Nothing Special   »   [go: up one dir, main page]

JP2001230464A - Substrate-integrated piezoelectric element and thin-film magnetic head using the same - Google Patents

Substrate-integrated piezoelectric element and thin-film magnetic head using the same

Info

Publication number
JP2001230464A
JP2001230464A JP2000040848A JP2000040848A JP2001230464A JP 2001230464 A JP2001230464 A JP 2001230464A JP 2000040848 A JP2000040848 A JP 2000040848A JP 2000040848 A JP2000040848 A JP 2000040848A JP 2001230464 A JP2001230464 A JP 2001230464A
Authority
JP
Japan
Prior art keywords
piezoelectric element
substrate
piezoelectric layer
head
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000040848A
Other languages
Japanese (ja)
Inventor
Toshihiko Watanabe
利彦 渡辺
Kazutaka Honma
一隆 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000040848A priority Critical patent/JP2001230464A/en
Publication of JP2001230464A publication Critical patent/JP2001230464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a piezoelectric element section integrally with a substrate to use the substrate-integrated piezoelectric element as a substrate to mount function elements or the like and also form the head body of a thin-film magnetic heads on the substrate- integrated piezoelectric element using a pretreatment, film formation, and lithography for pattern formation, which are now available, and know-how of these processes. SOLUTION: Lower electrodes 22 which are processed into a specified shape and size are disposed on the surface of an insulation substrate 20 and a piezoelectric layer 24 is formed on the lower electrodes 22. Conductor columns 26 for connection are formed upright continuously from the lower electrodes through the piezoelectric layer to be exposed on the surface and used as extraction terminals. Upper electrodes 28 are formed on the surface of the piezoelectric layer. For an alternative structure, the piezoelectric layer is embedded in a recessed section of the insulation substrate so that a space may be formed between the side wall of the recessed section and the piezoelectric layer, and the electrodes are formed on opposite side faces of the piezoelectric layer. By using the insulation substrate as a slider and forming the head body of a head on the piezoelectric element section, a thin-film magnetic head can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁基板と一体に
圧電素子部を形成した基板一体型の圧電素子、及びその
圧電素子部の上にヘッド本体を形成して変位制御あるい
は衝撃検出などを行うことができるようにした薄膜磁気
ヘッドに関するものである。本発明に係る基板一体型圧
電素子は、薄膜磁気ヘッドのヘッド本体に限らず、各種
のセンサ素子や機能素子を搭載するための基板としても
利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate-integrated piezoelectric element having a piezoelectric element formed integrally with an insulating substrate, and a head body formed on the piezoelectric element for displacement control or shock detection. The present invention relates to a thin-film magnetic head capable of performing such operations. The substrate-integrated piezoelectric element according to the present invention is not limited to the head body of the thin-film magnetic head, but can also be used as a substrate for mounting various sensor elements and functional elements.

【0002】[0002]

【従来の技術】薄膜磁気ヘッドの一般的な製造方法は、
滑空体となるスライダを基板として、その上に磁気セン
サ(磁気抵抗素子)や磁気コイル(電磁変換器)などを
薄膜生成技術とフォトフォトリソグラフィ技術によって
形成する方法である。図10に示すように、スライダと
なる基板10上に数千個の単位で磁気センサと磁気コイ
ル等からなるヘッド本体12を配列形成し、これをスラ
イスカッタ14で縦横に切断して1個1個の薄膜磁気ヘ
ッド16に加工している。ヘッド本体12は、薄膜層数
だけでも数十を数える複雑な工程を経て形成される。
2. Description of the Related Art A general method of manufacturing a thin film magnetic head is as follows.
In this method, a slider serving as a glider is used as a substrate, and a magnetic sensor (magnetic resistance element), a magnetic coil (electromagnetic converter), and the like are formed thereon by a thin-film generation technique and a photo-photolithography technique. As shown in FIG. 10, a head body 12 composed of a magnetic sensor, a magnetic coil, and the like is arrayed and formed in units of thousands on a substrate 10 serving as a slider. The thin film magnetic heads 16 are processed. The head main body 12 is formed through a complicated process in which the number of thin film layers is dozens.

【0003】上記のスライダは、記録媒体(磁気ディス
ク)の回転により作られる空気流を傾斜角で受け入れ、
それによってヘッド本体の部分では数十nm程度の微小
隙間で浮上する。従ってスライダの記録媒体対向面は、
高精度の研磨によって平滑化されている。また、動作中
に空気クッションの耐力を超える振動によって高速回転
している磁気記録媒体と接触することがあったとして
も、損傷が軽微で済むように、極めて硬度の高い材料
(代表例はアルミナチタンなどの焼結体)が用いられて
いる。
[0003] The above-mentioned slider receives an air flow generated by rotation of a recording medium (magnetic disk) at an inclined angle,
As a result, the head body floats at a minute gap of about several tens of nanometers. Therefore, the recording medium facing surface of the slider is
Smoothed by high precision polishing. In addition, even if a magnetic recording medium rotating at a high speed may come into contact with the air cushion during operation due to vibration exceeding the proof stress of the air cushion, an extremely hard material (typically, alumina titanium) is used so that damage is small. And the like).

【0004】基板上のヘッド本体の製造工程は、上述し
たように薄膜層数だけでも数十を数え、その各々は密着
のための前処理、膜生成、形態形成のフォトリソグラフ
ィの工程からなる。そのうちでも磁気センサ(磁気抵抗
素子)はデリケートな磁気抵抗効果材料であって、後工
程の熱処理の影響で劣化し易いものが多く、以降の工程
では高々300℃程度までの温度が許容されるのみであ
る。
As described above, the manufacturing process of the head main body on the substrate includes dozens of thin film layers alone, each of which comprises a pre-treatment for adhesion, a film formation, and a photolithography process for morphological formation. Among them, the magnetic sensor (magnetoresistive element) is a delicate magnetoresistive effect material, which is likely to be deteriorated by the influence of a heat treatment in a later process. It is.

【0005】ところで、従来、変位制御あるいは衝撃検
出などを行うために、薄膜磁気ヘッドに圧電素子を組み
込むことが提案されている。例えば、スライダとヘッド
本体の間に圧電素子を設ける構成がある。圧電素子に
は、通常、1000℃程度もしくはそれ以上の温度で焼
結するチタン酸ジルコン酸鉛系の圧電材料が用いられて
いる。そのため、別個に圧電素子を作製し、各圧電素子
をスライダに接着するなどの組立方法が採用されること
になる。
By the way, it has been conventionally proposed to incorporate a piezoelectric element into a thin-film magnetic head in order to perform displacement control or impact detection. For example, there is a configuration in which a piezoelectric element is provided between a slider and a head main body. For the piezoelectric element, a lead zirconate titanate-based piezoelectric material that is usually sintered at a temperature of about 1000 ° C. or higher is used. Therefore, an assembling method such as manufacturing a piezoelectric element separately and bonding each piezoelectric element to a slider is adopted.

