置した部分から外部空間に
電力を放射するものである。
Also, a dielectric substrate having a plurality of linear projections on one side, a dielectric block having a different dielectric constant from the dielectric substrate, a cylindrical dielectric resonator, and a metal conductor plate are provided. ,
A power supply element for supplying power from an external power source, and the metal substrate is closely attached to a surface of the dielectric substrate having no convex portion, and the convex portion of the dielectric substrate is provided. A plurality of the dielectric blocks are arranged on the upper surface of the dielectric block in close contact with the projections, and the dielectric resonators are arranged between the projections in close proximity to the projections, respectively. The power supply element is attached to a part of the body substrate, and the power supplied from the external power source by the power supply element is guided to the convex portion, and the power is adjacent to the power supply element via the dielectric resonator. In this case, electric power is radiated to the external space from the portions where the dielectric blocks are arranged.

【0010】また、片面に複数の直線状の凸部を設けた
誘電体基板と、円筒形の誘電体共振器と、金属導体板
と、外部電力源から電力を供給する給電素子とにより構
成されており、前記誘電体基板の凸部の無い面には前記
金属導体板が密着して取り付けられており、前記誘電体
基板の前記凸部の上面には複数の凹部が設けられてお
り、前記凸部の間にはそれぞれ凸部に近接して前記誘電
体共振器が配置されており、前記誘電体基板の一部には
前記給電素子が取り付けられており、該給電素子によっ
て外部電力源から供給された電力を前記凸部に導波さ
せ、かつその電力を前記誘電体共振器を介して隣接した
凸部に導波させ、これら凸部上の前記凹部から外部空間
に電力を放射するものである。
[0010] Further, it comprises a dielectric substrate provided with a plurality of linear projections on one surface, a cylindrical dielectric resonator, a metal conductor plate, and a power supply element for supplying power from an external power source. The metal conductive plate is attached in close contact with the surface of the dielectric substrate without the convex portion, and a plurality of concave portions are provided on the upper surface of the convex portion of the dielectric substrate, The dielectric resonator is arranged between the convex portions in close proximity to the convex portions, and the power supply element is attached to a part of the dielectric substrate. A device that guides supplied power to the convex portion and guides the power to an adjacent convex portion via the dielectric resonator, and radiates power from the concave portion on the convex portion to an external space. It is.

【0011】前記誘電体導波路または前記誘電体基板の
両端に金属導体ブロックを密着して配置し、該金属導体
ブロックを利用して前記誘電体導波路または前記誘電体
基板に定在波を励振させてもよい。
A metal conductor block is disposed in close contact with both ends of the dielectric waveguide or the dielectric substrate, and a standing wave is excited in the dielectric waveguide or the dielectric substrate using the metal conductor block. May be.

【0012】[0012]

【発明の実施の形態】以下、本発明の第一の実施形態を
図1、図2、図3に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS.

【0013】本発明に係る平面アンテナ(アレイアンテ
ナ)は、所定の誘電率を有する誘電体導波路1と、この
誘電体導波路1とは誘電率の異なる誘電体ブロック2
と、円筒形の誘電体共振器3と、金属導体板4と、金属
導体ブロック5と、外部電力源から電力を供給する給電
素子となる金属導体ピン6及び同軸コネクタ7とによっ
て構成されている。図2では、誘電体導波路1を11〜
15で示す。
A planar antenna (array antenna) according to the present invention comprises a dielectric waveguide 1 having a predetermined dielectric constant and a dielectric block 2 having a different dielectric constant from the dielectric waveguide 1.
, A cylindrical dielectric resonator 3, a metal conductor plate 4, a metal conductor block 5, a metal conductor pin 6 serving as a power supply element for supplying power from an external power source, and a coaxial connector 7. . In FIG. 2, the dielectric waveguides 1
Indicated at 15.

【0014】以下、これら1〜7の構成要素の特徴をア
ンテナ製造方法と共に説明する。
Hereinafter, the features of these components 1 to 7 will be described together with the antenna manufacturing method.

【0015】誘電体導波路1の素材にはアルミナなどの
セラミックを用いる。誘電体導波路1は、長方形に形成
されている金属導体板4の奥行き方向(図では右上がり
の方向)を長手方向とする所定長、所定幅、所定高さの
直方体に形成する。また、誘電体導波路1の一つには金
属導体ピン6を取り付ける孔21を設けておく。円筒形
の誘電体共振器3は、素材にセラミックを用い、このア
レイアンテナの使用周波数で共振するよう、誘電体共振
器3の形状(直径、高さ等)を設計する。金属導体板4
には、金属導体ピン6と同軸コネクタ7とを取り付ける
ネジ孔(図示せず)を設けておき、そのネジ孔に同軸コ
ネクタ7を取り付けておく。
As a material of the dielectric waveguide 1, a ceramic such as alumina is used. The dielectric waveguide 1 is formed in a rectangular parallelepiped having a predetermined length, a predetermined width, and a predetermined height, the longitudinal direction of which is the depth direction (upward right in the figure) of the metal conductor plate 4 formed in a rectangular shape. In addition, one of the dielectric waveguides 1 is provided with a hole 21 for attaching the metal conductor pin 6. The cylindrical dielectric resonator 3 uses ceramic as a material, and the shape (diameter, height, etc.) of the dielectric resonator 3 is designed so as to resonate at the operating frequency of the array antenna. Metal conductor plate 4
Is provided with a screw hole (not shown) for attaching the metal conductor pin 6 and the coaxial connector 7, and the coaxial connector 7 is mounted in the screw hole.

