Nothing Special   »   [go: up one dir, main page]

JP2001305111A - Ultrasonic rail flaw detector - Google Patents

Ultrasonic rail flaw detector

Info

Publication number
JP2001305111A
JP2001305111A JP2000119459A JP2000119459A JP2001305111A JP 2001305111 A JP2001305111 A JP 2001305111A JP 2000119459 A JP2000119459 A JP 2000119459A JP 2000119459 A JP2000119459 A JP 2000119459A JP 2001305111 A JP2001305111 A JP 2001305111A
Authority
JP
Japan
Prior art keywords
rail
transmitting
ultrasonic
receiving
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000119459A
Other languages
Japanese (ja)
Other versions
JP4527238B2 (en
Inventor
Izumi Sato
泉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP2000119459A priority Critical patent/JP4527238B2/en
Publication of JP2001305111A publication Critical patent/JP2001305111A/en
Application granted granted Critical
Publication of JP4527238B2 publication Critical patent/JP4527238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic rail flaw detector which can detect both of bottom corrosion and web transverse fissures by achieving a highly sensitive detection of the bottom corrosion. SOLUTION: A transmitting/receiving vibrator 12 is arranged to contact the top surface of a rail 1. A longitudinal ultrasonic wave within the range of 10 deg.-25 deg. in angle of refraction is admitted into the rail from the transmitting/ receiving vibrator 12. A part of the ultrasonic wave scattered by corrosion 1B at the bottom of the rail is received by the transmitting/receiving vibrator 12 and the ultrasonic wave radiated from the transmitting/receiving vibrator 12 and reflected on a defect 1C and the bottom surface of the rail is received by a receiving vibrator 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用し
て、レールの底部腐食または腹部横裂を検出することが
できる超音波レール探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic rail flaw detector capable of detecting bottom corrosion of a rail or lateral abdominal tear using an ultrasonic wave.

【0002】[0002]

【従来の技術】従来、鉄道レール等のレールの内部に存
在する傷等の欠陥を超音波を利用して探傷する装置は、
鉄道の保線現場で広く使用されている。レールの頂面で
ある踏面からレール内に超音波を入射させて、内部の傷
等からの反射エコーを検知することによって傷の存在を
知ることができる。従来のレールの超音波探傷において
は、図6に示すように、複数の超音波探触子を用いて様
々な角度でレール1内に超音波を入射させて、レール1
各部に発生する傷からの反射エコーを受信して、探傷し
ている。代表的には、垂直探触子40による超音波の屈
折角が0°の縦波超音波、斜角探触子42,42による
35°〜45°の横波超音波、斜角探触子44,44に
よる70°の横波超音波が利用されている。
2. Description of the Related Art Conventionally, a device for detecting a defect such as a flaw existing inside a rail such as a railroad rail using ultrasonic waves has been known.
Widely used on railway track maintenance sites. Ultrasonic waves are made to enter the rail from the tread surface, which is the top surface of the rail, and the presence of a flaw can be known by detecting a reflected echo from an internal flaw or the like. In the conventional ultrasonic inspection of a rail, as shown in FIG. 6, ultrasonic waves are incident on the rail 1 at various angles using a plurality of ultrasonic
Flaw detection is performed by receiving reflected echoes from flaws generated in each part. Typically, the vertical probe 40 has a longitudinal wave ultrasonic wave whose refraction angle of the ultrasonic wave is 0 °, the transverse wave ultrasonic wave 35 ° to 45 ° formed by the oblique probes 42, 42, and the oblique probe 44. , 44 are used.

【0003】図7に示すように、レール底部に発生する
横裂1Aについては、探触子からレール内へ入射した超
音波が、コーナーで反射を繰り返して、結果として入射
した方向に戻ってくることができるため、斜角探触子4
2による35°〜45°の横波超音波を利用して感度良
く検知することができる。
[0003] As shown in FIG. 7, regarding a lateral crack 1A generated at the bottom of the rail, the ultrasonic wave incident from the probe into the rail repeats reflection at the corner, and consequently returns in the incident direction. Bevel probe 4
2 can be detected with high sensitivity using the transverse ultrasonic waves of 35 ° to 45 °.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、レール
底部に発生する底部腐食については、必ずしも従来の探
触子で十分な検知ができていない。これは、図8に示す
ように、レール底部の腐食1Bの場合、腐食1Bによる
面の角度が寝ているために、探触子と異なる方向に反射
してしまうこと、反射面が腐食1Bによる不規則な面の
ために散乱反射してしまい、受信信号が弱くなることな
どから、十分な受信信号レベルが得られないことが理由
として挙げられる。
However, it is not always possible to sufficiently detect the bottom corrosion occurring at the bottom of the rail with a conventional probe. This is because, as shown in FIG. 8, in the case of corrosion 1B on the bottom of the rail, the angle of the surface due to the corrosion 1B is lying, so that it is reflected in a direction different from that of the probe. One reason is that a sufficient reception signal level cannot be obtained because the reception signal is weakened due to scattering and reflection due to the irregular surface.

【0005】また、垂直探触子40による0°の縦波超
音波を使用して、Bスコープを描く方法で底部腐食1B
を検知する方法も考えられるが、底面エコーのレベルが
大きく、底部腐食1Bからの散乱反射が低いレベルであ
るため、受信増幅度を上げて画像を描かせ、さらに数m
m程度のレール高さの違いを読み取らなければならず、
装置が複雑になるという問題がある。
[0005] In addition, the bottom probe 1B is drawn by a method of drawing a B scope using a vertical ultrasonic wave of 0 ° by the vertical probe 40.
However, since the level of the bottom echo is large and the level of the scattered reflection from the bottom corrosion 1B is low, the reception amplification is increased to draw an image.
m difference in rail height must be read,
There is a problem that the device becomes complicated.