【0006】[0006]

【発明が解決しようとする課題】スライダを基板として
ヘッド本体を多数個形成し、縦横に切断分離する従来の
一般的な薄膜磁気ヘッドの製造方法から見て、薄膜磁気
ヘッドに圧電素子を組み込む場合に、個々の圧電素子を
取り付ける構造は、量産性並びに品質の均一性などの点
で問題がある。また、接着剤などを用いて圧電体を貼り
付ける方法は、接着剤が介在することによって剛性ある
いは信頼性が低下し、圧電素子の特性を十分に発揮させ
得ないし、更には小形化には不向きである等の問題があ
る。
When a piezoelectric element is incorporated in a thin-film magnetic head in view of a conventional general thin-film magnetic head manufacturing method in which a plurality of head bodies are formed using a slider as a substrate and cut and separated vertically and horizontally. In addition, the structure for mounting the individual piezoelectric elements has problems in mass productivity and quality uniformity. In addition, the method of attaching the piezoelectric body using an adhesive or the like is not suitable for miniaturization because the rigidity or reliability is reduced due to the presence of the adhesive, and the characteristics of the piezoelectric element cannot be sufficiently exhibited. Problem.

【0007】基板上に直接圧電素子部を形成しようとす
ると、圧電材料の焼成温度(1000℃程度以上)とヘ
ッド本体の処理温度(300℃程度以下)とのミスマッ
チが生じる。また電極の引出し構造や電極の形成構造な
ど、解決しなければならない問題が多い。
If the piezoelectric element portion is to be formed directly on the substrate, a mismatch occurs between the firing temperature of the piezoelectric material (about 1000 ° C. or more) and the processing temperature of the head body (about 300 ° C. or less). In addition, there are many problems that need to be solved, such as an electrode lead-out structure and an electrode formation structure.

【0008】本発明の目的は、圧電素子部を基板と一体
的に形成することにより、圧電素子部の上にセンサ素子
や機能素子などを設けることができるように工夫した基
板一体型の圧電素子を提供することである。本発明の他
の目的は、基板一体型の圧電素子を用いることにより、
既存の前処理、膜生成、形態形成のリソグラフィの工程
やそのノウハウなどを活かしてヘッド本体を形成できる
薄膜磁気ヘッドを提供することである。
An object of the present invention is to provide a substrate-integrated piezoelectric element in which a sensor element and a functional element are provided on the piezoelectric element section by forming the piezoelectric element section integrally with the substrate. It is to provide. Another object of the present invention is to use a substrate-integrated piezoelectric element,
An object of the present invention is to provide a thin-film magnetic head capable of forming a head body by utilizing existing lithography processes for pretreatment, film generation, and morphology and its know-how.

【0009】[0009]

【課題を解決するための手段】本発明は、絶縁基板の表
面に形態加工を施した下部電極が位置し、その上に圧電
体層が形成され、該圧電体層を貫通するように下部電極
から連続して接続用導体柱が突設されて表面に露出して
引出し端子となり、圧電体層の表面の該接続用導体柱か
ら離れた位置に前記下部電極と対向して上部電極が設け
られている基板一体型圧電素子である。これによって下
部電極からの引出端子の形成が可能となるため、圧電体
層を厚み方向に分極することで、厚み変形する圧電素子
部を基板と一体的に構成することが可能となる。
SUMMARY OF THE INVENTION According to the present invention, a lower electrode is provided on a surface of an insulating substrate, and a lower electrode is formed on the lower electrode so as to penetrate the piezoelectric layer. A connection conductor pillar is continuously provided from the projection and is exposed to the surface to be a lead terminal, and an upper electrode is provided on the surface of the piezoelectric layer at a position away from the connection conductor pillar and opposed to the lower electrode. Substrate-integrated piezoelectric element. As a result, it is possible to form a lead terminal from the lower electrode. Therefore, by polarizing the piezoelectric layer in the thickness direction, it is possible to integrally form the piezoelectric element portion that is deformed in thickness with the substrate.

【0010】また本発明は、絶縁基板の表面に凹部が形
成され、該凹部に凹部側壁との間で隙間ができるように
圧電体層が埋設され底面で結合していて、該圧電体層は
厚み方向に分極されており、圧電体層の相対向する側面
の凹部側壁との隙間に一対の電極が設けられている基板
一体型圧電素子である。これによって剪断変形する圧電
素子部を基板と一体的に構成することが可能となる。
According to the present invention, a concave portion is formed on a surface of an insulating substrate, a piezoelectric layer is buried in the concave portion so as to form a gap between the concave portion and a side wall of the concave portion, and is connected at a bottom surface. The piezoelectric element is a substrate-integrated piezoelectric element that is polarized in the thickness direction and has a pair of electrodes provided in a gap between the opposing side surfaces of the piezoelectric layer and the concave side walls. This makes it possible to integrally form the piezoelectric element portion that undergoes shear deformation with the substrate.

【0011】更に本発明は、上記のような基板一体型圧
電素子を用いる薄膜磁気ヘッドである。絶縁基板がスラ
イダを構成していて、圧電素子部の表面にヘッド本体が
形成されている。圧電体層の表面に上部電極を設ける場
合には、ヘッド本体の下地側の金属薄膜が圧電素子部の
上部電極を兼ねるようにするのが好ましい。
Further, the present invention is a thin film magnetic head using the above-described substrate-integrated piezoelectric element. The insulating substrate constitutes a slider, and a head body is formed on the surface of the piezoelectric element. When an upper electrode is provided on the surface of the piezoelectric layer, it is preferable that the metal thin film on the base side of the head body also serves as the upper electrode of the piezoelectric element.

【0012】薄膜磁気ヘッドとしては、圧電素子部への
電圧制御によるヘッド本体の変位方向を、スライダの記
録媒体対向面に垂直な方向に設定し、ヘッド本体のセン
サ部と記録媒体との空隙距離を制御可能とする構成があ
る。また、圧電素子部への電圧制御によるヘッド本体の
変位方向を、記録トラック幅方向に設定し、ヘッド本体
のスライダに対する記録トラック幅方向の変位を制御可
能とする構成もある。あるいは、圧電素子部のセンサ機
能を使用し、記録媒体との接触の有無を検出可能とする
構成もある。
In a thin-film magnetic head, the direction of displacement of the head body by voltage control on the piezoelectric element is set to a direction perpendicular to the surface of the slider facing the recording medium, and the gap distance between the sensor section of the head body and the recording medium is set. Is controllable. There is also a configuration in which the displacement direction of the head main body by voltage control on the piezoelectric element portion is set in the recording track width direction, and the displacement of the head main body with respect to the slider in the recording track width direction can be controlled. Alternatively, there is also a configuration in which the presence or absence of contact with the recording medium can be detected by using the sensor function of the piezoelectric element unit.