【0016】次に、金属導体板4の上面に誘電体導波路
1を接着剤などで固定する。このとき、誘電体導波路1
は、互いに等間隔で平行になるように取り付ける。ま
た、孔21を設けた誘電体導波路1には金属導体ピン6
を取り付け、この金属導体ピン6が金属導体板4に取り
付けた同軸コネクタ7の中心に位置するように組み合わ
せる。
Next, the dielectric waveguide 1 is fixed on the upper surface of the metal conductor plate 4 with an adhesive or the like. At this time, the dielectric waveguide 1
Are mounted so as to be parallel to each other at equal intervals. The dielectric waveguide 1 provided with the holes 21 has metal conductor pins 6.
And assembled so that the metal conductor pins 6 are located at the center of the coaxial connector 7 attached to the metal conductor plate 4.

【0017】次に、金属導体板4に誘電体共振器3を取
り付ける。このとき、誘電体共振器3を、既に取り付け
た誘電体導波路1と誘電体導波路1との間に取り付ける
ことにより、誘電体共振器3を誘電体導波路1,1のそ
れぞれに近接させる。
Next, the dielectric resonator 3 is attached to the metal conductor plate 4. At this time, by mounting the dielectric resonator 3 between the dielectric waveguides 1 already mounted, the dielectric resonators 3 are brought close to the dielectric waveguides 1 and 1, respectively. .

【0018】次に、誘電体導波路1の両端に密着するよ
うに金属導体ブロック5を金属導体板4に固定する。金
属導体ブロック5は、金属導体板4の幅方向(図では左
上がりの方向)を長手方向とする所定長、所定幅、所定
高さの直方体に形成する。
Next, the metal conductor block 5 is fixed to the metal conductor plate 4 so as to be in close contact with both ends of the dielectric waveguide 1. The metal conductor block 5 is formed in a rectangular parallelepiped having a predetermined length, a predetermined width, and a predetermined height, the longitudinal direction of which is the width direction of the metal conductor plate 4 (in the figure, the upward direction in the drawing).

【0019】次に、誘電体導波路1の上面に誘電体ブロ
ック2をセラミック用接着剤で密着するように取り付け
る。このとき、誘電体ブロック2は、このアレイアンテ
ナの使用周波数によって決まる間隔で配置する。誘電体
ブロック2の形状は、所定長、所定幅、所定高さの直方
体であり、誘電体導波路1の幅と同じ長さを有する。
Next, the dielectric block 2 is attached to the upper surface of the dielectric waveguide 1 with a ceramic adhesive. At this time, the dielectric blocks 2 are arranged at intervals determined by the operating frequency of the array antenna. The shape of the dielectric block 2 is a rectangular parallelepiped having a predetermined length, a predetermined width, and a predetermined height, and has the same length as the width of the dielectric waveguide 1.

【0020】次に、このアレイアンテナの動作を説明す
る。
Next, the operation of the array antenna will be described.

【0021】金属導体ピン6及び同軸コネクタ7によっ
てアンテナ外部(図示しない外部電力源)から給電され
た電力は、金属導体ピン6によって誘電体導波路11内
に伝搬する。誘電体導波路11の両端には金属導体ブロ
ック5があるため、この金属導体ブロック5による反射
で、誘電体導波路11に定在波が励振される。このと
き、誘電体導波路11から漏れ出る磁界は、隣接した誘
電体共振器3を励振し、電磁的な結合によって、誘電体
共振器3にも定在波が励振される。さらに、誘電体共振
器3に隣接した誘電体導波路12にも電磁的な結合によ
って定在波が励振される。このように、ひとつの誘電体
導波路1から誘電体共振器3を介して隣接した誘電体導
波路1に導波させることを繰り返すと、すべての誘電体
導波路11〜15に電力が分配され、すべての誘電体導
波路11〜15に定在波が励振される。それぞれの誘電
体導波路11〜15には動作周波数に応じた間隔で誘電
体ブロック2が配置されているので、この誘電体ブロッ
ク2を設けた部分からアンテナ外部(空間)に電磁波が
漏洩する。
The power supplied from outside the antenna (an external power source (not shown)) by the metal conductor pins 6 and the coaxial connector 7 is propagated into the dielectric waveguide 11 by the metal conductor pins 6. Since the metal conductor blocks 5 are provided at both ends of the dielectric waveguide 11, a standing wave is excited in the dielectric waveguide 11 by the reflection by the metal conductor blocks 5. At this time, the magnetic field leaking from the dielectric waveguide 11 excites the adjacent dielectric resonator 3, and a standing wave is also excited in the dielectric resonator 3 by electromagnetic coupling. Further, the standing wave is also excited by the electromagnetic coupling in the dielectric waveguide 12 adjacent to the dielectric resonator 3. As described above, by repeating the waveguide from one dielectric waveguide 1 to the adjacent dielectric waveguide 1 via the dielectric resonator 3, power is distributed to all the dielectric waveguides 11 to 15. , A standing wave is excited in all the dielectric waveguides 11 to 15. Since the dielectric blocks 2 are arranged in the respective dielectric waveguides 11 to 15 at intervals according to the operating frequency, electromagnetic waves leak from the portion where the dielectric blocks 2 are provided to the outside of the antenna (space).