【0006】また、レール溶接部の腹部に発生する溶け
込み不足の横裂のような欠陥1C(図9参照)について
は、面が平滑なために、入射させた超音波のほとんどの
成分がレール底面方向に正反射してしまい、探触子の方
向に戻ってくる成分が少ないので、ほとんど検知できな
いという問題がある。そのため、図9のように、2つの
探触子(送信探触子46と受信探触子48)を利用し
て、手動で探触子を走査するタンデム探傷法が提案され
て実施されている。しかしながら、この方法ではレール
の頭部から底部までの全域を探傷するために、各探触子
のレール前後方向の相対位置を移動させて、走査しなけ
ればならないので、レール上を走行しながら探傷する用
途では、移動速度の制限がある等の問題がある。
[0006] Further, as for the defect 1C (see FIG. 9) such as a lateral crack with insufficient penetration generated in the abdomen of the rail welding portion, since the surface is smooth, almost all components of the incident ultrasonic waves are reduced to the bottom of the rail. There is a problem that almost no detection can be performed because there is a small amount of a component that is specularly reflected in the direction and returns in the direction of the probe. Therefore, as shown in FIG. 9, a tandem flaw detection method of manually scanning a probe using two probes (a transmission probe 46 and a reception probe 48) has been proposed and implemented. . However, in this method, in order to detect the entire area from the head to the bottom of the rail, the relative position of each probe in the front-rear direction of the rail must be moved and scanning is performed. In such applications, there is a problem that the moving speed is limited.

【0007】また、探触子を走査しないで全域を探傷す
る方法として、広い開口面の探触子を使用する方法もあ
るが、探触子が大型化するため、コストが高くなるとい
う問題がある。
There is also a method of using a probe having a wide aperture surface as a method of detecting a flaw in the entire area without scanning the probe. However, there is a problem that the size of the probe is increased and the cost is increased. is there.

【0008】本発明はかかる従来のレール探傷の持って
いる課題に鑑みなされたもので、第1の目的は、底部腐
食を感度良く検出することができる超音波レール探傷装
置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the conventional rail flaw detection, and a first object is to provide an ultrasonic rail flaw detection apparatus capable of detecting bottom corrosion with high sensitivity. .

【0009】また、第2の目的は、タンデム探傷法を用
いた超音波探傷装置において、送信用振動子と受信用振
動子との間の前後方向相対位置の調整の手間を低減する
ことができる超音波レール探傷装置を提供することであ
る。
A second object of the present invention is to reduce the trouble of adjusting the relative position in the front-rear direction between the transmitting transducer and the receiving transducer in the ultrasonic testing apparatus using the tandem testing method. An ultrasonic rail flaw detector is provided.

【0010】また、第3の目的は、底部腐食と腹部横裂
の両方を検出することができる超音波レール探傷装置を
提供することである。
It is a third object of the present invention to provide an ultrasonic rail flaw detector capable of detecting both bottom corrosion and abdominal lateral crack.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、超音波を利用してレールを探
傷しレール底部の腐食を検出する超音波レール探傷装置
であって、レールの頂面に当接される送受信用振動子を
備え、該送受信用振動子から屈折角10°〜25°の範
囲にある縦波超音波をレール内へ入射し、レール底部の
腐食で散乱した超音波の一部を該送受信用振動子で受信
することを特徴とする。送受信用振動子からの縦波超音
波の屈折角を10°〜25°の範囲にすることにより、
底面エコーの影響を受けずに、レール底部の腐食で散乱
された超音波を比較的良い感度で受信することができ、
腐食の存在を知ることができる。
In order to achieve the above object, an invention according to claim 1 is an ultrasonic rail flaw detector which detects flaws on a rail by using ultrasonic waves and detects corrosion of the bottom of the rail. A transmitting / receiving vibrator is provided in contact with the top surface of the rail. A longitudinal ultrasonic wave having a refraction angle in the range of 10 ° to 25 ° is incident on the rail from the transmitting / receiving vibrator, and is scattered by corrosion of the rail bottom. A part of the ultrasonic waves thus received is received by the transmitting / receiving vibrator. By setting the angle of refraction of longitudinal ultrasonic waves from the transmitting and receiving transducer to be in the range of 10 ° to 25 °,
Without being affected by the bottom echo, the ultrasonic wave scattered by the corrosion of the rail bottom can be received with relatively good sensitivity,
We can know the existence of corrosion.

【0012】請求項2記載の発明は、超音波を利用して
レールを探傷する超音波レール探傷装置であって、レー
ル前後方向に整列されレールに当接される送信用振動子
と受信用振動子とを備え、送信用振動子は屈折角10°
〜25°の範囲にある縦波超音波をレール内へ入射し、
受信用振動子は前記送信用振動子から放射され、欠陥及
びレール底面を反射してきた超音波を受信することを特
徴とする。送信用振動子からの縦波超音波の屈折角を1
0°〜25°の範囲にして、従来のタンデム探傷法で横
波超音波を使用した場合の屈折角よりも小さく設定する
ことにより、送信用振動子を大型化することなく、送信
用振動子から放射される超音波のレールの高さ方向の範
囲を広げることができ、従って、送信用振動子と受信用
振動子との前後方向の相対位置の調整の手間を少なくし
て、レール内の欠陥の検出を行うことができる。
According to a second aspect of the present invention, there is provided an ultrasonic rail flaw detector for detecting a flaw of a rail using ultrasonic waves, wherein the transmitting vibrator and the receiving vibrator are arranged in the front-rear direction of the rail and abut on the rail. And the transmitting transducer has a refraction angle of 10 °.
Inject longitudinal ultrasonic waves in the range of ~ 25 ° into the rail,
The receiving transducer receives the ultrasonic waves radiated from the transmitting transducer and reflected by the defect and the rail bottom surface. The angle of refraction of longitudinal ultrasonic waves from the transmitting transducer is 1
By setting the angle in the range of 0 ° to 25 ° to be smaller than the angle of refraction in the case of using the transverse ultrasonic wave in the conventional tandem flaw detection method, the size of the transmitting oscillator can be increased without increasing the size of the transmitting oscillator. The range of the height of the radiated ultrasonic wave in the rail can be widened, and therefore, the trouble of adjusting the relative position between the transmitting transducer and the receiving transducer in the front-rear direction can be reduced, and the defect in the rail can be reduced. Can be detected.

【0013】特に、請求項3記載の発明のように、レー
ルの高さをhとし、送信用振動子からの縦波超音波の屈
折角をθとしたときに、前記送信用振動子のレールの幅
方向と垂直な方向の大きさをh×sinθとすることに
より、送信用振動子と受信用振動子との前後方向の相対
位置を動かすことなく、送信用振動子から送信される縦
波超音波でレールの高さ方向全体のどこかにある欠陥を
検出することができる。
In particular, when the height of the rail is h and the angle of refraction of the longitudinal ultrasonic wave from the transmitting oscillator is θ, the rail of the transmitting oscillator is preferably provided. By setting the magnitude in the direction perpendicular to the width direction of h to sinh θ, the longitudinal wave transmitted from the transmitting transducer without moving the relative position of the transmitting transducer and the receiving transducer in the front-rear direction. It is possible to detect a defect somewhere along the entire height of the rail by ultrasonic waves.