【0013】[0013]

【実施例】図1は本発明に係る基板一体型圧電素子の一
実施例を示す説明図である。この基板一体型圧電素子
は、ヘッド本体を搭載して薄膜磁気ヘッドとするのに好
適なものである。絶縁基板20の表面に形態加工を施し
た下部電極22が位置し、その上に圧電体層24が形成
され、該圧電体層24を貫通するように下部電極22か
ら連続して接続用導体柱26が突設され上端面が露出し
て引出し端子となり、圧電体層24の表面の該接続用導
体柱26から離れた位置に前記下部電極22と対向して
上部電極28が設けられている構造であり、圧電体層2
4は厚み方向に分極されている。ここでは圧電体層24
を基板20の全面に設けている。
FIG. 1 is an explanatory view showing one embodiment of a substrate-integrated piezoelectric element according to the present invention. This substrate-integrated piezoelectric element is suitable for mounting a head body to form a thin-film magnetic head. A lower electrode 22 is formed on the surface of the insulating substrate 20, and a piezoelectric layer 24 is formed on the lower electrode 22. A connecting conductor column is formed continuously from the lower electrode 22 so as to penetrate the piezoelectric layer 24. A structure in which an upper electrode is provided facing the lower electrode 22 at a position on the surface of the piezoelectric layer 24 distant from the connection conductor pillar 26, and the upper end surface is exposed to serve as a lead terminal. And the piezoelectric layer 2
4 is polarized in the thickness direction. Here, the piezoelectric layer 24
Is provided on the entire surface of the substrate 20.

【0014】スライダとなる絶縁基板(例えば、アルミ
ナチタンなどの焼結体)20の表面に、多数の下部電極
22をフォトリソグラフィ技術により形態加工して縦横
に規則的に配列形成する。図2に拡大して示すように、
各下部電極22に接続されるように接続用導体柱(接続
用のビア)26を形成する。接続用導体柱26の高さ
は、最終的な圧電体層24の厚み(破線で示す位置)以
上とする必要がある。ここでは、下部電極が圧電体層に
対して動作活性領域を定義している。これらの電極材料
の上に全面に圧電体層24を成膜する。そして加熱処理
を施し、圧電体層24を焼結させる。その後、圧電体層
24の表面を破線の位置まで全面研磨して接続用導体柱
26の上端面を露出させる。更に、圧電体層24の表面
の接続用導体柱露出面から離れた位置に前記下部電極と
対向してそれぞれ上部電極28を設ける。圧電体層24
には、その厚み方向に分極処理を施す。
A number of lower electrodes 22 are formed on a surface of an insulating substrate (for example, a sintered body of alumina titanium or the like) 20 serving as a slider by photolithography to form a regular array in a matrix. As shown enlarged in FIG.
A connection conductor pillar (connection via) 26 is formed so as to be connected to each lower electrode 22. The height of the connecting conductor pillar 26 must be equal to or greater than the final thickness of the piezoelectric layer 24 (the position indicated by the broken line). Here, the lower electrode defines an active region for the piezoelectric layer. The piezoelectric layer 24 is formed on the entire surface of these electrode materials. Then, a heat treatment is performed to sinter the piezoelectric layer 24. After that, the entire surface of the piezoelectric layer 24 is polished to the position indicated by the broken line to expose the upper end surface of the connecting conductor pillar 26. Further, an upper electrode 28 is provided on the surface of the piezoelectric layer 24 at a position distant from the exposed surface of the connecting conductor pillar, facing the lower electrode. Piezoelectric layer 24
Is subjected to a polarization treatment in the thickness direction.

【0015】下部電極22はジグザグ形状をなし、その
一端部に接続用導体柱26が位置する。上部電極28は
下部電極22に対して鏡面対称的な形状で、大部分の面
積が重なるような位置関係で設けられている。接続用導
体柱26の露出面と上部電極28の一端部が圧電素子部
の引出し端子となる。このように接続用導体柱26を形
成することによって、基板との一体構造でありながら、
圧電体層24に電界を与えるための下部電極22との接
続が可能となる。
The lower electrode 22 has a zigzag shape, and the connecting conductor 26 is located at one end thereof. The upper electrode 28 has a mirror-symmetrical shape with respect to the lower electrode 22, and is provided in a positional relationship such that most of the areas overlap. The exposed surface of the connecting conductor post 26 and one end of the upper electrode 28 serve as a lead terminal of the piezoelectric element portion. By forming the connecting conductor pillars 26 in this manner, while having an integral structure with the substrate,
Connection with the lower electrode 22 for applying an electric field to the piezoelectric layer 24 becomes possible.

【0016】圧電体層は、例えば圧電材料と有機バイン
ダとを混合して均一性を維持し、スクリーン印刷などに
よる塗布あるいはブレード掻き取りによって厚みを制御
して形成し、1000℃を超える所定の温度で焼成する
ことで設ける。この焼成工程では収縮が生じるので、基
板全面に圧電体層を形成すると全体に反りが生じる恐れ
がある。そのため、個々の圧電素子部に対応したパター
ンで圧電体層を形成するか、あるいは溝加工を施し、当
初から圧電素子部を分割しておけば、収縮応力は緩和さ
れ、反りやクラックなどを防止できる。形成した溝には
別の材料を埋め込んでもよい。圧電材料は、特に限定さ
れるものではなく、後の工程を考慮して選定されるが、
一般的なチタン酸ジルコン酸鉛系など任意のものを使用
できる。この圧電体層の厚みは、例えば1〜7μm程度
でよい。厚みを減じることで、低電圧駆動でも必要な電
界強度を確保できる。
The piezoelectric layer is formed, for example, by mixing a piezoelectric material and an organic binder to maintain uniformity, controlling the thickness by coating by screen printing or scraping off a blade, and forming the layer at a predetermined temperature exceeding 1000 ° C. It is provided by firing. Since shrinkage occurs in this firing step, there is a possibility that the entire body may be warped if the piezoelectric layer is formed on the entire surface of the substrate. Therefore, if the piezoelectric layer is formed in a pattern corresponding to each piezoelectric element part, or if a groove is formed and the piezoelectric element part is divided from the beginning, the contraction stress is relaxed and warpage and cracks are prevented. it can. Another material may be embedded in the formed groove. The piezoelectric material is not particularly limited and is selected in consideration of a later process.
Any material such as a general lead zirconate titanate can be used. The thickness of the piezoelectric layer may be, for example, about 1 to 7 μm. By reducing the thickness, the required electric field strength can be secured even at low voltage driving.

【0017】電極材料は、圧電体層の焼成温度に耐える
ことができるものを選択する。例えば、白金族金属ある
いはその合金などを用いることができる。形態加工した
電極は、例えば導体ペーストをスクリーン印刷する方法
でよい。
As the electrode material, a material that can withstand the firing temperature of the piezoelectric layer is selected. For example, a platinum group metal or an alloy thereof can be used. The shape-processed electrode may be, for example, a method of screen-printing a conductive paste.