【0022】このアレイアンテナは、分岐構造に従来の
ような屈曲部がないので、望まない電磁波の放射が少な
く、放射損失による効率の低下が少ない。よって、小さ
いサイズで高利得・高効率なアンテナを実現することが
できる。
In this array antenna, since there is no bent portion in the branch structure as in the prior art, unwanted radiation of electromagnetic waves is small, and efficiency is not reduced by radiation loss. Therefore, a high-gain and high-efficiency antenna with a small size can be realized.

【0023】図4には、前記第一の実施形態を変形した
第二の実施形態を示す。給電素子である金属導体ピン6
及び同軸コネクタ7をアレイアンテナの中心に配置し、
その金属導体ピン6及び同軸コネクタ7の両脇に誘電体
共振器3を配置する。
FIG. 4 shows a second embodiment obtained by modifying the first embodiment. Metal conductor pin 6 serving as a feed element
And the coaxial connector 7 is arranged at the center of the array antenna,
The dielectric resonator 3 is arranged on both sides of the metal conductor pin 6 and the coaxial connector 7.

【0024】以下、本発明の第三の実施形態を図5に基
づいて詳述する。
Hereinafter, a third embodiment of the present invention will be described in detail with reference to FIG.

【0025】このアレイアンテナは、誘電体導波路1
と、円筒形の誘電体共振器3と、金属導体板4と、金属
導体ブロック5と、外部電力源から電力を供給する給電
素子となる金属導体ピン6及び同軸コネクタ7とによっ
て構成されている。
This array antenna comprises a dielectric waveguide 1
, A cylindrical dielectric resonator 3, a metal conductor plate 4, a metal conductor block 5, a metal conductor pin 6 serving as a power supply element for supplying power from an external power source, and a coaxial connector 7. .

【0026】以下、これら1〜7の構成要素の特徴をア
ンテナ製造方法と共に説明する。
Hereinafter, the features of the components 1 to 7 will be described together with the antenna manufacturing method.

【0027】誘電体導波路1の素材にはアルミナなどの
セラミックを用い、誘電体導波路1の上面には等間隔に
凹部81を設けておく。また、誘電体導波路1の一つに
は金属導体ピン6を取り付ける孔21を設けておく。前
記第一の実施形態と同様に、円筒形の誘電体共振器3、
金属導体板4を作製する。さらに、第一の実施形態と同
様に、金属導体板4に同軸コネクタ7、誘電体導波路
1、誘電体共振器3、金属導体ブロック5を取り付け
る。このとき、凹部81が上面に位置するように誘電体
導波路1を取り付ける。
A ceramic such as alumina is used as a material of the dielectric waveguide 1, and concave portions 81 are provided on the upper surface of the dielectric waveguide 1 at equal intervals. In addition, one of the dielectric waveguides 1 is provided with a hole 21 for attaching the metal conductor pin 6. As in the first embodiment, a cylindrical dielectric resonator 3,
The metal conductor plate 4 is manufactured. Further, similarly to the first embodiment, the coaxial connector 7, the dielectric waveguide 1, the dielectric resonator 3, and the metal conductor block 5 are attached to the metal conductor plate 4. At this time, the dielectric waveguide 1 is attached so that the concave portion 81 is located on the upper surface.

【0028】次に、このアレイアンテナの動作を説明す
る。
Next, the operation of the array antenna will be described.

【0029】金属導体ピン6及び同軸コネクタ7から給
電された電力が、第一の実施形態と同様に、各誘電体導
波路1に分配され、すべての誘電体導波路1に定在波が
励振される。それぞれの誘電体導波路11〜15には動
作周波数に応じた間隔で凹部81が配置されているの
で、この凹部81を設けた部分からアンテナ外部に電磁
波が漏洩する。
The power supplied from the metal conductor pins 6 and the coaxial connector 7 is distributed to the respective dielectric waveguides 1 as in the first embodiment, and a standing wave is excited in all the dielectric waveguides 1. Is done. Since the dielectric waveguides 11 to 15 are provided with the concave portions 81 at intervals according to the operating frequency, the electromagnetic waves leak from the portion where the concave portions 81 are provided to the outside of the antenna.

【0030】この第三の実施形態によれば、第一、第二
の実施形態と同様に導波路の屈曲部をなくして高利得・
高効率なアレイアンテナを実現できると共に、第一、第
二の実施形態に比べて誘電体導波路1に誘電体ブロック
2を接着する必要がないため安価に製造することができ
る。
According to the third embodiment, as in the first and second embodiments, the bent portion of the waveguide is eliminated and a high gain
A highly efficient array antenna can be realized, and it is not necessary to bond the dielectric block 2 to the dielectric waveguide 1 as compared with the first and second embodiments, so that the antenna can be manufactured at low cost.

【0031】以下、本発明の第四の実施形態を図6に基
づいて詳述する。図6では、見やすくするために金属導
体ブロック5の図示を省略してある。
Hereinafter, a fourth embodiment of the present invention will be described in detail with reference to FIG. In FIG. 6, illustration of the metal conductor block 5 is omitted for easy viewing.

【0032】このアレイアンテナは、上面に直線状の凸
部17を設けた所定の誘電率を有する誘電体基板16
と、誘電体基板16とは誘電率の異なる誘電体ブロック
2と、円筒形の誘電体共振器3と、金属導体板4と、金
属導体ブロック5(図示省略)と、外部電力源から電力
を供給する給電素子となる金属導体ピン6及び同軸コネ
クタ7とによって構成されている。
This array antenna is composed of a dielectric substrate 16 having a predetermined dielectric constant and having a linear projection 17 on the upper surface.
And a dielectric substrate 2 having a different dielectric constant from the dielectric substrate 16, a cylindrical dielectric resonator 3, a metal conductor plate 4, a metal conductor block 5 (not shown), and power from an external power source. It is composed of a metal conductor pin 6 and a coaxial connector 7 serving as a power supply element to be supplied.