【0014】請求項4記載の発明は、超音波を利用して
レールを探傷する超音波レール探傷装置であって、レー
ル前後方向に整列されレールに当接される送受信用振動
子と受信用振動子とを備え、送受信用振動子が屈折角1
0°〜25°の範囲にある縦波超音波をレール内へ入射
させると共に、レール内からの縦波超音波を受信し、受
信用振動子が前記送受信用振動子から放射され欠陥及び
レール底面を反射してきた超音波を受信することを特徴
とする。送受信用振動子から屈折角10°〜25°の縦
波超音波が放射され、レール底部の腐食で散乱され戻っ
てきた縦波超音波を送受信用振動子で受信することによ
り、レール底部の腐食を検出することができる。また、
レール内に欠陥があった場合に、送受信用振動子から放
射された屈折角10°〜25°の縦波超音波が、レール
内の欠陥で反射し、さらにレール底面で反射したものを
受信用振動子で受信する、所謂タンデム探傷法を使用す
ることにより、レール内部の欠陥を検出することができ
る。こうして、1つの送受信用振動子を共通に用いて、
レール底部の腐食と、レール内部の横裂のような欠陥の
両方を検出することができる。送受信用振動子から放射
される縦波超音波の屈折角を10°〜25°の範囲にし
て、従来の横波超音波を使用した場合の屈折角よりも小
さく設定することにより、送受信用振動子を大型化する
ことなく、送受信用振動子から放射される超音波のレー
ルの高さ方向の範囲を広げることができ、従って、送受
信用振動子と受信用振動子との前後方向の相対位置の調
整の手間を少なくして、レール内の欠陥の検出を行うこ
とができる。
According to a fourth aspect of the present invention, there is provided an ultrasonic rail flaw detector for detecting flaws in a rail by using ultrasonic waves, wherein the transmitting / receiving vibrator and the receiving vibrator are arranged in the longitudinal direction of the rail and abut on the rail. And the transmitting / receiving vibrator has a refraction angle of 1
A longitudinal ultrasonic wave in a range of 0 ° to 25 ° is made incident on the rail, and the longitudinal ultrasonic wave from the rail is received. Receiving the ultrasonic wave reflected from the optical disc. Longitudinal ultrasonic waves having a refraction angle of 10 ° to 25 ° are radiated from the transmitting / receiving vibrator, and the longitudinal ultrasonic waves scattered and returned by the corrosion of the bottom of the rail are received by the transmitting / receiving vibrator, thereby causing corrosion of the rail bottom. Can be detected. Also,
When there is a defect in the rail, the longitudinal ultrasonic wave with a refraction angle of 10 ° to 25 ° emitted from the transmitting and receiving transducer is reflected by the defect in the rail and further reflected by the bottom of the rail for reception. A defect inside the rail can be detected by using a so-called tandem flaw detection method, which is received by a vibrator. In this way, by using one transmitting and receiving transducer in common,
Both corrosion at the bottom of the rail and defects such as lateral cracks inside the rail can be detected. By setting the refraction angle of the longitudinal ultrasonic wave radiated from the transmitting / receiving vibrator in the range of 10 ° to 25 ° and smaller than the refraction angle when using the conventional transverse ultrasonic wave, the transmitting / receiving vibrator is set. Without increasing the size, the range of the height direction of the rail of the ultrasonic wave radiated from the transmitting / receiving transducer can be expanded, and therefore, the relative position of the transmitting / receiving transducer and the receiving transducer in the front-back direction can be increased. The defect in the rail can be detected with less trouble of adjustment.

【0015】特に、請求項5記載の発明のように、レー
ルの高さをhとし、送受信用振動子からの縦波超音波の
屈折角をθとしたときに、前記送受信用振動子のレール
の幅方向と垂直な方向の大きさをh×sinθとするこ
とにより、送受信用振動子と受信用振動子との前後方向
の相対位置を動かすことなく、送受信用振動子から送信
される縦波超音波でレールの高さ方向全体のどこかにあ
る欠陥を検出することができる。
In particular, when the height of the rail is h and the angle of refraction of longitudinal ultrasonic waves from the transmitting / receiving transducer is θ, the rail of the transmitting / receiving transducer is provided. By setting the size in the direction perpendicular to the width direction of h to sinh θ, the longitudinal wave transmitted from the transmitting / receiving vibrator without moving the relative position of the transmitting / receiving vibrator and the receiving vibrator in the front-rear direction. It is possible to detect a defect somewhere along the entire height of the rail by ultrasonic waves.

【0016】また、請求項6記載の発明は、前記送受信
用振動子と受信用振動子とは、それぞれ切換スイッチを
介して同じ受信部に接続されることを特徴とする。切換
スイッチを介して切り換えることで、同じ受信部を用い
て、レール底部の腐食検出と、レール内部の欠陥検出と
を切り換えることができる。
Further, the invention according to claim 6 is characterized in that the transmitting / receiving vibrator and the receiving vibrator are connected to the same receiving unit via respective changeover switches. By switching through the changeover switch, it is possible to switch between detection of corrosion at the bottom of the rail and detection of a defect inside the rail using the same receiving unit.

【0017】[0017]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は、本発明の超音波レール探傷
装置の実施形態を表す構成説明図、図2はレール探傷を
行うときの状態を表す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a structural explanatory view showing an embodiment of an ultrasonic rail flaw detector of the present invention, and FIG. 2 is a perspective view showing a state when performing rail flaw detection.