【0018】薄膜磁気ヘッドを製造する場合には、この
基板一体型圧電素子を磁気膜などの成膜工程に渡してヘ
ッド本体を形成する。従って圧電素子部はヘッド本体を
形成する前に高温度での焼結処理がなされ、必要な分極
処理も施されている。ところで圧電体は、所謂キュリー
温度までは圧電特性を維持するが、その温度を超えると
圧電分極が消滅する。圧電体のキュリー温度は、130
℃〜350℃程度まで材料によって様々であるから、そ
の後の磁気膜などの成膜工程での処理温度を考慮して材
料の選択を行うことになる。
When manufacturing a thin-film magnetic head, this substrate-integrated piezoelectric element is passed through a film-forming process of a magnetic film or the like to form a head body. Therefore, the piezoelectric element portion is subjected to a sintering process at a high temperature before forming the head main body, and is also subjected to a necessary polarization process. By the way, the piezoelectric body maintains the piezoelectric characteristics up to the so-called Curie temperature, but when the temperature is exceeded, the piezoelectric polarization disappears. The Curie temperature of the piezoelectric body is 130
Since the material varies from about ° C to about 350 ° C depending on the material, the material is selected in consideration of the processing temperature in the subsequent film forming process such as a magnetic film.

【0019】このようにして必要な処理を行った圧電素
子部は表面が平滑であるため、それを基板とすることに
より、既存のヘッド本体の製造工程の制約事項を変える
ことなく、それぞれ圧電素子部を組み込んだ薄膜磁気ヘ
ッドが製造できる。即ち、多数のヘッド本体を各圧電素
子部に対応する位置に配列形成した後に、従来同様、ス
ライスカッタで個々に切断分離し、スライダの滑空面を
研磨することで、薄膜磁気ヘッドが得られる。
Since the surface of the piezoelectric element portion which has been subjected to the necessary processing in this manner is smooth, it can be used as a substrate without changing the restrictions in the manufacturing process of the existing head main body. A thin film magnetic head incorporating a part can be manufactured. That is, a thin film magnetic head is obtained by arranging and forming a large number of head bodies at positions corresponding to the respective piezoelectric element portions, and then cutting and separating the head bodies individually with a slice cutter and polishing the gliding surface of the slider as in the related art.

【0020】得られた薄膜磁気ヘッドを図3に示す。ス
ライダ30と圧電素子部32が一体化され、該圧電素子
部32の上にヘッド本体(磁気センサと磁気変換器部な
ど)34が設けられている。この構造の薄膜磁気ヘッド
は、特に、圧電素子部のセンサ機能を使用することで、
記録媒体との接触の有無を検出するのに有効である。ま
た圧電素子部32は、電圧を印加すると厚み方向に変位
するから、スライダの記録媒体に対する傾斜角を利用す
ると、ヘッド本体と記録媒体との空隙調整にも応用可能
である。但し、厚み変形を利用する場合、変位が極めて
小さいので、別に変位拡大機構を付設する必要がある。
FIG. 3 shows the obtained thin film magnetic head. The slider 30 and the piezoelectric element part 32 are integrated, and a head body (magnetic sensor and magnetic transducer part) 34 is provided on the piezoelectric element part 32. The thin-film magnetic head with this structure uses the sensor function of the piezoelectric element,
This is effective for detecting the presence or absence of contact with the recording medium. Further, the piezoelectric element portion 32 is displaced in the thickness direction when a voltage is applied. Therefore, if the inclination angle of the slider with respect to the recording medium is used, it can be applied to the adjustment of the gap between the head main body and the recording medium. However, when utilizing the thickness deformation, the displacement is extremely small, so a separate displacement enlarging mechanism must be additionally provided.

【0021】ところで、圧電素子部のすぐ上の膜となる
ヘッド本体の磁性体は、磁気回路の下地部として全面を
覆う膜として形成される例がある。磁気回路としての有
効部は、形態加工した上部の磁性体であり、信号に応じ
て変化する磁束を必要最小限に抑えて高速な変化を可能
とする。磁性体(多くの場合は、ニッケル鉄系合金)形
成に先立って、下地部はメッキ電極となる金属電極が広
い面積を覆うので、これを圧電体層の上部電極として共
用すると経済的である。
In some cases, the magnetic body of the head main body, which is a film immediately above the piezoelectric element portion, is formed as a film covering the entire surface as a base portion of a magnetic circuit. The effective portion as the magnetic circuit is a magnetic material on the upper portion that has been processed, and enables a high-speed change by minimizing a magnetic flux that changes in accordance with a signal to a necessary minimum. Prior to the formation of the magnetic material (in many cases, a nickel-iron-based alloy), a metal electrode serving as a plating electrode covers a large area of the base, and it is economical to use this as the upper electrode of the piezoelectric layer.

【0022】周知のように、圧電体の変形モードとして
は上記厚み変形の他に剪断変形がある。両者を対比する
と剪断変形の方が変形量は大きい。変形は基板の剛性に
支えられるので高剛性を維持できる。このようなことか
ら、剪断型の採用が望ましい例は多々ある。
As is well known, as a deformation mode of the piezoelectric body, there is a shear deformation in addition to the above-described thickness deformation. In contrast, the shear deformation has a larger deformation amount. Since the deformation is supported by the rigidity of the substrate, high rigidity can be maintained. For these reasons, there are many cases where it is desirable to employ a shearing type.

【0023】図4は本発明に係る基板一体型圧電素子の
他の実施例を示す断面図であり、剪断変形を生じるタイ
プである。絶縁基板40の表面に凹部41が形成され、
該凹部41に凹部側壁との間で隙間ができるように圧電
体層42が埋設されていて、該圧電体層42は厚み方向
に分極されており、圧電体層42の相対向する側面の凹
部側壁との隙間に一対の電極44が設けられている。
FIG. 4 is a cross-sectional view showing another embodiment of the substrate-integrated piezoelectric element according to the present invention, which is of a type in which shear deformation occurs. A concave portion 41 is formed on the surface of the insulating substrate 40,
A piezoelectric layer 42 is buried in the concave portion 41 so as to form a gap between the concave portion 41 and the side wall of the concave portion, and the piezoelectric layer 42 is polarized in the thickness direction. A pair of electrodes 44 is provided in a gap between the side walls.

【0024】この圧電素子の製造工程を図5に示す。基
板40上に凹部41を形成する。凹部41は、機械加工
による溝構造でよい。薄膜磁気ヘッドの場合には、基板
40はスライダを構成する材料からなる。凹部41を形
成した基板40を覆うようにレジストフィルムなどの被
膜45を貼り付け、加熱軟化させて凹部に垂れ込ませる
(A工程参照)。ここで被膜45には、後に形成する圧
電体層との接合力が弱く剥離し易い材料を用いて、収縮
して基板との間に隙間が空くか、応力が緩和されるよう
にする。基板40の凹部底面と圧電体層とは強固に接合
させなければならないので、基板40に対して垂直方向
にイオンを照射するイオンエッチング等により被膜45
を破断して底面を露出させ、側壁部分のみを残して除去
する(B工程参照)。
FIG. 5 shows a manufacturing process of this piezoelectric element. The recess 41 is formed on the substrate 40. The recess 41 may have a groove structure formed by machining. In the case of a thin film magnetic head, the substrate 40 is made of a material constituting a slider. A coating 45 such as a resist film is attached so as to cover the substrate 40 on which the concave portion 41 is formed, and is softened by heating to be dripped into the concave portion (Step A). Here, the film 45 is made of a material which has a weak bonding force with a piezoelectric layer to be formed later and is easily peeled, so that the film is contracted so that a gap is formed between the film and the substrate or the stress is relaxed. Since the bottom surface of the concave portion of the substrate 40 and the piezoelectric layer must be firmly joined to each other, the coating 45 is formed by ion etching or the like in which the substrate 40 is irradiated with ions in a vertical direction.
Are removed to expose the bottom surface and remove only the side wall portions (see step B).