【0033】以下、これら1〜7の構成要素の特徴をア
ンテナ製造方法と共に説明する。
Hereinafter, the features of the components 1 to 7 will be described together with the antenna manufacturing method.

【0034】誘電体基板16の素材にはアルミナなどの
セラミックを用いる。誘電体基板16の上面には、等間
隔に直線状の凸部17を設けておき、金属導体ピン6を
取り付ける孔21を一箇所設けておく。凸部17の間隔
はこのアレイアンテナの動作周波数(使用周波数)によ
って決定される。凸部17の形状は、金属導体板4の奥
行き方向を長手方向とする所定長、所定幅、所定高さの
直方体に形成する。また、第一の実施形態と同様に、円
筒形の誘電体共振器3、金属導体板4を作製する。誘電
体基板16に設けた孔21に金属導体ピン6を取り付
け、この金属導体ピン6が金属導体板4に取り付けた同
軸コネクタ7の中心に位置するように組み合わせる。
The dielectric substrate 16 is made of a ceramic such as alumina. On the upper surface of the dielectric substrate 16, linear projections 17 are provided at regular intervals, and one hole 21 for attaching the metal conductor pin 6 is provided. The interval between the projections 17 is determined by the operating frequency (operating frequency) of the array antenna. The shape of the convex portion 17 is a rectangular parallelepiped having a predetermined length, a predetermined width, and a predetermined height whose longitudinal direction is the depth direction of the metal conductor plate 4. Further, similarly to the first embodiment, a cylindrical dielectric resonator 3 and a metal conductor plate 4 are manufactured. The metal conductor pins 6 are attached to the holes 21 provided in the dielectric substrate 16, and the metal conductor pins 6 are combined so as to be located at the center of the coaxial connector 7 attached to the metal conductor plate 4.

【0035】次に、誘電体基板16に誘電体共振器3を
取り付ける。このとき誘電体共振器3は、凸部17と凸
部17との間に取り付け、それぞれの凸部17に近接さ
せる。
Next, the dielectric resonator 3 is mounted on the dielectric substrate 16. At this time, the dielectric resonator 3 is attached between the convex portions 17 and is brought close to the respective convex portions 17.

【0036】次に、誘電体基板16の両端に密着するよ
うに金属導体ブロック(図示せず)を金属導体板4に固
定する。
Next, a metal conductor block (not shown) is fixed to the metal conductor plate 4 so as to be in close contact with both ends of the dielectric substrate 16.

【0037】次に、凸部17の上面に誘電体ブロック2
をセラミック用接着剤で密着するように取り付ける。こ
のとき、誘電体ブロック2は、このアレイアンテナの使
用周波数(動作周波数)によって決まる間隔で配置す
る。
Next, the dielectric block 2 is formed on the upper surface of the projection 17.
Is attached with a ceramic adhesive. At this time, the dielectric blocks 2 are arranged at intervals determined by the operating frequency (operating frequency) of the array antenna.

【0038】次に、このアレイアンテナの動作を説明す
る。
Next, the operation of the array antenna will be described.

【0039】金属導体ピン6及び同軸コネクタ7から給
電された電力が、第一の実施形態と同様に、各凸部17
に分配され、すべての凸部17に定在波が励振される。
それぞれの凸部17には動作周波数に応じた間隔で誘電
体ブロック2が配置されているので、この誘電体ブロッ
ク2を設けた部分からアンテナ外部に電磁波が漏洩す
る。
The power supplied from the metal conductor pins 6 and the coaxial connector 7 is applied to each of the projections 17 as in the first embodiment.
And standing waves are excited in all the convex portions 17.
Since the dielectric blocks 2 are arranged at intervals corresponding to the operating frequency in each of the convex portions 17, electromagnetic waves leak from the portion where the dielectric blocks 2 are provided to the outside of the antenna.

【0040】この第四の実施形態によれば、第一〜第三
の実施形態と同様に導波路の屈曲部をなくして高利得・
高効率なアレイアンテナを実現できると共に、第一〜第
三の実施形態のように複数の誘電体導波路1を金属導体
板4に接着する必要がなく、1枚の誘電体基板16を金
属導体板4に接着するだけでよいので、安価に製造する
ことが可能で、かつ組立時に生じる取り付け位置誤差を
小さくすることができる。
According to the fourth embodiment, as in the first to third embodiments, the bent portion of the waveguide is eliminated and a high gain
A highly efficient array antenna can be realized, and it is not necessary to bond the plurality of dielectric waveguides 1 to the metal conductor plate 4 as in the first to third embodiments. Since it is only necessary to adhere to the plate 4, it can be manufactured at low cost, and the mounting position error generated at the time of assembly can be reduced.

【0041】以下、本発明の第五の実施形態を図7に基
づいて詳述する。図7では、見やすくするために金属導
体ブロック5の図示を省略してある。
Hereinafter, a fifth embodiment of the present invention will be described in detail with reference to FIG. In FIG. 7, illustration of the metal conductor block 5 is omitted for easy viewing.