【0018】この超音波レール探傷装置は、超音波パル
スをレール1内に送信し、レール1の主に底部腐食1B
から反射されてくる反射エコーを受信する送受信用振動
子12と、送受信用振動子12から送信された超音波パ
ルスが主に腹部の欠陥1Cで反射して、レール底部で反
射して戻ってくる反射エコーを受信する受信用振動子1
4を有する超音波探触子10を有している。この送受信
用振動子12と受信用振動子14とは分割膜16によっ
て音響的に遮断されている。また、送受信用振動子12
の前面には、振動子12で発生する超音波パルスを規定
の入射角でレール1に入射させるための樹脂製シュー1
8が設けられ、受信用振動子14の前面には、レール1
から入射された超音波を受信用振動子14へと送るシュ
ー19が設けられる。超音波探触子10には、送受信用
振動子12から超音波パルスを送出するための電気パル
スを発生する送信部20と、送受信用振動子12で受信
される信号を受信して増幅する受信部22と、受信用振
動子14で受信される信号を受信して増幅する受信部2
4と、が接続されている。また、受信部22及び受信部
24には、それぞれ検知表示部26,28が接続されて
いる。検知表示部26,28は、受信部22,24で所
定閾値よりも大きな受信信号を受信した場合に、受信エ
コーがあったことを示すために表示するもので、ランプ
等によって構成され、ランプの点灯により受信エコーが
あったことが表示される。
This ultrasonic rail flaw detector transmits an ultrasonic pulse to the inside of the rail 1 and mainly removes the bottom corrosion 1B of the rail 1.
Transmitting / receiving vibrator 12 for receiving the reflected echo reflected from the antenna, and the ultrasonic pulse transmitted from the transmitting / receiving vibrator 12 is mainly reflected by the abdominal defect 1C, reflected at the bottom of the rail, and returned. Resonator 1 for receiving reflected echo
4 has an ultrasonic probe 10. The transmitting / receiving vibrator 12 and the receiving vibrator 14 are acoustically isolated by the division film 16. Further, the transmitting / receiving vibrator 12
A resin shoe 1 for allowing ultrasonic pulses generated by the vibrator 12 to enter the rail 1 at a specified incident angle
8 are provided, and a rail 1 is provided on the front surface of the receiving vibrator 14.
A shoe 19 for transmitting the ultrasonic wave incident from the to the receiving transducer 14 is provided. The ultrasonic probe 10 includes a transmitting unit 20 that generates an electric pulse for transmitting an ultrasonic pulse from the transmitting / receiving vibrator 12 and a receiving unit that receives and amplifies a signal received by the transmitting / receiving vibrator 12. Unit 22 and a receiving unit 2 that receives and amplifies a signal received by the receiving transducer 14
4 are connected. Further, detection display units 26 and 28 are connected to the reception unit 22 and the reception unit 24, respectively. The detection display units 26 and 28 are for displaying when a reception signal larger than a predetermined threshold is received by the reception units 22 and 24 to indicate that a reception echo has occurred. Illumination indicates that there is a received echo.

【0019】送受信用振動子12から発射された超音波
パルスはシュー18を経由してレール1に対して規定の
角度を持って入射する。この規定の角度は、スネルの法
則に従ってレール1内で10°〜25°の範囲内の屈折
角θの縦波超音波、好ましくは15°〜20°の屈折角
θの縦波超音波が発生するように選択される。
The ultrasonic pulse emitted from the transmitting / receiving vibrator 12 enters the rail 1 via the shoe 18 at a specified angle. The prescribed angle is such that longitudinal waves having a refraction angle θ in the range of 10 ° to 25 °, preferably 15 ° to 20 °, are generated in the rail 1 in accordance with Snell's law. To be selected.

【0020】図1に示すように、送受信用振動子12の
略前後方向の大きさL、即ち、レールの幅方向と垂直な
方向の大きさLは、レールの高さをhとしたときに、
As shown in FIG. 1, the size L of the transmitting / receiving vibrator 12 substantially in the front-rear direction, that is, the size L in the direction perpendicular to the width direction of the rail, is defined assuming that the height of the rail is h. ,

【0021】[0021]

【数1】L=h×sinθ (1) を満足するように設定されている。また、送受信用振動
子12と受信用振動子14の間の間隔Pは、概ね、
L = h × sin θ (1) The interval P between the transmitting / receiving vibrator 12 and the receiving vibrator 14 is approximately

【0022】[0022]

【数2】P=h×tanθ (2) を満足するように設定されている。但し、送受信用振動
子12と受信用振動子14との間隔Pは、これに限るも
のではなく、送受信用振動子12から発射されレール1
の腹部の欠陥で反射して、レール底部で反射して戻って
くる超音波を受信することができるような範囲に受信用
振動子14を配置する。
## EQU2 ## It is set so as to satisfy P = h × tan θ (2). However, the interval P between the transmitting / receiving vibrator 12 and the receiving vibrator 14 is not limited to this, and the rail P emitted from the transmitting / receiving vibrator 12
The receiving transducer 14 is arranged in a range where the ultrasonic wave reflected by the abdominal defect and reflected by the bottom of the rail can be received.

【0023】以上のように構成される超音波レール探傷
装置において、送受信用振動子12から発射された超音
波パルスは、屈折角θでレール1内へと入射される。レ
ール1底部に腐食1Bや溶け込み不足による欠陥1Cが
ない場合には、超音波パルスはレール1底面で反射し
て、前方へ反射してしまい送受信用振動子12に戻って
くることはない。
In the ultrasonic rail flaw detector configured as described above, an ultrasonic pulse emitted from the transmitting / receiving vibrator 12 is incident on the rail 1 at a refraction angle θ. If there is no corrosion 1B or a defect 1C due to insufficient penetration at the bottom of the rail 1, the ultrasonic pulse is reflected at the bottom of the rail 1, reflected forward, and does not return to the transmitting / receiving vibrator 12.

【0024】これに対してレール1に底部腐食1Bがあ
る場合には、図3に示すように、超音波は腐食部1Bで
散乱反射して、一部の超音波が送受信用振動子12に戻
ってくる。この反射エコーは、送受信用振動子12で電
気信号に変換され、受信部22で増幅され、検知表示部
26で表示が行われる。この表示からレール1に底部腐
食1Bが存在することを知ることができる。屈折角θが
10°〜25°、好ましくは15°〜20°となってお
り、比較的小さい角度となっているため、底部腐食1B
に対して散乱反射が送受信用振動子12に戻ってきやす
い構成となっている。その一方で、垂直探触子の場合と
異なり、屈折角θが0°より大きいため、底面エコーの
影響を大幅に低減することができる。
On the other hand, when the bottom corrosion 1B is present on the rail 1, as shown in FIG. 3, the ultrasonic wave is scattered and reflected by the corroded portion 1B, and a part of the ultrasonic wave is transmitted to the transmitting / receiving vibrator 12. Come back. The reflected echo is converted into an electric signal by the transmitting / receiving vibrator 12, amplified by the receiving unit 22, and displayed on the detection display unit 26. From this display, it can be known that the bottom corrosion 1B exists on the rail 1. The angle of refraction θ is 10 ° to 25 °, preferably 15 ° to 20 °, which is a relatively small angle.
Scattered reflection easily returns to the transmitting / receiving vibrator 12. On the other hand, unlike the case of the vertical probe, the refraction angle θ is larger than 0 °, so that the influence of the bottom echo can be significantly reduced.