【0025】次に圧電材料と有機バインダを混練した圧
電ペースト46を、スキージ47で凹部41に埋め込
み、表面の余分な圧電ペーストはそぎ落とす(C工程参
照)。この状態で所定温度で焼成すると、圧電体層42
となり、収縮するとともに被膜は除去されるため、凹部
側面では隙間が生じ、底部では基板に対して強固に結合
する(D工程参照)。つまり、圧電体層42は、基板結
合部(凹部の底部)を除き自由表面となるため、そこで
一旦応力は解放される。隙間の部分を残すようにレジス
トパターン48を形成し(E工程参照)、無電解メッキ
を施すことにより前記隙間に金属49を侵入させる(F
工程参照)。無電解メッキは、前処理条件を適切に設定
すれば、圧電体層の表面をエッチングして粒界を選択的
に侵し、粒界を網目のようにメッキが埋めて強固に接合
させることができる。レジストを除去すればレジスト上
のメッキもリフトオフにより除去され、電極44が形成
される(G工程参照)。
Next, a piezoelectric paste 46 obtained by kneading a piezoelectric material and an organic binder is embedded in the concave portion 41 with a squeegee 47, and excess piezoelectric paste on the surface is scraped off (see step C). When firing is performed at a predetermined temperature in this state, the piezoelectric layer 42
Since the film shrinks and the coating is removed, a gap is formed on the side surface of the concave portion, and the bottom is firmly bonded to the substrate (see step D). That is, since the piezoelectric layer 42 has a free surface except for the substrate coupling portion (the bottom of the concave portion), the stress is temporarily released there. A resist pattern 48 is formed so as to leave a gap portion (see step E), and a metal 49 is caused to enter the gap by performing electroless plating (F).
Process). In the electroless plating, if the pretreatment conditions are appropriately set, the surface of the piezoelectric layer is etched to selectively invade the grain boundaries, and the grain boundaries can be filled with plating like a mesh and firmly joined. . If the resist is removed, the plating on the resist is also removed by lift-off, and the electrode 44 is formed (see step G).

【0026】圧電体層42には厚み方向に分極処理を施
す。分極処理は、G工程終了後でもよいが、D工程終了
後がよい。一対の電極44の間に駆動電圧を印加する
と、圧電体層42は剪断変形し、表面に平行に変位す
る。
The piezoelectric layer 42 is polarized in the thickness direction. The polarization treatment may be performed after the completion of the G step, but is preferably performed after the completion of the D step. When a drive voltage is applied between the pair of electrodes 44, the piezoelectric layer 42 is sheared and displaced in parallel with the surface.

【0027】使用する圧電材料や形成する圧電体層の厚
みは、前記実施例の場合と同様であってよい。凹部の底
面は、圧電体層との結合力を向上させるために、粗面と
してアンカー効果を持たせるようにしてもよい。凹部の
側面は、圧電体層との付着力を低減する処理をしておけ
ば、必ずしも上記のような方法で被膜を残しておかなく
てもよく、焼成時の収縮のみを利用して隙間を形成する
ことも可能である。電極は、圧電材料の焼成後に付着さ
せることから、ニッケルなどを用いることができる。
The thickness of the piezoelectric material to be used and the thickness of the piezoelectric layer to be formed may be the same as those in the above embodiment. The bottom surface of the concave portion may have an anchor effect as a rough surface in order to improve the bonding force with the piezoelectric layer. If the side surface of the concave portion is treated to reduce the adhesive force with the piezoelectric layer, it is not always necessary to leave the film by the above method, and the gap is formed only by shrinking during firing. It is also possible to form. Since the electrodes are attached after firing the piezoelectric material, nickel or the like can be used.

【0028】薄膜磁気ヘッドの場合には、この圧電素子
部の上にヘッド本体を形成する。ヘッド本体の形成方法
は、従来同様でよい。その一例を図6に示す。スライダ
50の左右両側(記録トラック幅方向の両側)に圧電素
子部52の電極44が位置するようにし、引出し端子4
4aを設ける。ヘッド本体54は圧電素子部52上に形
成する。両方の電極間に電圧を印加すると、圧電素子部
52は水平方向(矢印s方向)に剪断変形する。圧電体
層の裏面側は基板側(スライダ)に強固に固定されてい
るため、圧電体層の表面側(従ってヘッド本体)が水平
方向に変位することになる。
In the case of a thin-film magnetic head, a head body is formed on the piezoelectric element. The method of forming the head body may be the same as the conventional method. An example is shown in FIG. The electrodes 44 of the piezoelectric element section 52 are positioned on both left and right sides (both sides in the recording track width direction) of the slider 50,
4a is provided. The head main body 54 is formed on the piezoelectric element section 52. When a voltage is applied between both electrodes, the piezoelectric element portion 52 is sheared in the horizontal direction (the direction of the arrow s). Since the back side of the piezoelectric layer is firmly fixed to the substrate side (slider), the front side of the piezoelectric layer (accordingly, the head body) is displaced in the horizontal direction.

【0029】これによって、圧電素子部52への電圧制
御によるヘッド本体54の変位方向が記録トラック幅方
向に設定され、ヘッド本体54のスライダ50に対する
記録トラック幅方向の変位が制御可能となる。磁気ディ
スク装置では、複数の薄膜磁気ヘッドを一括して駆動す
るヘッド位置制御が行われるが、ディスク半径方向の高
密度化に伴い誤差を吸収しきれず、各薄膜磁気ヘッド自
体の読み出し信号から各々の正確な半径方向位置を求め
てフィードバック制御することが必要になってきてい
る。本実施例の構成は、各薄膜磁気ヘッドを記録トラッ
ク幅方向に変位できるので、このような制御に有用であ
る。
As a result, the displacement direction of the head body 54 by the voltage control of the piezoelectric element 52 is set in the recording track width direction, and the displacement of the head body 54 with respect to the slider 50 in the recording track width direction can be controlled. In a magnetic disk drive, head position control for driving a plurality of thin-film magnetic heads collectively is performed. However, errors cannot be completely absorbed with the increase in density in the disk radial direction, and each thin-film magnetic head reads its own signal from its own read signal. It has become necessary to perform feedback control in order to obtain an accurate radial position. The configuration of this embodiment is useful for such control because each thin-film magnetic head can be displaced in the recording track width direction.