【0042】このアレイアンテナは、上面に直線状の凸
部17を設けた所定の誘電率を有する誘電体基板16
と、円筒形の誘電体共振器3と、金属導体板4と、金属
導体ブロック5(図示省略)と、外部電力源から電力を
供給する給電素子となる金属導体ピン6及び同軸コネク
タ7とによって構成されている。
This array antenna is composed of a dielectric substrate 16 having a predetermined dielectric constant and a linear projection 17 provided on the upper surface.
, A cylindrical dielectric resonator 3, a metal conductor plate 4, a metal conductor block 5 (not shown), a metal conductor pin 6 serving as a power supply element for supplying power from an external power source, and a coaxial connector 7. It is configured.

【0043】以下、これら1〜7の構成要素の特徴をア
ンテナ製造方法と共に説明する。
Hereinafter, the features of these components 1 to 7 will be described together with the antenna manufacturing method.

【0044】誘電体基板16の上面には等間隔に直線状
の凸部17を設けておき、さらに、凸部17の上面には
等間隔に凹部81を設けておく。その他の構成要素につ
いては、第四の実施形態と同様に加工、組立を行う。た
だし、誘電体ブロック2は設けない。
On the upper surface of the dielectric substrate 16, linear convex portions 17 are provided at regular intervals, and on the upper surface of the convex portion 17, concave portions 81 are provided at regular intervals. The other components are processed and assembled in the same manner as in the fourth embodiment. However, the dielectric block 2 is not provided.

【0045】次に、このアレイアンテナの動作を説明す
る。
Next, the operation of the array antenna will be described.

【0046】第四の実施形態と同様に金属導体ピン6及
び同軸コネクタ7から給電された電力が、各凸部17に
分配され、すべての凸部17に定在波が励振される。そ
れぞれの凸部17には動作周波数に応じた間隔で凹部8
1が配置されているので、この凹部81を設けた部分か
らアンテナ外部に電磁波が漏洩する。
As in the fourth embodiment, the power supplied from the metal conductor pins 6 and the coaxial connector 7 is distributed to the respective convex portions 17, and a standing wave is excited in all the convex portions 17. The recesses 8 are provided at intervals corresponding to the operating frequency in
1, the electromagnetic wave leaks from the portion where the concave portion 81 is provided to the outside of the antenna.

【0047】この第五の実施形態によれば、第四の実施
形態と同様に導波路の屈曲部をなくして高利得・高効率
なアレイアンテナを実現できると共に、1枚の誘電体基
板16を金属導体板4に接着するだけでよく、第四の実
施形態と比べると誘電体ブロック2を接着する必要がな
いため安価に製造することができる。
According to the fifth embodiment, a high-gain and high-efficiency array antenna can be realized by eliminating the bent portion of the waveguide similarly to the fourth embodiment, and one dielectric substrate 16 can be used. It only needs to be bonded to the metal conductor plate 4, and it is not necessary to bond the dielectric block 2 as compared with the fourth embodiment, so that it can be manufactured at low cost.

【0048】[0048]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0049】(1)従来技術による誘電体アンテナに代
わり、高利得・高効率な平面アンテナが安価に実現で
き、固定端末、半固定端末、移動端末、車載レーダ等に
好適な平面アンテナを提供することが可能となる。
(1) A planar antenna with high gain and high efficiency can be realized at low cost in place of the dielectric antenna according to the prior art, and a planar antenna suitable for fixed terminals, semi-fixed terminals, mobile terminals, on-vehicle radars and the like is provided. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態を示すアレイアンテナ
の斜視図である。
FIG. 1 is a perspective view of an array antenna according to a first embodiment of the present invention.

【図2】図1に示したアレイアンテナのA−A’断面図
である。
FIG. 2 is a cross-sectional view of the array antenna shown in FIG.

【図3】図1に示したアレイアンテナのB−B’断面図
である。
FIG. 3 is a sectional view taken along line BB 'of the array antenna shown in FIG.

【図4】本発明の第二の実施形態を示すアレイアンテナ
の斜視図である。
FIG. 4 is a perspective view of an array antenna according to a second embodiment of the present invention.

【図5】本発明の第三の実施形態を示すアレイアンテナ
の斜視図である。
FIG. 5 is a perspective view of an array antenna according to a third embodiment of the present invention.

【図6】本発明の第四の実施形態を示すアレイアンテナ
の斜視図である。
FIG. 6 is a perspective view of an array antenna according to a fourth embodiment of the present invention.

【図7】本発明の第五の実施形態を示すアレイアンテナ
の斜視図である。
FIG. 7 is a perspective view of an array antenna according to a fifth embodiment of the present invention.

【図8】従来のアレイアンテナの斜視図である。FIG. 8 is a perspective view of a conventional array antenna.

【符号の説明】[Explanation of symbols]

1 誘電体導波路 2 誘電体ブロック 3 誘電体共振器 4 金属導体板 5 金属導体ブロック 6 金属導体ピン 7 同軸コネクタ 16 誘電体基板 17 凸部 81 凹部 Reference Signs List 1 dielectric waveguide 2 dielectric block 3 dielectric resonator 4 metal conductor plate 5 metal conductor block 6 metal conductor pin 7 coaxial connector 16 dielectric substrate 17 convex portion 81 concave portion