【0025】図10及び図11は、屈折角θと底部腐食
検出性能との関係を求めた実験例である。複数の屈折角
を実現するために、アクリル製のシュー18を製作し、
送受信用振動子と組み合わせて、底部腐食の検知性能を
評価した。評価は、複数の屈折角について、底部腐食か
らのエコーレベルと、底部腐食のない健全レールの底面
からのエコーレベルを測定し、SN比を比較することに
より行った。実験に用いた部品を、次表に示す。
FIGS. 10 and 11 show experimental examples in which the relationship between the refraction angle θ and the bottom corrosion detection performance was obtained. In order to realize a plurality of refraction angles, an acrylic shoe 18 is manufactured,
The performance of detecting bottom corrosion was evaluated in combination with a transmitting / receiving transducer. The evaluation was performed by measuring the echo level from the bottom corrosion and the echo level from the bottom surface of the sound rail without bottom corrosion for a plurality of refraction angles, and comparing the SN ratio. The following table shows the components used in the experiment.

【0026】[0026]

【表1】 測定方法は、まず図10(a)に示すように、φ5の横
穴のエコーレベルにより基準化を行い、図10(b)の
健全レールの底部のエコーレベル測定を行い、図10
(c)の腐食レールのエコーレベル測定を行い、それぞ
れの屈折角におけるSN比を比較した。その測定結果を
次表及び図11に示す。
[Table 1] First, as shown in FIG. 10 (a), the measurement was performed by standardizing the echo level of the φ5 side hole, and the echo level of the bottom of the sound rail shown in FIG. 10 (b) was measured.
(C) The echo level of the corroded rail was measured, and the SN ratio at each refraction angle was compared. The measurement results are shown in the following table and FIG.

【0027】[0027]

【表2】 上記測定結果から分かるように、屈折角10°〜25°
の角度でSN比が良く、特に15°では感度も良い。こ
のような屈折角の範囲となるように、送受信用振動子1
2の屈折角を設定すると効果的である。
[Table 2] As can be seen from the above measurement results, the refraction angle is 10 ° to 25 °.
The S / N ratio is good at the above angle, and the sensitivity is particularly good at 15 °. The transmitting / receiving vibrator 1 is set to have such a range of the refraction angle.
It is effective to set a refraction angle of 2.

【0028】次に、図4に示すように、レール1の溶接
部等に発生する可能性の高い溶け込み不足のような垂直
な平面の横裂1Cがある場合、送受信用振動子12から
送出された超音波パルスは、この横裂1Cで反射して、
さらにレール1底面で反射し、受信用振動子14で受信
される。この信号は受信部24で増幅され、検知表示部
28で表示が行われる。この表示からレール1の腹部に
横裂が存在することを検知することができる。送受信用
振動子12が(1)式を満足することにより、横裂1C
がレール1の高さのどの位置にあったとしても、送受信
用振動子12から放射される超音波は、レール1高さ全
体をカバーし、必ず、超音波パルスはその横裂1Cで反
射される。受信用振動子14が(2)式を満足すること
により、反射された超音波パルスは底面で反射し、確実
に受信用振動子14で受信される。この横裂1Cを検出
する場合、屈折角θは、必ずしも10°〜25°となっ
ている必要がなく、それ以外の角度であっても検出する
ことができるが、あまり屈折角が大きいとLが大きくな
り、超音波探触子10が大型化する。しかしながら、上
記角度範囲の屈折角とすることにより、超音波探触子1
0の大型化を回避することができる。
Next, as shown in FIG. 4, when there is a vertical plane transverse crack 1C such as insufficient penetration that is likely to occur at the welded portion of the rail 1 or the like, it is sent out from the transmitting / receiving vibrator 12. The reflected ultrasonic pulse is reflected by this lateral crack 1C,
Further, the light is reflected by the bottom surface of the rail 1 and received by the receiving transducer 14. This signal is amplified by the receiving unit 24 and is displayed on the detection display unit 28. From this display, it can be detected that a lateral crack exists in the abdomen of the rail 1. When the transmitting / receiving vibrator 12 satisfies the expression (1), the lateral crack 1C
Irrespective of the height of the rail 1, the ultrasonic wave radiated from the transmitting / receiving transducer 12 covers the entire height of the rail 1, and the ultrasonic pulse is always reflected by the lateral crack 1 </ b> C. You. When the receiving transducer 14 satisfies the expression (2), the reflected ultrasonic pulse is reflected on the bottom surface and is reliably received by the receiving transducer 14. When detecting the lateral crack 1C, the refraction angle θ does not necessarily need to be 10 ° to 25 °, and can be detected at any other angle. And the size of the ultrasonic probe 10 increases. However, by setting the refraction angle in the above-mentioned angle range, the ultrasonic probe 1
0 can be avoided.

【0029】図5は、本発明の第2の実施形態を表す図
である。図において、第1実施形態と同一の部材は同一
の符号を付して、その詳細説明を省略する。
FIG. 5 is a diagram showing a second embodiment of the present invention. In the figure, the same members as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0030】この実施形態では、第1実施形態の受信部
24及び検知表示部28を省略し、その代わりに、切換
スイッチ30が受信部22と、送受信用振動子12及び
受信用振動子14との間に設けられている点で異なって
おり、受信部22が選択的に送受信用振動子12または
受信用振動子14と接続できるようになっている。
In this embodiment, the receiving unit 24 and the detection display unit 28 of the first embodiment are omitted, and instead, the changeover switch 30 is connected to the receiving unit 22, the transmitting / receiving vibrator 12, and the receiving vibrator 14. The receiving unit 22 can be selectively connected to the transmitting / receiving vibrator 12 or the receiving vibrator 14.

【0031】切換スイッチ30を切り換えることで、同
じ受信部22及び検知表示部26を用いて、目的に応じ
て底部腐食1B検知と、横裂1C検知とを切り換えるこ
とができる。
By switching the changeover switch 30, it is possible to switch between bottom corrosion 1B detection and lateral crack 1C detection according to the purpose by using the same receiving unit 22 and detection display unit 26.