【0030】次に、ヘッド本体を上下に変位させる構成
について説明する。その場合の薄膜磁気ヘッドの一例を
図7に示す。スライダ60に圧電素子部62を一体的に
形成するが、圧電素子部62は、その両電極がスライダ
の上下両側(記録媒体面に対して垂直方向の両側)に位
置するように形成する。ヘッド本体64は圧電素子部6
2の上に形成する。両方の電極間に駆動電圧を印加する
と、圧電素子部62は上下方向(矢印s方向)に剪断変
形する。圧電体層の裏面は基板側(スライダ)に強固に
固定されているため、圧電体層の表面側(従ってヘッド
本体)が上下方向に変位することになる。
Next, a configuration for vertically displacing the head body will be described. FIG. 7 shows an example of the thin film magnetic head in that case. The piezoelectric element portion 62 is formed integrally with the slider 60, and the piezoelectric element portion 62 is formed such that both electrodes thereof are located on the upper and lower sides of the slider (both sides perpendicular to the recording medium surface). The head body 64 includes the piezoelectric element section 6.
2 is formed. When a drive voltage is applied between both electrodes, the piezoelectric element portion 62 is sheared vertically (in the direction of arrow s). Since the back surface of the piezoelectric layer is firmly fixed to the substrate side (slider), the front side of the piezoelectric layer (accordingly, the head body) is vertically displaced.

【0031】これによって、圧電素子部への電圧制御に
よるヘッド本体の変位方向が、スライダの記録媒体対向
面に対して垂直な方向に設定され、ヘッド本体のセンサ
部と記録媒体との空隙距離が制御可能となる。スライダ
は空気流の圧力で浮上し、空隙を一定に保つが、上記の
構成でヘッド本体を僅かに上下させることで、より記録
媒体に接近させることができるし、読み出し信号振幅の
監視により適切な距離を保つように制御することも可能
となる。
Thus, the direction of displacement of the head body by voltage control on the piezoelectric element portion is set to a direction perpendicular to the surface of the slider facing the recording medium, and the gap distance between the sensor portion of the head body and the recording medium is reduced. Control becomes possible. The slider flies under the pressure of the air flow and keeps the air gap constant.However, by slightly raising and lowering the head body in the above configuration, the slider can be made closer to the recording medium, and more appropriate for monitoring the read signal amplitude. It is also possible to control to keep the distance.

【0032】例えば、圧電体層の厚み4μm、電圧4
V、剪断変形の圧電定数d15=700pm/Vであれ
ば、ヘッド本体は2.8nmだけ記録媒体に近づく。こ
れは厚み変形に比し2桁大きく、また応答の速さが劣る
こともない。薄膜磁気ヘッドにおけるスライダの浮上量
は数十nmであるから、剪断変形による上記ヘッド本体
の変位量は十分有効である。この剪断変形でも平面方向
に圧電体は変形するが、その変化量は少なく、ヘッド本
体(磁性膜)の部分に加わる歪みも少なく、磁歪に敏感
な材料との組み合わせに適している。
For example, the piezoelectric layer has a thickness of 4 μm and a voltage of 4 μm.
V, if the piezoelectric constant d 15 of shear deformation = 700 pm / V, the head body approaches the recording medium by 2.8 nm. This is two orders of magnitude larger than the thickness deformation, and the response speed is not inferior. Since the flying height of the slider in the thin-film magnetic head is several tens of nm, the displacement of the head body due to shear deformation is sufficiently effective. Although the piezoelectric body is deformed in the plane direction even by this shearing deformation, the amount of the change is small, the distortion applied to the head body (magnetic film) is small, and it is suitable for combination with a material sensitive to magnetostriction.

【0033】使用状態の一例を図8に示す。記録媒体7
0は、ディスク基板72上に磁気記録膜73を形成し、
その上に媒体保護膜74を設けた構成である。薄膜磁気
ヘッド76は、前記図7に示すのと同様であってよいの
で、記載を簡略化するため対応する部材には同一符号を
付す。スライダ60によって浮上して記録媒体70との
空隙を一定に保つだけでなく、圧電素子部62によって
ヘッド本体64を僅かに上下させ、より記録媒体70に
近接させたり、あるいは記録媒体70の僅かな凹凸に合
わせて能動的に空隙制御ができる。つまり、薄膜磁気ヘ
ッド76と記録媒体70との衝突を防止しつつ、ヘッド
本体64からの読み出し信号振幅などに応じて最適空隙
に位置制御可能となる。この構成は、スライダとヘッド
本体の間がバルクの圧電体層を介して結合されているだ
けであるため剛性の確保にも問題がない。また、剪断変
形であるため、剪断面を拘束しても剪断面には力が作用
し難くスライダやヘッド本体に悪影響を与える恐れはな
い。
FIG. 8 shows an example of the state of use. Recording medium 7
0 forms a magnetic recording film 73 on the disk substrate 72;
In this configuration, a medium protection film 74 is provided thereon. Since the thin-film magnetic head 76 may be the same as that shown in FIG. 7, corresponding members are denoted by the same reference numerals for simplification of description. In addition to keeping the air gap with the recording medium 70 constant by floating with the slider 60, the head main body 64 is slightly moved up and down by the piezoelectric element portion 62 so as to be closer to the recording medium 70 or slightly. The gap can be actively controlled according to the irregularities. That is, it is possible to control the position to the optimum gap according to the amplitude of the read signal from the head main body 64 while preventing the collision between the thin-film magnetic head 76 and the recording medium 70. In this configuration, since the slider and the head main body are merely coupled via the bulk piezoelectric layer, there is no problem in securing rigidity. Further, since the shearing deformation occurs, even if the shearing surface is constrained, a force hardly acts on the shearing surface, and there is no possibility that the slider or the head body is adversely affected.

【0034】図9は、本発明に係る薄膜磁気ヘッドを用
いた空隙制御回路の一例を示している。ここでは圧電素
子部80を、媒体接触検知素子及び位置調整素子として
利用している。圧電素子部80の端子電圧をバンドパス
フィルタに通し、接触信号を検出する。その時の媒体番
地は、ヘッド本体の磁気センサ(磁気抵抗素子)の信号
をセンスアンプで増幅して検知され、媒体番地管理がな
される。動作中、所定の媒体番地において、圧電駆動部
により圧電素子部80の剪断変形量を調整し、ヘッド本
体(磁気センサ)の浮上量を制御する。
FIG. 9 shows an example of the air gap control circuit using the thin film magnetic head according to the present invention. Here, the piezoelectric element unit 80 is used as a medium contact detection element and a position adjustment element. The terminal voltage of the piezoelectric element section 80 is passed through a band-pass filter to detect a contact signal. The medium address at that time is detected by amplifying a signal of a magnetic sensor (magnetic resistance element) of the head body by a sense amplifier, and the medium address is managed. During operation, at a predetermined medium address, the amount of shear deformation of the piezoelectric element unit 80 is adjusted by the piezoelectric driving unit, and the flying height of the head body (magnetic sensor) is controlled.