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J006 HC03 HC24 5J014 HA01 5J021 AA05 AA09 CA01 FA32 HA04 HA05 HA10 5J045 AA05 AB06 BA06 DA17 DA18 EA10 HA06 LA03 NA01 NA07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J006 HC03 HC24 5J014 HA01 5J021 AA05 AA09 CA01 FA32 HA04 HA05 HA10 5J045 AA05 AB06 BA06 DA17 DA18 EA10 HA06 LA03 NA01 NA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体導波路と、該誘電体導波路とは誘
電率の異なる誘電体ブロックと、円筒形の誘電体共振器
と、金属導体板と、外部電力源から電力を供給する給電
素子とにより構成されており、前記金属導体板の上面に
は複数の前記誘電体導波路が互いに平行になるよう配置
されており、これら誘電体導波路の上面には複数の前記
誘電体ブロックが該誘電体導波路に密着して配置されて
おり、前記平行に配置した誘電体導波路の間にはそれぞ
れ誘電体導波路に近接して前記誘電体共振器が配置され
ており、ひとつの誘電体導波路には前記給電素子が取り
付けられており、該給電素子によって外部電力源から供
給された電力を当該誘電体導波路に導波させ、かつその
電力を前記誘電体共振器を介して隣接した誘電体導波路
に導波させ、これら誘電体導波路の前記誘電体ブロック
を配置した部分から外部空間に電力を放射することを特
徴とするアレイアンテナ。
1. A dielectric waveguide, a dielectric block having a different dielectric constant from the dielectric waveguide, a cylindrical dielectric resonator, a metal conductor plate, and power supply for supplying power from an external power source. A plurality of dielectric waveguides are arranged on the upper surface of the metal conductor plate so as to be parallel to each other, and a plurality of the dielectric blocks are arranged on the upper surface of these dielectric waveguides. The dielectric resonators are disposed in close contact with the dielectric waveguides, and the dielectric resonators are disposed between the dielectric waveguides disposed in parallel and in close proximity to the dielectric waveguides, respectively. The power feeding element is attached to the body waveguide, the power supplied from the external power source by the power feeding element is guided to the dielectric waveguide, and the power is adjacent to the power via the dielectric resonator. Guided through the dielectric waveguide An array antenna, wherein power is radiated from a portion of the dielectric waveguide on which the dielectric block is arranged to an external space.
【請求項2】 誘電体導波路と、円筒形の誘電体共振器
と、金属導体板と、外部電力源から電力を供給する給電
素子とにより構成されており、前記金属導体板の上面に
は複数の前記誘電体導波路が互いに平行になるよう配置
されており、これら誘電体導波路の上面には複数の凹部
が設けられており、前記平行に配置した誘電体導波路の
間にはそれぞれ誘電体導波路に近接して前記誘電体共振
器が配置されており、ひとつの誘電体導波路には前記給
電素子が取り付けられており、該給電素子によって外部
電力源から供給された電力を当該誘電体導波路に導波さ
せ、かつその電力を前記誘電体共振器を介して隣接した
誘電体導波路に導波させ、これら誘電体導波路上の前記
凹部から外部空間に電力を放射することを特徴とするア
レイアンテナ。
2. A semiconductor device comprising: a dielectric waveguide; a cylindrical dielectric resonator; a metal conductor plate; and a power supply element for supplying power from an external power source. A plurality of the dielectric waveguides are arranged so as to be parallel to each other, a plurality of concave portions are provided on the upper surface of these dielectric waveguides, and a space is provided between the dielectric waveguides arranged in parallel. The dielectric resonator is disposed in proximity to the dielectric waveguide, the feed element is attached to one dielectric waveguide, and the power supplied from the external power source by the feed element is applied to the dielectric resonator. Guiding the power to a dielectric waveguide, and guiding the power to an adjacent dielectric waveguide via the dielectric resonator, and radiating the power from the concave portion on the dielectric waveguide to an external space. An array antenna characterized by the above.
【請求項3】 片面に複数の直線状の凸部を設けた誘電
体基板と、該誘電体基板とは誘電率の異なる誘電体ブロ
ックと、円筒形の誘電体共振器と、金属導体板と、外部
電力源から電力を供給する給電素子とにより構成されて
おり、前記誘電体基板の凸部の無い面には前記金属導体
板が密着して取り付けられており、前記誘電体基板の前
記凸部の上面には複数の前記誘電体ブロックが前記凸部
に密着して配置されており、前記凸部の間にはそれぞれ
凸部に近接して前記誘電体共振器が配置されており、前
記誘電体基板の一部には前記給電素子が取り付けられて
おり、該給電素子によって外部電力源から供給された電
力を前記凸部に導波させ、かつその電力を前記誘電体共
振器を介して隣接した凸部に導波させ、これら凸部の前
記誘電体ブロックを配置した部分から外部空間に電力を
放射することを特徴とするアレイアンテナ。
3. A dielectric substrate having a plurality of linear projections on one surface, a dielectric block having a different dielectric constant from the dielectric substrate, a cylindrical dielectric resonator, and a metal conductor plate. A power supply element for supplying power from an external power source, and the metal conductor plate is closely attached to a surface of the dielectric substrate having no projection, and the projection of the dielectric substrate is provided. A plurality of the dielectric blocks are disposed on the upper surface of the portion in close contact with the protrusions, and the dielectric resonator is disposed between the protrusions in proximity to the protrusions, respectively. The power supply element is attached to a part of the dielectric substrate, the power supplied from the external power source by the power supply element is guided to the convex portion, and the power is transmitted through the dielectric resonator. Waves are guided to adjacent convex portions, and the dielectric blocks of these convex portions are An array antenna, wherein power is radiated from a disposed portion to an external space.
【請求項4】 片面に複数の直線状の凸部を設けた誘電
体基板と、円筒形の誘電体共振器と、金属導体板と、外
部電力源から電力を供給する給電素子とにより構成され
ており、前記誘電体基板の凸部の無い面には前記金属導
体板が密着して取り付けられており、前記誘電体基板の
前記凸部の上面には複数の凹部が設けられており、前記
凸部の間にはそれぞれ凸部に近接して前記誘電体共振器
が配置されており、前記誘電体基板の一部には前記給電
素子が取り付けられており、該給電素子によって外部電
力源から供給された電力を前記凸部に導波させ、かつそ
の電力を前記誘電体共振器を介して隣接した凸部に導波
させ、これら凸部上の前記凹部から外部空間に電力を放
射することを特徴とするアレイアンテナ。
4. A dielectric substrate having a plurality of linear projections on one surface, a cylindrical dielectric resonator, a metal conductor plate, and a power supply element for supplying power from an external power source. The metal conductive plate is attached in close contact with the surface of the dielectric substrate without the convex portion, and a plurality of concave portions are provided on the upper surface of the convex portion of the dielectric substrate, The dielectric resonator is arranged between the convex portions in close proximity to the convex portions, and the power supply element is attached to a part of the dielectric substrate. Guiding the supplied power to the convex portions, and guiding the power to adjacent convex portions via the dielectric resonator, and radiating the power from the concave portions on these convex portions to the external space. An array antenna characterized by the above.
【請求項5】 前記誘電体導波路または前記誘電体基板
の両端に金属導体ブロックを密着して配置し、該金属導
体ブロックを利用して前記誘電体導波路または前記誘電
体基板に定在波を励振させることを特徴とする請求項1
〜4いずれか記載のアレイアンテナ。
5. A metal conductor block is disposed in close contact with both ends of the dielectric waveguide or the dielectric substrate, and a standing wave is applied to the dielectric waveguide or the dielectric substrate using the metal conductor block. 2. The device according to claim 1, wherein
5. The array antenna according to any one of items 1 to 4.
JP2000144621A 2000-05-12 2000-05-12 Array antenna Expired - Fee Related JP3932767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144621A JP3932767B2 (en) 2000-05-12 2000-05-12 Array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144621A JP3932767B2 (en) 2000-05-12 2000-05-12 Array antenna