【0032】以上の各実施形態では、1つの送受信用振
動子12で底部腐食1B検知と横裂1C検知とを行って
いるため、振動子の数を低減でき、探傷車両等の床下ス
ペースが少なくてすむようになる。
In each of the above-described embodiments, the detection of the bottom corrosion 1B and the detection of the lateral crack 1C are performed by one transmitting / receiving vibrator 12, so that the number of vibrators can be reduced and the space under the floor of a flaw detection vehicle or the like can be reduced. I will be able to help.

【0033】[0033]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、送受信用振動子からの縦波超音波の屈折角
を10°〜25°の範囲にすることにより、底面エコー
の影響を受けずに、レール底部の腐食で散乱された超音
波を比較的良い感度で受信することができ、腐食の存在
を検出することができる。
As described above, according to the first aspect of the present invention, the refraction angle of the longitudinal ultrasonic wave from the transmitting / receiving vibrator is set in the range of 10 ° to 25 °, so that the bottom surface echo can be reduced. Without being affected, the ultrasonic waves scattered by the corrosion of the rail bottom can be received with relatively good sensitivity, and the presence of the corrosion can be detected.

【0034】請求項2記載の発明によれば、送信用振動
子を大型化することなく、送信用振動子から放射される
超音波のレールの高さ方向の範囲を広げることができる
ようになり、従って、送受信用振動子と受信用振動子と
の前後方向の相対位置の調整の手間を少なくして、レー
ル内の欠陥の検出を行うことができる。
According to the second aspect of the present invention, the range of the height direction of the rail of the ultrasonic wave radiated from the transmitting transducer can be increased without increasing the size of the transmitting transducer. Therefore, it is possible to detect a defect in the rail while reducing the trouble of adjusting the relative position between the transmitting / receiving vibrator and the receiving vibrator in the front-rear direction.

【0035】請求項3記載の発明によれば、送信用振動
子と受信用振動子との前後方向の相対位置の調整を少な
くして、送信用振動子から送信される縦波超音波でレー
ルの高さ方向全体のどこかにある欠陥を検出することが
できる。
According to the third aspect of the present invention, the adjustment of the relative position between the transmitting oscillator and the receiving oscillator in the front-rear direction is reduced, and the rail is transmitted by the longitudinal ultrasonic waves transmitted from the transmitting oscillator. Can be detected somewhere in the entire height direction.

【0036】請求項4記載の発明によれば、1つの送受
信用振動子を共通に用いて、レール底部の腐食と、レー
ル内部の横裂のような欠陥の両方を検出することができ
る。送受信用振動子から放射される縦波超音波の屈折角
を10°〜25°の範囲にして、従来の横波超音波を使
用した場合の屈折角よりも小さく設定することにより、
送受信用振動子を大型化することなく、送受信用振動子
から放射される超音波のレールの高さ方向の範囲を広げ
ることができ、従って、送受信用振動子と受信用振動子
との前後方向の相対位置を動かすことなく、レール内の
欠陥の検出を行うことができる。
According to the fourth aspect of the present invention, it is possible to detect both corrosion at the bottom of the rail and a defect such as a lateral crack inside the rail by using one transmitting / receiving vibrator in common. By setting the refraction angle of longitudinal ultrasonic waves radiated from the transmitting / receiving transducer to a range of 10 ° to 25 °, by setting the refraction angle to be smaller than the refraction angle when using conventional transverse ultrasonic waves,
Without increasing the size of the transmitting / receiving vibrator, the range of the height direction of the rail of the ultrasonic wave radiated from the transmitting / receiving vibrator can be increased, and therefore, the front-rear direction between the transmitting / receiving vibrator and the receiving vibrator can be increased. Can be detected without moving the relative position of the rails.

【0037】請求項5記載の発明によれば、送受信用振
動子と受信用振動子との前後方向の相対位置を動かすこ
となく、送受信用振動子から送信される縦波超音波でレ
ールの高さ方向全体のどこかにある欠陥を検出すること
ができる。
According to the fifth aspect of the present invention, the height of the rail is increased by the longitudinal ultrasonic waves transmitted from the transmitting / receiving transducer without moving the relative position of the transmitting / receiving transducer and the receiving transducer in the front-rear direction. Defects somewhere along the entire height can be detected.

【0038】請求項6記載の発明によれば、同じ受信部
を用いて、レール底部の腐食検出と、レール内部の欠陥
検出とを切り換えることができる。
According to the sixth aspect of the present invention, it is possible to switch between detection of corrosion at the bottom of the rail and detection of a defect inside the rail using the same receiver.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波レール探傷装置の実施形態を表
す構成図である。
FIG. 1 is a configuration diagram illustrating an embodiment of an ultrasonic rail flaw detector according to the present invention.

【図2】図1の超音波レール探傷装置の斜視図である。FIG. 2 is a perspective view of the ultrasonic rail flaw detector of FIG. 1;

【図3】図1の超音波レール探傷装置のレール底部の腐
食検出の原理を表す説明図である。
FIG. 3 is an explanatory view showing the principle of detecting corrosion of a rail bottom of the ultrasonic rail flaw detector of FIG. 1;

【図4】図1の超音波レール探傷装置の腹部横裂検出の
原理を表す説明図である。
FIG. 4 is an explanatory diagram showing the principle of detecting an abdominal lateral crack in the ultrasonic rail flaw detector of FIG. 1;

【図5】本発明の超音波レール探傷装置の第2の実施形
態を表すブロック図である。
FIG. 5 is a block diagram illustrating a second embodiment of the ultrasonic rail flaw detector according to the present invention.

【図6】従来の超音波レール探傷装置を表す構成図であ
る。
FIG. 6 is a configuration diagram illustrating a conventional ultrasonic rail flaw detector.

【図7】レール底部に発生する横裂に対する超音波の反
射を表す説明図である。
FIG. 7 is an explanatory view showing reflection of ultrasonic waves with respect to a lateral crack generated at the bottom of the rail.

【図8】レール底部の腐食に対する超音波の反射を表す
説明図である。
FIG. 8 is an explanatory diagram showing reflection of ultrasonic waves with respect to corrosion of a rail bottom.

【図9】従来のタンデム探傷法による超音波レール探傷
装置の構成図である。
FIG. 9 is a configuration diagram of an ultrasonic rail flaw detector using a conventional tandem flaw detection method.