【0035】圧電素子部80の発生電圧をモニタする
と、接触による音響波形は独特の特徴を有するので、こ
れをバンドパスフィルタで分離し弁別することにより、
接触の有無を検知できる。磁気ディスク装置では記録面
の位置は全て管理されており、異常部分についてはリト
ライと称して再度記録再生を試み、再生が不可能であれ
ば、その番地の記録部分を別の位置に移すことも行われ
ている。こうした管理の下では、異常あるいは信号振幅
の不足する部分について、上記のようにしてその番地の
み浮上を低く制御して、他の正常部分と区別し、どこま
で接触しないで済むかを判断することも可能であって、
記録媒体の番地管理と併せて接触させない範囲で近接距
離を制御することが可能となる。
When the voltage generated by the piezoelectric element section 80 is monitored, the acoustic waveform due to the contact has a unique feature, and is separated and discriminated by a band-pass filter.
The presence or absence of contact can be detected. In the magnetic disk device, the position of the recording surface is all managed, and the abnormal part is called retry and the recording and reproduction is tried again.If the reproduction is not possible, the recording part of the address can be moved to another position. Is being done. Under such control, it is also possible to control the levitation of only the address low for abnormal or insufficient signal amplitude as described above, distinguish it from other normal parts, and judge how far contact can be avoided. Is possible,
In addition to the address management of the recording medium, the proximity distance can be controlled within a range where the contact is not performed.

【0036】[0036]

【発明の効果】本発明は上記のように、圧電素子部を基
板と一体的に形成した基板一体型の圧電素子であるの
で、薄く且つ剛性が高く、その上に多数個取りによる量
産方式でセンサ素子や機能素子など(例えばヘッド本体
など)を設けることができ、部品の小型化を阻害しな
い。厚み変形の圧電素子部を構成する場合でも、接続用
導体柱を設けることで下部電極からの引出しが可能とな
るため、基板一体型が実現できる。また剪断変形の圧電
素子部を構成する場合でも、電極を工夫しているために
基板一体型が実現できる。圧電体層が薄いが、片面が基
板で裏打ちされた状態であるので、十分な機械的強度を
維持でき、応用範囲も広い。
As described above, the present invention is a substrate-integrated type piezoelectric element in which the piezoelectric element portion is formed integrally with the substrate, so that it is thin and has high rigidity, and can be mass-produced by taking many pieces on it. A sensor element, a functional element, and the like (for example, a head body) can be provided, and the miniaturization of components is not hindered. Even in the case of forming the piezoelectric element portion having a thickness deformation, since the connection conductor pillar is provided, it is possible to draw out from the lower electrode, so that a substrate integrated type can be realized. Further, even when a shearing deformation piezoelectric element portion is formed, an integrated substrate can be realized because the electrodes are devised. Although the piezoelectric layer is thin, one side is backed by a substrate, so that sufficient mechanical strength can be maintained and the application range is wide.

【0037】このような基板一体型圧電素子を用いるこ
とにより、既存の前処理、膜生成、形態形成のリソグラ
フィの工程やそのノウハウなどを活かしてヘッド本体を
形成でき、そのため薄膜磁気ヘッドを従来同様に効率よ
く製造できる。そして、この薄膜磁気ヘッドは圧電素子
部が組み込まれているために、トラック幅方向の変位制
御や空隙調整、あるいは衝撃検出など、必要な機能の付
加が可能となる。
By using such a substrate-integrated piezoelectric element, the head body can be formed utilizing the existing lithography process of pretreatment, film formation and morphology and its know-how. Can be manufactured efficiently. Since the thin-film magnetic head incorporates a piezoelectric element, necessary functions such as displacement control in the track width direction, air gap adjustment, and impact detection can be added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る基板一体型圧電素子の一実施例を
示す説明図。
FIG. 1 is an explanatory view showing one embodiment of a substrate-integrated piezoelectric element according to the present invention.

【図2】その製造途中の状態を示す拡大断面図。FIG. 2 is an enlarged cross-sectional view showing a state during the manufacturing.

【図3】本発明に係る薄膜磁気ヘッドの一例を示す縦断
面図。
FIG. 3 is a longitudinal sectional view showing an example of the thin-film magnetic head according to the present invention.

【図4】本発明に係る基板一体型圧電素子の他の実施例
を示す断面図。
FIG. 4 is a sectional view showing another embodiment of the substrate-integrated piezoelectric element according to the present invention.

【図5】その製造工程の一例を示す説明図。FIG. 5 is an explanatory view showing an example of the manufacturing process.

【図6】本発明に係る薄膜磁気ヘッドの他の例を示す説
明図。
FIG. 6 is an explanatory view showing another example of the thin-film magnetic head according to the present invention.

【図7】本発明に係る薄膜磁気ヘッドの更に他の例を示
す拡大断面図。
FIG. 7 is an enlarged sectional view showing still another example of the thin-film magnetic head according to the present invention.

【図8】その動作状態を示す説明図。FIG. 8 is an explanatory diagram showing the operation state.

【図9】薄膜磁気ヘッドの空隙調整制御回路の説明図。FIG. 9 is an explanatory diagram of a gap adjustment control circuit of the thin-film magnetic head.

【図10】薄膜磁気ヘッドの製造方法の説明図。FIG. 10 is an explanatory diagram of the method for manufacturing the thin-film magnetic head.

【符号の説明】[Explanation of symbols]