Publications (2)

Publication Number Publication Date
JP2001326506A true JP2001326506A (en) 2001-11-22
JP3932767B2 JP3932767B2 (en) 2007-06-20

Family

ID=18651253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144621A Expired - Fee Related JP3932767B2 (en) 2000-05-12 2000-05-12 Array antenna

Country Status (1)

Country Link
JP (1) JP3932767B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system
WO2014026089A1 (en) * 2012-08-10 2014-02-13 Waveconnex, Inc. Dielectric coupling systems for ehf communications
US9197011B2 (en) 2011-12-14 2015-11-24 Keyssa, Inc. Connectors providing haptic feedback
US9203597B2 (en) 2012-03-02 2015-12-01 Keyssa, Inc. Systems and methods for duplex communication
US9322904B2 (en) 2011-06-15 2016-04-26 Keyssa, Inc. Proximity sensing using EHF signals
US9374154B2 (en) 2012-09-14 2016-06-21 Keyssa, Inc. Wireless connections with virtual hysteresis
US9379450B2 (en) 2011-03-24 2016-06-28 Keyssa, Inc. Integrated circuit with electromagnetic communication
US9407311B2 (en) 2011-10-21 2016-08-02 Keyssa, Inc. Contactless signal splicing using an extremely high frequency (EHF) communication link
US9426660B2 (en) 2013-03-15 2016-08-23 Keyssa, Inc. EHF secure communication device
US9515859B2 (en) 2011-05-31 2016-12-06 Keyssa, Inc. Delta modulated low-power EHF communication link
US9531425B2 (en) 2012-12-17 2016-12-27 Keyssa, Inc. Modular electronics
US9553353B2 (en) 2012-03-28 2017-01-24 Keyssa, Inc. Redirection of electromagnetic signals using substrate structures
US9553616B2 (en) 2013-03-15 2017-01-24 Keyssa, Inc. Extremely high frequency communication chip
US9853696B2 (en) 2008-12-23 2017-12-26 Keyssa, Inc. Tightly-coupled near-field communication-link connector-replacement chips
US10305196B2 (en) 2012-04-17 2019-05-28 Keyssa, Inc. Dielectric lens structures for EHF radiation
CN111525244A (en) * 2020-06-03 2020-08-11 重庆邮电大学 Millimeter wave dielectric resonator antenna array for communication of Internet of vehicles
CN115332810A (en) * 2022-07-28 2022-11-11 西安空间无线电技术研究所 Flat-top beam radial waveguide slot array antenna and flat-top beam generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002060B1 (en) 2013-04-22 2019-07-19 삼성전자주식회사 Antenna and emission filter