【図10】(a)〜(c)は屈折角と底部腐食検出性能
との関係を求めるための実験例を表す説明図である。
FIGS. 10A to 10C are explanatory diagrams illustrating an experimental example for obtaining a relationship between a refraction angle and a bottom corrosion detection performance.

【図11】図10の実験結果を表すグラフである。FIG. 11 is a graph showing the experimental results of FIG.

【符号の説明】[Explanation of symbols]

1 レール 1B 底部の腐食 1C 腹部横裂 12 送受信用振動子 14 受信用振動子 22 受信部 30 切換スイッチ DESCRIPTION OF SYMBOLS 1 Rail 1B Corrosion of bottom 1C Abdominal lateral crack 12 Transceiver for transmission and reception 14 Transducer for reception 22 Receiver 30 Changeover switch

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 超音波を利用してレールを探傷しレール
底部の腐食を検出する超音波レール探傷装置であって、 レールの頂面に当接される送受信用振動子を備え、該送
受信用振動子から屈折角10°〜25°の範囲にある縦
波超音波をレール内へ入射し、レール底部の腐食部で散
乱した超音波の一部を該送受信用振動子で受信すること
を特徴とする超音波レール探傷装置。
1. An ultrasonic rail flaw detector for detecting flaws on a rail by detecting flaws on the rail using ultrasonic waves, comprising: a transmitting / receiving vibrator abutting on a top surface of the rail; A longitudinal wave having a refraction angle of 10 ° to 25 ° is incident on the rail from the vibrator, and a part of the ultrasonic wave scattered by the corroded portion on the bottom of the rail is received by the transmitting / receiving vibrator. Ultrasonic flaw detector.
【請求項2】 超音波を利用してレールを探傷する超音
波レール探傷装置であって、 レール前後方向に整列されレールに当接される送信用振
動子と受信用振動子とを備え、送信用振動子は屈折角1
0°〜25°の範囲にある縦波超音波をレール内へ入射
し、受信用振動子は前記送信用振動子から放射され欠陥
及びレール底面を反射してきた超音波を受信することを
特徴とする超音波レール探傷装置。
2. An ultrasonic rail flaw detector for flaw-detecting a rail using ultrasonic waves, comprising: a transmitting vibrator and a receiving vibrator aligned in the rail front-rear direction and abutting on the rail. Credit transducer has a refraction angle of 1
A longitudinal wave ultrasonic wave in a range of 0 ° to 25 ° is incident on the rail, and the receiving vibrator receives the ultrasonic wave radiated from the transmitting vibrator and reflected on the defect and the bottom surface of the rail. Ultrasonic flaw detector.
【請求項3】 レールの高さをhとし、送信用振動子か
らの縦波超音波の屈折角をθとしたときに、前記送信用
振動子のレールの幅方向と垂直な方向の大きさをh×s
inθとすることを特徴とする請求項2記載の超音波レ
ール探傷装置。
3. When the height of the rail is h and the angle of refraction of longitudinal ultrasonic waves from the transmitting transducer is θ, the size of the transmitting transducer in a direction perpendicular to the width direction of the rail. Is h × s
3. The ultrasonic rail flaw detector according to claim 2, wherein in θ is set as inθ.
【請求項4】 超音波を利用してレールを探傷する超音
波レール探傷装置であって、 レール前後方向に整列されレールに当接される送受信用
振動子と受信用振動子とを備え、送受信用振動子は屈折
角10°〜25°の範囲にある縦波超音波をレール内へ
入射させると共にレール内からの縦波超音波を受信し、
受信用振動子は前記送受信用振動子から放射され欠陥及
びレール底面を反射してきた超音波を受信することを特
徴とする超音波レール探傷装置。
4. An ultrasonic rail flaw detector for detecting flaws on a rail by using ultrasonic waves, comprising: a transmitting / receiving vibrator aligned in the longitudinal direction of the rail and abutting on the rail; The vibrator makes longitudinal wave ultrasonic waves having a refraction angle of 10 ° to 25 ° incident on the rail and receives longitudinal wave ultrasonic waves from inside the rail,
An ultrasonic rail flaw detector, wherein the receiving transducer receives ultrasonic waves radiated from the transmitting / receiving transducer and reflecting the defect and the rail bottom surface.
【請求項5】 レールの高さをhとし、送受信用振動子
からの縦波超音波の屈折角をθとしたときに、前記送受
信用振動子のレールの幅方向と垂直な方向の大きさをh
×sinθとすることを特徴とする請求項4記載の超音
波レール探傷装置。
5. When the height of the rail is h and the angle of refraction of longitudinal ultrasonic waves from the transmitting and receiving transducer is θ, the size of the transmitting and receiving transducer in a direction perpendicular to the width direction of the rail. H
The ultrasonic rail flaw detector according to claim 4, wherein x is sin θ.
【請求項6】 前記送受信用振動子と受信用振動子と
は、それぞれ切換スイッチを介して同じ受信部に接続さ
れることを特徴とする請求項4または5記載の超音波レ
ール探傷装置。
6. The ultrasonic rail flaw detector according to claim 4, wherein the transmitting / receiving vibrator and the receiving vibrator are respectively connected to the same receiving unit via a changeover switch.
JP2000119459A 2000-04-20 2000-04-20 Ultrasonic rail flaw detector Expired - Lifetime JP4527238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119459A JP4527238B2 (en) 2000-04-20 2000-04-20 Ultrasonic rail flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119459A JP4527238B2 (en) 2000-04-20 2000-04-20 Ultrasonic rail flaw detector

Publications (2)

Publication Number Publication Date
JP2001305111A true JP2001305111A (en) 2001-10-31
JP4527238B2 JP4527238B2 (en) 2010-08-18

Family

ID=18630431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119459A Expired - Lifetime JP4527238B2 (en) 2000-04-20 2000-04-20 Ultrasonic rail flaw detector

Country Status (1)

Country Link
JP (1) JP4527238B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2008256719A (en) * 2002-10-31 2008-10-23 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detector
JP2009145232A (en) * 2007-12-14 2009-07-02 Tokyo Keiki Inc Device and method for measuring amount of corrosion in bottom of rail
JP2009202224A (en) * 2008-02-29 2009-09-10 Takada Kiko Kk Evaluation method of partial penetration welding in fatigue resistance steel
US9010186B2 (en) 2008-04-23 2015-04-21 Nordco Rail Services & Inspection Technologies, Inc. Method and apparatus for detecting internal rail defects
WO2017111418A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Crack measurement device and method
KR101936001B1 (en) 2017-09-27 2019-01-07 한국표준과학연구원 Phased Array Ultrasonic Transducer for Defects at Rail

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561147U (en) * 1979-06-19 1981-01-08
JPS58151554A (en) * 1982-03-05 1983-09-08 Tokyo Keiki Co Ltd Flaw detecting method of transverse fissure defect of railroad rail bottom part by high repeated period
JPS62254052A (en) * 1986-04-26 1987-11-05 Nippon Kokan Kk <Nkk> Ultrasonic flaw detection of joint
JPS63261156A (en) * 1987-04-17 1988-10-27 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method and probe
JPS6475960A (en) * 1987-09-18 1989-03-22 Power Reactor & Nuclear Fuel Ultrasonic oblique angle probe
JPH07128304A (en) * 1993-11-06 1995-05-19 Shin Nippon Hihakai Kensa Kk Oblique angle probe for socket welding joint ultrasonic flaw inspection
JPH08201352A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Ultrasonic probe for oblique flaw detection
JPH10253599A (en) * 1997-03-06 1998-09-25 Hitachi Ltd Ultrasonic flaw detection method and device therefor
JPH10282069A (en) * 1997-04-07 1998-10-23 Nippon Steel Corp Ultrasonic flaw detector and sensitivity calibration method thereof
JPH11118770A (en) * 1997-10-20 1999-04-30 Tokimec Inc Ultrasonic flaw-detecting method and device
JPH11201949A (en) * 1998-01-16 1999-07-30 Daido Steel Co Ltd Ultrasonic inspection method for bonded material
JP2000074887A (en) * 1998-09-03 2000-03-14 Daido Steel Co Ltd Ultrasonic inspection method for joined material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561147U (en) * 1979-06-19 1981-01-08
JPS58151554A (en) * 1982-03-05 1983-09-08 Tokyo Keiki Co Ltd Flaw detecting method of transverse fissure defect of railroad rail bottom part by high repeated period
JPS62254052A (en) * 1986-04-26 1987-11-05 Nippon Kokan Kk <Nkk> Ultrasonic flaw detection of joint
JPS63261156A (en) * 1987-04-17 1988-10-27 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method and probe
JPS6475960A (en) * 1987-09-18 1989-03-22 Power Reactor & Nuclear Fuel Ultrasonic oblique angle probe
JPH07128304A (en) * 1993-11-06 1995-05-19 Shin Nippon Hihakai Kensa Kk Oblique angle probe for socket welding joint ultrasonic flaw inspection
JPH08201352A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Ultrasonic probe for oblique flaw detection
JPH10253599A (en) * 1997-03-06 1998-09-25 Hitachi Ltd Ultrasonic flaw detection method and device therefor
JPH10282069A (en) * 1997-04-07 1998-10-23 Nippon Steel Corp Ultrasonic flaw detector and sensitivity calibration method thereof
JPH11118770A (en) * 1997-10-20 1999-04-30 Tokimec Inc Ultrasonic flaw-detecting method and device
JPH11201949A (en) * 1998-01-16 1999-07-30 Daido Steel Co Ltd Ultrasonic inspection method for bonded material
JP2000074887A (en) * 1998-09-03 2000-03-14 Daido Steel Co Ltd Ultrasonic inspection method for joined material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256719A (en) * 2002-10-31 2008-10-23 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detector
JP2009186489A (en) * 2002-10-31 2009-08-20 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detector
JP2012027037A (en) * 2002-10-31 2012-02-09 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detector and ultrasonic flaw detection method
KR101004123B1 (en) 2002-10-31 2010-12-27 히타치 지이 뉴클리어 에너지 가부시키가이샤 Array sensor for ultrasonic wave transceiving, flaw detector and method for flaw detecting therewith
JP4718857B2 (en) * 2005-02-10 2011-07-06 東京計器株式会社 Rail bottom corrosion detection device and rail bottom corrosion detection method
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2009145232A (en) * 2007-12-14 2009-07-02 Tokyo Keiki Inc Device and method for measuring amount of corrosion in bottom of rail
JP2009202224A (en) * 2008-02-29 2009-09-10 Takada Kiko Kk Evaluation method of partial penetration welding in fatigue resistance steel
US9010186B2 (en) 2008-04-23 2015-04-21 Nordco Rail Services & Inspection Technologies, Inc. Method and apparatus for detecting internal rail defects
WO2017111418A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Crack measurement device and method
JP2019504311A (en) * 2015-12-24 2019-02-14 ポスコPosco Crack measuring apparatus and method
KR101936001B1 (en) 2017-09-27 2019-01-07 한국표준과학연구원 Phased Array Ultrasonic Transducer for Defects at Rail
WO2019066192A1 (en) * 2017-09-27 2019-04-04 한국표준과학연구원 Ultrasonic phased-array rail transducer for railway rail defect inspection

Also Published As

Publication number Publication date
JP4527238B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
US4700574A (en) Ultrasonic detection method of the internal defects of a railroad track rail located in the sides of the head of said rail and device to carry it out
US6945114B2 (en) Laser-air, hybrid, ultrasonic testing of railroad tracks
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
JP4527238B2 (en) Ultrasonic rail flaw detector
US20210278373A1 (en) Ultrasonic probe
JP2009058238A (en) Method and device for defect inspection
JPH11118770A (en) Ultrasonic flaw-detecting method and device
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP4500391B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
RU89235U1 (en) DEVICE FOR ULTRASONIC RAIL DEFECTOSCOPY
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JP3612849B2 (en) C-scan ultrasonic flaw detection method and apparatus
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
JP2002323481A (en) Ultrasonic flaw detection method and device
JP4323293B2 (en) Ultrasonic flaw detector
JP4171130B2 (en) Ultrasonic rail flaw detector
JPH0521011Y2 (en)
JPH1151909A (en) Ultrasonic wave flaw detecting method
RU2231783C2 (en) Ultrasonic flaw detector
SU1056048A1 (en) Ultrasonic mirror mask flaw detection method
JP4500390B2 (en) Inspection object wound determination method and inspection object damage determination apparatus
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet
RU37832U1 (en) MEANS FOR ULTRASONIC DEFECTOSCOPY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term