20 絶縁基板 22 下部電極 24 圧電体層 26 接続用導体柱 28 上部電極 Reference Signs List 20 Insulating substrate 22 Lower electrode 24 Piezoelectric layer 26 Connecting conductor pillar 28 Upper electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板の表面に形態加工を施した下部
電極が位置し、その上に圧電体層が形成され、該圧電体
層を貫通するように下部電極から連続して接続用導体柱
が突設されて表面に露出して引出し端子となり、圧電体
層の表面の該接続用導体柱から離れた位置に前記下部電
極と対向して上部電極が設けられていることを特徴とす
る基板一体型圧電素子。
1. A lower electrode having a shape processed on a surface of an insulating substrate, a piezoelectric layer is formed on the lower electrode, and a connecting conductor column is continuously formed from the lower electrode so as to penetrate the piezoelectric layer. A substrate which is provided on the surface of the piezoelectric layer so as to be exposed from the surface of the piezoelectric layer, and is provided with a top electrode facing the lower electrode at a position distant from the connection conductor pillar. Integrated piezoelectric element.
【請求項2】 絶縁基板の表面に凹部が形成され、該凹
部に凹部側壁との間で隙間ができるように圧電体層が埋
設され底面で結合していて、該圧電体層は厚み方向に分
極されており、圧電体層の相対向する側面の凹部側壁と
の隙間に一対の電極が設けられていることを特徴とする
基板一体型圧電素子。
2. A concave portion is formed in a surface of an insulating substrate, and a piezoelectric layer is buried in the concave portion so as to form a gap between the concave portion and a side wall of the concave portion, and is bonded at a bottom surface. A substrate-integrated piezoelectric element, which is polarized and has a pair of electrodes provided in a gap between opposing side surfaces of a piezoelectric layer and recess side walls.
【請求項3】 絶縁基板がスライダを構成する請求項1
又は2記載の基板一体型圧電素子の表面に、ヘッド本体
が形成されていることを特徴とする薄膜磁気ヘッド。
3. The slider according to claim 1, wherein the insulating substrate comprises a slider.
3. A thin-film magnetic head, wherein a head main body is formed on a surface of the substrate-integrated piezoelectric element according to 2.
【請求項4】 絶縁基板がスライダを構成する請求項1
記載の基板一体型圧電素子の表面に、ヘッド本体が形成
されていて、該ヘッド本体の下地側の金属薄膜が圧電素
子部の上部電極を兼ねていることを特徴とする薄膜磁気
ヘッド。
4. The slider according to claim 1, wherein the insulating substrate comprises a slider.
A thin-film magnetic head, wherein a head main body is formed on the surface of the substrate-integrated piezoelectric element described above, and a metal thin film on a base side of the head main body also serves as an upper electrode of the piezoelectric element portion.
【請求項5】 圧電素子部への電圧制御によるヘッド本
体の変位方向を、スライダの記録媒体対向面に垂直な方
向に設定し、ヘッド本体と記録媒体との空隙距離を制御
可能とした請求項4記載の薄膜磁気ヘッド。
5. The head body according to claim 1, wherein a displacement direction of the head body by voltage control on the piezoelectric element portion is set to a direction perpendicular to a surface of the slider facing the recording medium, so that a gap distance between the head body and the recording medium can be controlled. 5. The thin-film magnetic head according to 4.
【請求項6】 圧電素子部への電圧制御によるヘッド本
体の変位方向を、記録トラック幅方向に設定し、ヘッド
本体のスライダに対する記録トラック幅方向の変位を制
御可能とした請求項4記載の薄膜磁気ヘッド。
6. The thin film according to claim 4, wherein the displacement direction of the head body by voltage control on the piezoelectric element portion is set in the recording track width direction, and the displacement of the head body with respect to the slider in the recording track width direction can be controlled. Magnetic head.
【請求項7】 圧電素子部のセンサ機能を使用し、記録
媒体との接触の有無を検出可能とした請求項3乃至5の
いずれかに記載の薄膜磁気ヘッド。
7. The thin-film magnetic head according to claim 3, wherein the presence or absence of contact with a recording medium can be detected by using a sensor function of the piezoelectric element portion.
JP2000040848A 2000-02-18 2000-02-18 Substrate-integrated piezoelectric element and thin-film magnetic head using the same Pending JP2001230464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040848A JP2001230464A (en) 2000-02-18 2000-02-18 Substrate-integrated piezoelectric element and thin-film magnetic head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040848A JP2001230464A (en) 2000-02-18 2000-02-18 Substrate-integrated piezoelectric element and thin-film magnetic head using the same

Publications (1)

Publication Number Publication Date
JP2001230464A true JP2001230464A (en) 2001-08-24

Family

ID=18564169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040848A Pending JP2001230464A (en) 2000-02-18 2000-02-18 Substrate-integrated piezoelectric element and thin-film magnetic head using the same

Country Status (1)

Country Link
JP (1) JP2001230464A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155832A (en) * 2011-01-07 2012-08-16 Nhk Spring Co Ltd Manufacturing method of piezoelectric element, piezoelectric element, piezoelectric actuator, and head suspension
US10210889B1 (en) * 2017-09-29 2019-02-19 Seagate Technology Llc Monolithically-integrated hybridized slider electronics for magnetic read/write
JP2022544889A (en) * 2020-07-24 2022-10-24 ケーティー アンド ジー コーポレイション Ultrasonic based aerosol generator and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155832A (en) * 2011-01-07 2012-08-16 Nhk Spring Co Ltd Manufacturing method of piezoelectric element, piezoelectric element, piezoelectric actuator, and head suspension
US10210889B1 (en) * 2017-09-29 2019-02-19 Seagate Technology Llc Monolithically-integrated hybridized slider electronics for magnetic read/write
JP2022544889A (en) * 2020-07-24 2022-10-24 ケーティー アンド ジー コーポレイション Ultrasonic based aerosol generator and its control method
JP7276999B2 (en) 2020-07-24 2023-05-18 ケーティー アンド ジー コーポレイション Ultrasonic based aerosol generator and its control method

Similar Documents

Publication Publication Date Title
US6570730B1 (en) Shear-based transducer for HDD read/write element height control
US7414353B2 (en) Piezoelectric actuator and head assembly using the piezoelectric actuator
US20100271735A1 (en) Wireless Microactuator Motor Assembly for Use in a Hard Disk Drive Suspension, and Mechanical and Electrical Connections Thereto
JPH08255450A (en) Integral assembly and its creation method as well as disk drive
JP2010182356A (en) Electrode structure of piezoelectric element, method of forming electrode of piezoelectric element, piezoelectric actuator and head suspension
US7420785B2 (en) Suspension assembly, hard disk drive, and method of manufacturing suspension assembly
JP2002157851A (en) Magnetic disk unit
US6271995B1 (en) Magnetic head for recording with ultra low force
US7733606B2 (en) Thin film magnetic head with thermal flying height control pads located at both ends of all pads series on slider side plane
US6807722B2 (en) Thin-film magnetic head material and method of manufacturing same and method of manufacturing thin-film magnetic head
JP2001230464A (en) Substrate-integrated piezoelectric element and thin-film magnetic head using the same
US10607641B1 (en) Head gimbal assembly thin-film piezoelectric-material element arranged in step part configuration with protective films
US7518833B2 (en) Micro-actuator with electric spark preventing structure, HGA, and disk drive unit with the same, and manufacturing method thereof
US11411162B2 (en) Thin-film piezoelectric-material element, method of manufacturing the same, head gimbal assembly and hard disk drive
US10614842B1 (en) Thin-film piezoelectric-material element with protective film composition and insulating film through hole exposing lower electrode film
JP2005001090A (en) Thin film piezoelectric element, its manufacturing method and actuator
US11289641B2 (en) Thin-film piezoelectric-material element, method of manufacturing the same, head gimbal assembly and hard disk drive
US7225513B2 (en) Method for preventing operational and manufacturing imperfections in piezoelectric micro-actuators
JP3642796B2 (en) Manufacturing method of magnetic storage device
US20100073822A1 (en) Magnetic head assembly and magnetic disk device
JP2002117637A (en) Piezoelectric element, actuator, disk unit, and production method of the piezoelectric element and the actuator
JP2009158676A (en) Piezoelectric element, magnetic head assembly and magnetic recording device
JPH0843431A (en) Acceleration sensor and its manufacture
JP2976351B2 (en) Thin film magnetic head and method of manufacturing the same
KR0129107B1 (en) Magnetic head recording with extremely weak force and its processing method