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system
US10965347B2 (en) 2008-12-23 2021-03-30 Keyssa, Inc. Tightly-coupled near-field communication-link connector-replacement chips
US9853696B2 (en) 2008-12-23 2017-12-26 Keyssa, Inc. Tightly-coupled near-field communication-link connector-replacement chips
US10243621B2 (en) 2008-12-23 2019-03-26 Keyssa, Inc. Tightly-coupled near-field communication-link connector-replacement chips
US9379450B2 (en) 2011-03-24 2016-06-28 Keyssa, Inc. Integrated circuit with electromagnetic communication
US9444146B2 (en) 2011-03-24 2016-09-13 Keyssa, Inc. Integrated circuit with electromagnetic communication
US9515859B2 (en) 2011-05-31 2016-12-06 Keyssa, Inc. Delta modulated low-power EHF communication link
US9444523B2 (en) 2011-06-15 2016-09-13 Keyssa, Inc. Proximity sensing using EHF signals
US9722667B2 (en) 2011-06-15 2017-08-01 Keyssa, Inc. Proximity sensing using EHF signals
US9322904B2 (en) 2011-06-15 2016-04-26 Keyssa, Inc. Proximity sensing using EHF signals
US9407311B2 (en) 2011-10-21 2016-08-02 Keyssa, Inc. Contactless signal splicing using an extremely high frequency (EHF) communication link
US9647715B2 (en) 2011-10-21 2017-05-09 Keyssa, Inc. Contactless signal splicing using an extremely high frequency (EHF) communication link
US9197011B2 (en) 2011-12-14 2015-11-24 Keyssa, Inc. Connectors providing haptic feedback
US9203597B2 (en) 2012-03-02 2015-12-01 Keyssa, Inc. Systems and methods for duplex communication
US9553353B2 (en) 2012-03-28 2017-01-24 Keyssa, Inc. Redirection of electromagnetic signals using substrate structures
US10651559B2 (en) 2012-03-28 2020-05-12 Keyssa, Inc. Redirection of electromagnetic signals using substrate structures
US10305196B2 (en) 2012-04-17 2019-05-28 Keyssa, Inc. Dielectric lens structures for EHF radiation
US9515365B2 (en) 2012-08-10 2016-12-06 Keyssa, Inc. Dielectric coupling systems for EHF communications
WO2014026089A1 (en) * 2012-08-10 2014-02-13 Waveconnex, Inc. Dielectric coupling systems for ehf communications
CN104641505A (en) * 2012-08-10 2015-05-20 凯萨股份有限公司 Dielectric coupling systems for EHF communications
US10069183B2 (en) 2012-08-10 2018-09-04 Keyssa, Inc. Dielectric coupling systems for EHF communications
US9374154B2 (en) 2012-09-14 2016-06-21 Keyssa, Inc. Wireless connections with virtual hysteresis
US9515707B2 (en) 2012-09-14 2016-12-06 Keyssa, Inc. Wireless connections with virtual hysteresis
US10027382B2 (en) 2012-09-14 2018-07-17 Keyssa, Inc. Wireless connections with virtual hysteresis
US9531425B2 (en) 2012-12-17 2016-12-27 Keyssa, Inc. Modular electronics
US10033439B2 (en) 2012-12-17 2018-07-24 Keyssa, Inc. Modular electronics
US10523278B2 (en) 2012-12-17 2019-12-31 Keyssa, Inc. Modular electronics
US9894524B2 (en) 2013-03-15 2018-02-13 Keyssa, Inc. EHF secure communication device
US9426660B2 (en) 2013-03-15 2016-08-23 Keyssa, Inc. EHF secure communication device
US10602363B2 (en) 2013-03-15 2020-03-24 Keyssa, Inc. EHF secure communication device
US9960792B2 (en) 2013-03-15 2018-05-01 Keyssa, Inc. Extremely high frequency communication chip
US10925111B2 (en) 2013-03-15 2021-02-16 Keyssa, Inc. EHF secure communication device
US9553616B2 (en) 2013-03-15 2017-01-24 Keyssa, Inc. Extremely high frequency communication chip
CN111525244A (en) * 2020-06-03 2020-08-11 重庆邮电大学 Millimeter wave dielectric resonator antenna array for communication of Internet of vehicles
CN111525244B (en) * 2020-06-03 2021-10-26 重庆邮电大学 Millimeter wave dielectric resonator antenna array for communication of Internet of vehicles
CN115332810A (en) * 2022-07-28 2022-11-11 西安空间无线电技术研究所 Flat-top beam radial waveguide slot array antenna and flat-top beam generation method

Also Published As

Publication number Publication date
JP3932767B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US11626652B2 (en) Ridge gap waveguide and multilayer antenna array including the same
JP3932767B2 (en) Array antenna
EP3462533B1 (en) Low-loss plug connection arrangement and system having at least one such plug connection arrangement
JP6795614B2 (en) Antenna device
JP2002026638A (en) Antenna system
JPH1146114A (en) Stacked aperture antenna and multi-layer circuit board containing the same
JP2020065251A (en) Connection structure between waveguide and coaxial cable
JP3886932B2 (en) Antenna mounting substrate and PC card provided with the same
JP3114836B2 (en) Printed dipole antenna
JPH10242745A (en) Antenna device
US11870507B2 (en) Wireless board-to-board interconnect for high-rate wireless data transmission
JP2000196344A (en) Antenna device
JPH11274845A (en) Antenna system
JP3514305B2 (en) Chip antenna
JPH11145722A (en) Microstrip antenna
JP3364829B2 (en) Antenna device
KR20060095372A (en) Antenna being in structure of all way radiation
JP3903671B2 (en) Planar antenna
JP6903954B2 (en) Slot antenna
JP3932766B2 (en) Array antenna
JP3937652B2 (en) Planar antenna
JP3846663B2 (en) Aperture antenna and array antenna
KR19990084408A (en) Planar antenna using multilayer dielectric with air layer
RU190520U1 (en) PASSAGE ELEMENT OF A PHASED ANTENNA GRID
JP2001345634A (en) Array antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees