JP2001213662A - Cement composition with electrical insulation property - Google Patents
Cement composition with electrical insulation propertyInfo
- Publication number
- JP2001213662A JP2001213662A JP2000022949A JP2000022949A JP2001213662A JP 2001213662 A JP2001213662 A JP 2001213662A JP 2000022949 A JP2000022949 A JP 2000022949A JP 2000022949 A JP2000022949 A JP 2000022949A JP 2001213662 A JP2001213662 A JP 2001213662A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- cement composition
- group
- cement
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/90—Electrical properties
- C04B2111/92—Electrically insulating materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Paints Or Removers (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自己発熱を伴う電気抵
抗器、コンデンサ等の被覆材および充填材として使用さ
れる電気部品用セメントに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cement for electric parts which is used as a covering material and a filling material for electric resistors and capacitors with self-heating.
【0002】[0002]
【従来技術】一般的に電気部品のコーティング材や充填
材は大きく分けて、有機系のものと無機系のものの2種
類存在する。有機系としては、エポキシ系、シリコーン
系などが知られ実用化されている。しかしながら、一般
的な有機系のものは耐熱性に乏しい。難燃性に優れたシ
リコーン系は加工温度(180℃以上)が高く、使用で
きる抵抗体の種類が限定されたり、省エネルギーの面か
らも好ましくない。2. Description of the Related Art In general, coating materials and fillers for electric parts are roughly classified into two types: organic materials and inorganic materials. As the organic type, an epoxy type, a silicone type and the like are known and put to practical use. However, general organic materials have poor heat resistance. Silicone materials having excellent flame retardancy have a high processing temperature (180 ° C. or higher), which limits the types of resistors that can be used, and is not preferable in terms of energy saving.
【0003】そういう状況の中、難燃性に優れ加工温度
も低いことから無機系セメントが近年注目されはじめ
た。一般的な電気部品用無機セメントは、数種の無機充
填材とそれらを固める働きを有する水性コロイダルシリ
カやエチルシリケートのような物質を含むバインダーか
らなっている。[0003] Under such circumstances, inorganic cement has begun to attract attention in recent years because of its excellent flame retardancy and low processing temperature. A common inorganic cement for electric parts is composed of several kinds of inorganic fillers and a binder containing substances such as aqueous colloidal silica and ethyl silicate which have a function of solidifying them.
【0004】しかしながら、従来のセメントは硬化後の
電気特性も十分なものでなく、また沈降安定性に乏し
く、短時間で充填材が沈降してしまう欠点がある。その
ために充填作業に熟練を要したり、常にセメントを撹拌
する必要があるなど作業性に乏しいものがほとんどであ
った。さらにそれが原因で、経時変化での固形分濃度ば
らつきが大きくなり製品の品質にも大きな悪影響を及ぼ
している。However, conventional cements have insufficient electrical properties after hardening, have poor sedimentation stability, and have the disadvantage that the fillers settle out in a short time. For this reason, most of the workability is poor, such as the need for skill in the filling operation and the necessity of constantly stirring the cement. Further, due to this, the solid content concentration variation with the passage of time increases, which has a great adverse effect on product quality.
【0005】[0005]
【発明が解決しようとする課題】本発明は、十分なセメ
ント強度および電気絶縁性を持ち、かつ優れた沈降安定
性、流動性を持つ電気部品用無機セメント組成物を提供
するためになされたものである。DISCLOSURE OF THE INVENTION The present invention has been made to provide an inorganic cement composition for electric parts which has sufficient cement strength and electric insulation, and has excellent sedimentation stability and fluidity. It is.
【0006】[0006]
【課題を解決するための手段】本発明者は、優れた電気
特性と作業性を兼ね備えた無機セメントの開発研究を行
った結果、アルキルアルコキシシランが電気絶縁性を向
上させ、また、官能基含有アルキルトリアルコキシシラ
ン中でもγ−グリシドキシプロピルトリアルコキシシラ
ンによりセメント強度が向上することを見いだした。ま
た、チクソ材として低級アルコール/水系溶媒に可溶な
セルロース系化合物、沈降防止材に有機変成スメクタイ
ト系粘度を組み合わせて用いることにより、沈降安定
性、流動性ともに優れたセメントが得られることがわか
った。The present inventors have conducted research on the development of an inorganic cement having both excellent electrical properties and workability. As a result, the alkylalkoxysilane has improved electrical insulating properties and has a functional group-containing structure. Among the alkyl trialkoxysilanes, it was found that the cement strength was improved by γ-glycidoxypropyl trialkoxysilane. In addition, it is found that a cement excellent in both sedimentation stability and fluidity can be obtained by using a cellulose compound soluble in a lower alcohol / water-based solvent as a thixo-material and an organically modified smectite-based viscosity in combination with an anti-settling material. Was.
【0007】本発明は、シリカ固形成分5〜40%を含
有する水性コロイダルシリカ5〜60部に、一般式1According to the present invention, 5 to 60 parts of an aqueous colloidal silica containing 5 to 40% of a silica solid component are added with a compound represented by the general formula 1
【化2】 (式中 、Xは炭素数1〜10のアルキル基または官能
基を有するアルキル基または低級アルコキシ基、Y、
Z、Wはそれぞれ炭素数1〜10のアルキル基または低
級アルコキシ基である。)で示されるシラン化合物の1
種または2種以上の混合物1〜30部を添加後加水分解
した加水分解生成物に、1種または2種以上のアルコー
ル20〜60部、チクソ材0.001〜1部、沈降防止
材1〜5部、無機充填材90〜120部を混合してなる
無機セメント組成物を要旨としている。Embedded image (Wherein, X is an alkyl group having 1 to 10 carbon atoms or an alkyl group having a functional group or a lower alkoxy group, Y,
Z and W are an alkyl group having 1 to 10 carbon atoms or a lower alkoxy group, respectively. 1) The silane compound represented by
The hydrolysis product obtained by adding 1 to 30 parts of a mixture of two or more kinds or two or more kinds is added to 20 to 60 parts of one or two or more alcohols, 0.001 to 1 part of a thixotropic material, The gist is an inorganic cement composition obtained by mixing 5 parts and 90 to 120 parts of an inorganic filler.
【0008】本発明のセメント組成物の好ましい態様
は、一般式1中、Xがメチル基である、あるいはメチル
基のものと官能基含有アルキル基、好ましくはγ−グリ
シドキシアルキル基のものとの混合物である。また、本
発明のセメント組成物の好ましい態様は、チクソ材とし
て低級アルコール/水系溶媒に可溶なセルロース系化合
物を用い、沈降防止材として有機変成スメクタイト系粘
土を用いた物である。In a preferred embodiment of the cement composition of the present invention, in the general formula 1, X is a methyl group, or X is a methyl group and a functional group-containing alkyl group, preferably a γ-glycidoxyalkyl group. Is a mixture of In a preferred embodiment of the cement composition of the present invention, a cellulose compound soluble in a lower alcohol / aqueous solvent is used as a thixotropic material, and an organically modified smectite clay is used as an anti-settling material.
【0009】本発明のセメント組成物の最も好ましい態
様は、シリカ固形成分1〜40%を含有する水性コロイ
ダルシリカ5〜60部に、一般式1(式中 、Xはがメ
チル基である、またはメチル基のものと官能基含有アル
キル基、好ましくはγ−グリシドキシアルキル基のもの
との混合物である。)で示されるシラン化合物の1種ま
たは2種以上の混合物1〜30部を添加後加水分解した
加水分解生成物に、1種または2種以上のアルコール2
0〜60部を添加したものをバインダー成分とし、チク
ソ材として低級アルコール/水系溶媒に可溶なセルロー
ス系化合物0.001〜1部、沈降防止材として有機変
成スメクタイト系粘土1〜5部、シリカ粉、酸化チタン
などの無機充填材90〜120部を十分混合して均一な
セメント組成物としたものである。In a most preferred embodiment of the cement composition of the present invention, 5 to 60 parts of an aqueous colloidal silica containing 1 to 40% of a silica solid component is added to a general formula 1 (where X is a methyl group, or A mixture of a methyl group and a functional group-containing alkyl group, preferably a γ-glycidoxyalkyl group.) 1 to 30 parts of a mixture of one or more silane compounds One or more alcohols 2 are added to the hydrolyzed hydrolysis product.
A binder component containing 0 to 60 parts as a binder component, 0.001 to 1 part of a cellulose compound soluble in a lower alcohol / aqueous solvent as a thixotropic material, 1 to 5 parts of an organically modified smectite clay as an anti-settling agent, silica 90 to 120 parts of an inorganic filler such as powder and titanium oxide are sufficiently mixed to form a uniform cement composition.
【0010】[0010]
【発明の実施の形態】水性コロイダルシリカは、溶剤と
の混和安定性の高いコロイダルシリカを用いるのが好ま
しい。量的にはシリカ固形成分5〜40%を含有する水
性コロイダルシリカを5〜60部用いる。5部未満だと
凝結力が不足し、セメント強度が低下する。60部を超
えるとセメントの粘度が上昇し作業性に支障をきたす。
また、シリカ固形分濃度は、5%未満だとセメント強度
が低下し、40%を超えるとゲル化が生じ好ましくな
い。DETAILED DESCRIPTION OF THE INVENTION As aqueous colloidal silica, it is preferable to use colloidal silica having high miscibility with a solvent. Quantitatively, 5 to 60 parts of aqueous colloidal silica containing 5 to 40% of a silica solid component is used. If the amount is less than 5 parts, the setting power is insufficient, and the cement strength is reduced. If the amount exceeds 60 parts, the viscosity of the cement increases, which impairs workability.
If the silica solids concentration is less than 5%, the cement strength is reduced, and if it exceeds 40%, gelation is undesirably caused.
【0011】一般式1で示されるシラン化合物は、アル
キルトリアルコキシシランが特に高い絶縁抵抗値をもた
らすが、アルキル鎖が長くなる程、加水分解後の水溶性
が低下するためメチルトリアルコキシシランが好まし
い。さらに、官能基含有アルキルトリアルコキシシラ
ン、好ましくはγ−グリシドキシプロピルトリアルコキ
シシランを併用することによりセメント強度を上昇させ
ることができる。量的にはシラン化合物の1種または2
種以上の混合物1〜30部を用いる。シラン化合物の合
計比率が、1部未満だと電気絶縁抵抗値、セメント強度
ともに低下する。30部を超えるとゲル化を生じてしま
う。In the silane compound represented by the general formula 1, an alkyl trialkoxy silane gives a particularly high insulation resistance value. However, as the alkyl chain becomes longer, the water solubility after hydrolysis decreases, methyl trialkoxy silane is preferred. . Further, by using a functional group-containing alkyl trialkoxysilane, preferably γ-glycidoxypropyl trialkoxysilane, the cement strength can be increased. Quantitatively, one or two silane compounds
1 to 30 parts of a mixture of the above species are used. If the total ratio of the silane compounds is less than 1 part, both the electrical insulation resistance value and the cement strength will be reduced. If it exceeds 30 parts, gelation occurs.
【0012】アルコールは、セメントの速乾性、水溶性
の面から低級アルコール、中でもメタノールが好まし
い。量的にはアルコールの1種または2種以上の混合物
20〜60部を用いる。20部未満だとセメント粘度が
上昇したり、予備乾燥中にクラックが生じやすく、60
部を超えると沈降安定性が低下してしまう。The alcohol is preferably a lower alcohol, especially methanol, from the viewpoint of quick drying and water solubility of cement. Quantitatively, 20 to 60 parts of a mixture of one or more alcohols is used. If it is less than 20 parts, the viscosity of the cement increases, and cracks are apt to occur during predrying.
If the amount exceeds the limit, the sedimentation stability decreases.
【0013】チクソ材は、低級アルコール/水系混合溶
媒に可溶なセルロース系チクソ材を用いるのが好まし
い。用いるセルロースの分子量によって添加量は異なる
が、一般的な分子量の指標である2%水溶液の20℃で
の粘度が、25〜4000cPsのものが好ましい。添
加量は、0.001〜1部用いる。0.001部未満だ
と沈降安定性が低下し、1部を超えるとセメント粘度が
上昇したり予備乾燥中にクラックが生じやすくなる。As the thixo-material, it is preferable to use a cellulose-type thixo-material which is soluble in a lower alcohol / water mixed solvent. Although the amount of addition varies depending on the molecular weight of the cellulose used, it is preferable that the viscosity at 20 ° C. of a 2% aqueous solution, which is a general index of the molecular weight, be 25 to 4000 cPs. The addition amount is 0.001 to 1 part. If the amount is less than 0.001 part, the sedimentation stability decreases, and if it exceeds 1 part, the cement viscosity increases and cracks are liable to occur during preliminary drying.
【0014】沈降防止材は、有機変成スメクタイト系粘
土が好ましいものとして例示される。一般的によく知ら
れているベントナイト系粘度のような無機粘土では、ア
ルコール/水系での効果が非常に低い。アルコール/水
系溶媒中でも効果的に沈降防止能を発揮するものが好ま
しい。中でも有機変成したスメクタイト系粘土が効果的
である。添加量は、1〜5部用いる。1部未満だと効果
がなく、5部を超えて添加しても効果は変わらない。As the anti-settling material, an organically modified smectite clay is exemplified as a preferable one. Inorganic clays such as bentonite-based viscosities, which are generally well known, have very low effects in alcohol / water systems. It is preferable to use an alcohol / water-based solvent that effectively exhibits the ability to prevent sedimentation. Among them, organically modified smectite clay is effective. The addition amount is 1 to 5 parts. Less than 1 part has no effect, and adding more than 5 parts does not change the effect.
【0015】無機充填材は、量的には90〜120部用
いる。90部未満だと乾燥段階でクラックが生じやすく
なったり、やせが大きくなる。120部を超えて添加す
るとセメント粘度が上昇し流動性が低下する。また種類
としては、絶縁抵抗の観点から体積抵抗の高いものほど
好ましい。たとえばマイカ、シリカ、アルミナ、酸化チ
タンなどがあげられる。形状は粒子状、繊維状、鱗片状
など種々あるがいずれを用いてもさしつかえない。しか
し、セメント粘度、乾燥時の体積変化を考慮して選定す
る必要がある。繊維状や鱗片状のものの比率が高くなる
と、乾燥時体積変化は小さいがセメント粘度が極端に上
昇し作業性を著しく損なう。同様に、粒子径も流動性に
非常に影響を及ぼす。大きい粒子の比率が高くなると、
乾燥時体積変化が少なくなるが、流動性が損なわれる。
小さい粒子の比率が高いと、その逆である。The inorganic filler is used in an amount of 90 to 120 parts. If the amount is less than 90 parts, cracks are likely to occur in the drying stage, and the skin becomes large. If it exceeds 120 parts, the viscosity of the cement increases and the fluidity decreases. Further, as the type, a material having a higher volume resistance is preferable from the viewpoint of insulation resistance. For example, mica, silica, alumina, titanium oxide and the like can be mentioned. There are various shapes such as a particle shape, a fiber shape, and a scale shape, but any shape may be used. However, it is necessary to consider the cement viscosity and the volume change during drying. When the ratio of fibrous or scaly ones is high, the change in volume during drying is small, but the viscosity of the cement is extremely increased and workability is significantly impaired. Similarly, particle size has a significant effect on fluidity. As the ratio of large particles increases,
The change in volume during drying is small, but the fluidity is impaired.
The converse is true when the proportion of small particles is high.
【0016】[0016]
【作用】以上のように本発明は、高い沈降安定性による
作業性を持ち、かつシラン化合物の選定により実施例3
のような高い絶縁抵抗、強度を兼ね備えた、従来には無
かったセメントを提供できるものである。本発明のセメ
ント組成物は、優れた沈降安定性、作業性を持っている
ので、電気抵抗器やコンデンサの被覆および充填作業の
効率化に有利なものである。また、高い電気絶縁性、耐
溶剤性、さらに過負荷に対し発炎せず耐熱性も優れてい
る。耐湿性も良好であり、電気部品の被覆あるいは充填
材として物性、安全性を十分備えたものであり、産業全
体に大きな利益をもたらすものである。As described above, the present invention has the workability due to the high sedimentation stability, and the embodiment 3 is selected by selecting the silane compound.
Thus, it is possible to provide a cement which has not been hitherto and has high insulation resistance and strength. INDUSTRIAL APPLICABILITY The cement composition of the present invention has excellent sedimentation stability and workability, and is therefore advantageous for improving the efficiency of coating and filling operations of electric resistors and capacitors. In addition, it has high electrical insulation, solvent resistance, and excellent heat resistance without flaming when overloaded. It has good moisture resistance, has sufficient physical properties and safety as a coating or filler for electric parts, and brings great benefits to the entire industry.
【0017】[0017]
【実施例】本発明の詳細を実施例により説明するが、本
発明は以下実施例に限定されるものではない。EXAMPLES The present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
【0018】実施例1〜3、比較例1、2 表1に示すような配合割合にて、水性コロイダルシリカ
20部に種々のシランを添加し、室温にて約45分間撹
拌することにより加水分解させる。これにメタノール3
8部、ブチルセロソルブ2部を添加したものをバインダ
ー成分として、セルロース系チクソ材0.01部、有機
変成スメクタイト系沈降防止材2部、無機充填材106
部を順次撹拌下にて添加し均一なペースト状とした。ま
た、実施例2に対して、チクソ材を0部としたもの、沈
降防止材を0部としたものをそれぞれ比較例1、2とし
て併せて示してある。また、市販の他社バインダーに同
様の充填材を同じ比率で添加しセメント化したものを参
考例として示してある。Examples 1 to 3 and Comparative Examples 1 and 2 Various silanes were added to 20 parts of aqueous colloidal silica at the compounding ratios shown in Table 1 and the mixture was stirred at room temperature for about 45 minutes to effect hydrolysis. Let it. Add methanol 3
8 parts, 2 parts of butyl cellosolve are added as binder components, and 0.01 part of a cellulose-based thixotropic material, 2 parts of an organically modified smectite-based anti-settling material, and inorganic filler 106
The parts were sequentially added under stirring to form a uniform paste. In addition, Comparative Examples 1 and 2 also show the case where the thixotropic material was 0 part and the case where the sedimentation preventing material was 0 part in Example 2. Further, a cement obtained by adding the same filler to a commercially available binder of the same ratio in the same ratio and forming a cement is shown as a reference example.
【0019】[0019]
【表1】 比較例1 比較例2 実施例1 実施例2 実施例3 ────────────────────────────────── 水性コロイタ゛ルシリカ 20部 20部 20部 20部 20部 ────────────────────────────────── テトラエトキシシラン 0部 0部 8部 0部 0部 ────────────────────────────────── メチルトリエトキシシラン 8部 8部 0部 8部 5部 ────────────────────────────────── γ-ク゛リシト゛キシフ゜ロヒ゜ル トリエトキシシラン 0部 0部 0部 0部 2.5部 ────────────────────────────────── メタノール 38部 38部 38部 38部 38部 ────────────────────────────────── フ゛チルセロソルフ゛ 2部 2部 2部 2部 2部 ────────────────────────────────── セルロース系チクソ材 0.01部 0部 0.01部 0.01部 0.01部 ────────────────────────────────── 有機変成 スメクタイト系 0部 2部 2部 2部 2部 ────────────────────────────────── 沈降防止材 無機充填材 106部 106部 106部 106部 106部 ────────────────────────────────── 外観 沈降性の ペースト状 ペースト状 ペースト状 ペースト状 ある液体 沈降性あり 沈降性なし 沈降性なし 沈降性なし 比重 1.9 1.9 1.9 1.9 1.9 pH 4 4 4 4 4 ──────────────────────────────────[Table 1] Comparative Example 1 Comparative Example 2 Example 1 Example 2 Example 3水性 aqueous colloidal silica 20 parts 20 parts 20 parts 20 parts 20 parts ────────────────────────────────── Tetraethoxysilane 0 parts 0 parts 8 parts 0 parts 0 parts ────────────────────────────────── Methyltriethoxy Silane 8 parts 8 parts 0 parts 8 parts 5 parts γγ-criticoxy Fluorotriethoxysilane 0 parts 0 parts 0 parts 0 parts 2.5 parts ────────────────────────────────── Methanol 38 Part 38 part 38 part 38 part 38 part ─────────────────────────────゛ Cellulosol 2 parts 2 parts 2 parts 2 parts 2 parts セ ル ロ ー ス Cellulose Thixotropic material 0.01 part 0 part 0.01 part 0.01 part 0.01 part ────────────────────────────────── Organically modified smectite System 0 part 2 part 2 part 2 part 2 part ────────────────────────────────── Anti-settling material Inorganic filling Material 106 parts 106 parts 106 parts 106 parts 106 parts ────────────────────────────────── Appearance Settling paste Form Paste Paste Paste Some liquid Sedimentable No sedimentation No sedimentation No sedimentation Specific gravity 1.9 1.9 1.9 1.9 1.9 pH 4.4 4 4 4 4 ─────── ────────────────────── ─────
【0020】表1に示してある外観の項からもわかるよ
うに、チクソ材と沈降防止材を併用することによりはじ
めて沈降安定性が発現する。それを数値化するために粘
度測定を行った。φ57mm、高さ70mmの円筒形の
容器に、セメントを高さ約40mmになるよう充填し、
測定用サンプルとした。測定方法は、Brookfield粘度計
(ローター:T−A、6rpm、セメント温度25℃)
を用いて、底から約10mmの高さでローターが回転す
るように設置し、混練直後、30分後、1時間後、2時
間後および6時間後の計5回計測した。結果を表2の示
す。As can be seen from the appearance section shown in Table 1, sedimentation stability is exhibited only when the thixotropic material and the anti-settling material are used in combination. Viscosity measurements were made to quantify it. Fill a cylindrical container with a diameter of 57 mm and a height of 70 mm with cement to a height of about 40 mm,
A sample for measurement was used. The measuring method is a Brookfield viscometer (rotor: TA, 6 rpm, cement temperature 25 ° C.)
, The rotor was installed so as to rotate at a height of about 10 mm from the bottom, and a total of five measurements were taken immediately after kneading, 30 minutes, 1 hour, 2 hours, and 6 hours. The results are shown in Table 2.
【0021】最初に、市販のバインダーでは充填材濃度
をそろえたにもかかわらず、混練直後の粘度が高い。こ
のような流動性の低さが製造工程において、ノズルから
の吐出性やポンプ搬送性などを低下させ、作業効率に大
きな悪影響を及ぼす。同等な流動性にしようと思えば充
填材濃度を下げねばならず、それにより乾燥時の体積変
化が大きくなるといった弊害が生じる。一方、表2の比
較例1、2の結果からも明らかなように、チクソ材また
は沈降防止材の単独使用では安定な沈降防止効果は得ら
れない。すなわち実施例のように、両方を併用してはじ
めて安定な沈降防止効果を得ることができる。First, in the case of a commercially available binder, the viscosity immediately after kneading is high even though the filler concentration is uniform. Such low fluidity lowers the dischargeability from nozzles, pumping performance, and the like in the manufacturing process, and has a large adverse effect on work efficiency. In order to achieve the same fluidity, the concentration of the filler must be reduced, which causes an adverse effect such as a large change in volume during drying. On the other hand, as is clear from the results of Comparative Examples 1 and 2 in Table 2, a stable anti-settling effect cannot be obtained by using the thixotropic material or the anti-settling material alone. That is, as in the embodiment, a stable settling prevention effect can be obtained only when both are used together.
【0022】[0022]
【表2】 ───────────────────────── 参考例 比較例1 比較例2 実施例2 ────────────────────────────────── 混練直後 31467 4800 7467 10400 ─────────────────────────────── 混練30分後 49600 ハート゛ケーキ生成 164533 16800 粘度 測定不可 ─────────────────────────────── /cPs 〃1時間後 54933 − ハート゛ケーキ生成 19733 測定不可 ─────────────────────────────── 〃2時間後 56800 − − 25067 ─────────────────────────────── 〃6時間後 ハート゛ケーキ生成 − − 26100 測定不可 ──────────────────────────────────[Table 2] ───────────────────────── Reference Example Comparative Example 1 Comparative Example 2 Example 2 ──────────直 後 Immediately after kneading 31467 4800 7467 10400 ──────────────────── 600 30 minutes after kneading 49600 Heart ゛ Cake formation 164533 16800 Viscosity measurement not possible ────────────────────────── ───── / cPs 〃After 1 hour 54933 − Heart ゛ Cake formation 19733 Measurement not possible ─────────────────────────────── 8002 hours later 56800 − − 25067 ─────────────────────────────── 〃6 hours later Heart ゛ cake formation − − 26100 measurement Not possible ────────────────────────────── ───
【0023】表3には、巻線抵抗抵抗素子をセラミック
ケース中へセメントにより充填し、24時間/室温にて
風乾、90分/50℃乾燥、130℃/50分にて硬化
させたサンプルを用いて測定した種々の物性を示してあ
る。Table 3 shows a sample in which a wound resistance element was filled in a ceramic case with cement, air-dried at 24 hours / room temperature, dried at 90 minutes / 50 ° C., and cured at 130 ° C./50 minutes. Various physical properties measured using the same are shown.
【0024】以下に測定および評価方法を示す。 絶縁抵抗値:東亜電波工業社製 SM−10E型 極超
絶縁計にて100V印加時の抵抗を測定。 耐湿試験:JIS C−5202 7.5 耐湿性試験
準拠(40℃、湿度90%、24時間)。 耐電圧試験:東亜電波工業社製 APT−8741 耐
電圧計にてAC1000V/1min 印加。 セメント強度:加圧部が1×3mm(面積3mm2)の
形状をした鉄製金属片にてセメントを加圧し、凹みの生
じる荷重を測定。 耐溶剤性:キシレンに1時間浸漬し、セメント強度が低
下するか評価。 不燃性:抵抗体に、過負荷電力である110Wの電力を
印加し、抵抗体がオープンになるまで通電し観察した。Hereinafter, measurement and evaluation methods will be described. Insulation resistance value: Resistance was measured when a voltage of 100 V was applied using a SM-10E ultra-super insulation meter manufactured by Toa Denpa Kogyo. Moisture resistance test: According to JIS C-5202 7.5 Moisture resistance test (40 ° C., humidity 90%, 24 hours). Withstand voltage test: AC1000V / 1min was applied with an APT-8741 withstand voltage meter manufactured by Toa Denpa Kogyo. Cement strength: Cement was pressed with an iron metal piece having a pressing portion having a shape of 1 × 3 mm (area 3 mm 2 ), and the load at which dents were formed was measured. Solvent resistance: immersed in xylene for 1 hour and evaluated whether the cement strength is reduced. Non-flammability: 110 W of electric power, which is an overload power, was applied to the resistor, and electricity was supplied until the resistor was opened, and observation was performed.
【0025】[0025]
【表3】 ─────────────────── 実施例1 実施例2 実施例3 ─────────────────────────────── 絶縁抵抗値 耐湿試験前 1.0×103 1.0×107 3.5×106 ──────────────────────── /MΩ 耐湿試験後 0.8×103 0.3×107 1.0×106 ─────────────────────────────── 耐湿試験前後での 0% 0% 0% 固有抵抗変化率 ─────────────────────────────── 耐電圧試験 OK OK OK ─────────────────────────────── セメント強度 8kgf 7kgf >10kgf ─────────────────────────────── 耐溶剤性 変化なし 変化なし 変化なし ─────────────────────────────── 不燃性 発炎せず 発炎せず 発炎せず ───────────────────────────────[Table 3] Example 1 Example 2 Example 3 ───────────── Insulation resistance value Before moisture resistance test 1.0 × 10 3 1.0 × 10 7 3.5 × 10 6 ─────────────────── ───── / MΩ After moisture resistance test 0.8 × 10 3 0.3 × 10 7 1.0 × 10 6 ──────────────────────────── 0% before and after moisture resistance test 0% 0% Specific resistance change rate ─────────────────────────────── Resistance Voltage test OK OK OK ─────────────────────────────── Cement strength 8kgf 7kgf> 10kgf ────────溶 剤 Solvent resistance No change No change No change ─────────── ─────────────────── Nonflammable No flaming No flaming No flaming ───────────────── ──────────────
【0026】表3の結果から、メチルトリエトキシシラ
ンの使用により絶縁抵抗値が向上する。珪素原子に直接
結合したアルキル基による高い電気絶縁性を示すもので
ある。また、γ−グリシドキシプロピルトリエトキシシ
ランの併用によってセメント強度が向上する。これはγ
−グリシドキシプロピルトリエトキシシランの2官能性
に起因する。すなわち、シラノール基によって無機充填
材粒子表面に結合し、さらにもう一方のグリシドキシ基
が縮合し、粒子間での結合が強固になったためであると
考えられる。また、耐溶剤性、不燃性ともに良好であり
電気部品としての安全性を十分確保しているといえる。From the results shown in Table 3, the use of methyltriethoxysilane improves the insulation resistance. It exhibits high electrical insulation due to an alkyl group directly bonded to a silicon atom. In addition, cement strength is improved by the combined use of γ-glycidoxypropyltriethoxysilane. This is γ
Due to the bifunctionality of glycidoxypropyltriethoxysilane. That is, it is considered that this is because the silanol group binds to the surface of the inorganic filler particles and the other glycidoxy group condenses, and the bond between the particles becomes stronger. In addition, both the solvent resistance and the nonflammability are good, and it can be said that the safety as an electric component is sufficiently ensured.
【0027】以上のように本発明は、高い沈降安定性に
よる優れた作業性を持ち、かつシラン化合物の選定によ
り実施例3のような高い絶縁抵抗、強度を兼ね備えた、
従来には無かったセメントを提供できるものである。As described above, the present invention has excellent workability due to high sedimentation stability, and also has high insulation resistance and strength as in Example 3 by selecting a silane compound.
It is possible to provide a cement that has not been provided in the past.
【0028】[0028]
【発明の効果】本発明のセメント組成物は、優れた沈降
安定性、作業性を持っているので、電気抵抗器やコンデ
ンサの被覆および充填作業の効率化に有利なものであ
る。また、高い電気絶縁性、耐溶剤性、さらに過負荷に
対し発炎せず耐熱性も優れている。耐湿性も良好であ
り、電気部品の被覆あるいは充填材として物性、安全性
を十分備えたものであり、産業全体に大きな利益をもた
らすものである。Industrial Applicability The cement composition of the present invention has excellent sedimentation stability and workability, and is therefore advantageous for increasing the efficiency of covering and filling operations of electric resistors and capacitors. In addition, it has high electrical insulation, solvent resistance, and excellent heat resistance without flaming when overloaded. It has good moisture resistance, has sufficient physical properties and safety as a coating or filler for electric parts, and brings great benefits to the entire industry.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 24:02 C04B 24:02 24:38 24:38 Z 14:10) 14:10) Z 111:92 111:92 Fターム(参考) 4G012 PA06 PA11 PB04 PB15 PB40 PB41 4J038 BA022 DL031 DL051 HA446 HA496 HA526 JA17 KA08 MA15 NA21 PB09 5G303 AA10 AB01 AB20 BA12 CA07 CA09 CC08 CD04 CD11 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C04B 24:02 C04B 24:02 24:38 24:38 Z 14:10) 14:10) Z 111: 92 111: 92 F-term (reference) 4G012 PA06 PA11 PB04 PB15 PB40 PB41 4J038 BA022 DL031 DL051 HA446 HA496 HA526 JA17 KA08 MA15 NA21 PB09 5G303 AA10 AB01 AB20 BA12 CA07 CA09 CC08 CD04 CD11
Claims (5)
性コロイダルシリカ5〜60部に、一般式1 【化1】 (式中 、Xは炭素数1〜10のアルキル基または官能
基を有するアルキル基または低級アルコキシ基、Y、
Z、Wはそれぞれ炭素数1〜10のアルキル基または低
級アルコキシ基である。)で示されるシラン化合物の1
種または2種以上の混合物1〜30部を添加後加水分解
した加水分解生成物に、1種または2種以上のアルコー
ル20〜60部、チクソ材0.001〜1部、沈降防止
材1〜5部、無機充填材90〜120部を混合してなる
無機セメント組成物。1. An aqueous colloidal silica containing 5 to 40% of a silica solid component is mixed with 5 to 60 parts of a general formula 1 (Wherein, X is an alkyl group having 1 to 10 carbon atoms or an alkyl group having a functional group or a lower alkoxy group, Y,
Z and W are an alkyl group having 1 to 10 carbon atoms or a lower alkoxy group, respectively. 1) The silane compound represented by
The hydrolysis product obtained by adding 1 to 30 parts of a mixture of two or more kinds or two or more kinds is added to 20 to 60 parts of one or two or more alcohols, 0.001 to 1 part of a thixotropic material, An inorganic cement composition obtained by mixing 5 parts and 90 to 120 parts of an inorganic filler.
1のセメント組成物。2. The cement composition according to claim 1, wherein in the general formula 1, X is a methyl group.
能基含有アルキル基のものとの混合物である請求項1の
セメント組成物。3. The cement composition according to claim 1, wherein in formula 1, X is a mixture of a methyl group and a functional group-containing alkyl group.
シアルキル基である請求項3のセメント組成物。4. The cement composition according to claim 3, wherein the functional group-containing alkyl group is a γ-glycidoxyalkyl group.
媒に可溶なセルロース系化合物を用い、沈降防止材とし
て有機変成スメクタイト系粘土を用いた請求項1ないし
4のいずれかのセメント組成物。5. The cement composition according to claim 1, wherein a cellulose compound soluble in a lower alcohol / aqueous solvent is used as the thixotropic material, and an organically modified smectite clay is used as the anti-settling material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000022949A JP4977288B2 (en) | 2000-01-31 | 2000-01-31 | Cement composition having electrical insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000022949A JP4977288B2 (en) | 2000-01-31 | 2000-01-31 | Cement composition having electrical insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001213662A true JP2001213662A (en) | 2001-08-07 |
JP4977288B2 JP4977288B2 (en) | 2012-07-18 |
Family
ID=18549179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000022949A Expired - Lifetime JP4977288B2 (en) | 2000-01-31 | 2000-01-31 | Cement composition having electrical insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4977288B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1554220B2 (en) † | 2002-10-14 | 2014-11-05 | Akzo Nobel N.V. | Use of a colloidal silica dispersion |
KR101473149B1 (en) | 2014-03-20 | 2014-12-16 | 주식회사 아모스 | Clay composition |
US10230098B2 (en) | 2007-08-10 | 2019-03-12 | Kabushiki Kaisha Toshiba | Active material for battery, manufacturing method of the same, non-aqueous electrolytic battery and battery pack |
CN113402207A (en) * | 2021-06-23 | 2021-09-17 | 中德新亚建筑材料有限公司 | Preparation method of high-ductility non-ignition super-wear-resistant hardening agent |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4964000A (en) * | 1972-10-27 | 1974-06-20 | ||
JPS53119932A (en) * | 1977-03-28 | 1978-10-19 | Kansai Paint Co Ltd | Coating film-forming composition |
JPS541335A (en) * | 1977-06-07 | 1979-01-08 | Kansai Paint Co Ltd | Surface treatment composition of metal |
JPS5975953A (en) * | 1982-10-25 | 1984-04-28 | Kawakami Toryo Kk | Inorganic paint composition |
JPS61109205A (en) * | 1984-11-01 | 1986-05-27 | ニチアス株式会社 | Electrically insulating cement material and manufacture thereof |
JPH01157444A (en) * | 1987-12-12 | 1989-06-20 | Takenaka Komuten Co Ltd | Agent for accelerating and protecting bonding and method for bonding between inorganic materials |
JPH03104019U (en) * | 1990-02-06 | 1991-10-29 | ||
JPH054879A (en) * | 1991-02-25 | 1993-01-14 | Tsutsunaka Plast Ind Co Ltd | Composition for inorganic foam |
JPH0618085B2 (en) * | 1984-01-12 | 1994-03-09 | 松下電器産業株式会社 | Method for producing nonflammable inorganic coating material for electronic parts |
JPH09124357A (en) * | 1995-10-30 | 1997-05-13 | Sekisui Chem Co Ltd | Hardening inorganic-based composition |
-
2000
- 2000-01-31 JP JP2000022949A patent/JP4977288B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4964000A (en) * | 1972-10-27 | 1974-06-20 | ||
JPS53119932A (en) * | 1977-03-28 | 1978-10-19 | Kansai Paint Co Ltd | Coating film-forming composition |
JPS541335A (en) * | 1977-06-07 | 1979-01-08 | Kansai Paint Co Ltd | Surface treatment composition of metal |
JPS5975953A (en) * | 1982-10-25 | 1984-04-28 | Kawakami Toryo Kk | Inorganic paint composition |
JPH0618085B2 (en) * | 1984-01-12 | 1994-03-09 | 松下電器産業株式会社 | Method for producing nonflammable inorganic coating material for electronic parts |
JPS61109205A (en) * | 1984-11-01 | 1986-05-27 | ニチアス株式会社 | Electrically insulating cement material and manufacture thereof |
JPH01157444A (en) * | 1987-12-12 | 1989-06-20 | Takenaka Komuten Co Ltd | Agent for accelerating and protecting bonding and method for bonding between inorganic materials |
JPH03104019U (en) * | 1990-02-06 | 1991-10-29 | ||
JPH054879A (en) * | 1991-02-25 | 1993-01-14 | Tsutsunaka Plast Ind Co Ltd | Composition for inorganic foam |
JPH09124357A (en) * | 1995-10-30 | 1997-05-13 | Sekisui Chem Co Ltd | Hardening inorganic-based composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1554220B2 (en) † | 2002-10-14 | 2014-11-05 | Akzo Nobel N.V. | Use of a colloidal silica dispersion |
US10230098B2 (en) | 2007-08-10 | 2019-03-12 | Kabushiki Kaisha Toshiba | Active material for battery, manufacturing method of the same, non-aqueous electrolytic battery and battery pack |
KR101473149B1 (en) | 2014-03-20 | 2014-12-16 | 주식회사 아모스 | Clay composition |
CN113402207A (en) * | 2021-06-23 | 2021-09-17 | 中德新亚建筑材料有限公司 | Preparation method of high-ductility non-ignition super-wear-resistant hardening agent |
Also Published As
Publication number | Publication date |
---|---|
JP4977288B2 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | pH-Responsive nanovalves based on encapsulated halloysite for the controlled release of a corrosion inhibitor in epoxy coating | |
US5332432A (en) | Inorganic adhesive composition | |
JP3859705B2 (en) | Composition comprising aerogel, process for its production and use thereof | |
JP5364073B2 (en) | Aqueous silica dispersion | |
CN103589336B (en) | A kind of self-vulcanizing vinylformic acid heteropolysiloxane nano ceramics protective coating and preparation method thereof | |
GB2029421A (en) | Thermosetting composites | |
WO2000077105A1 (en) | Coating composition | |
US2905562A (en) | Process for rendering masonry water-repellent | |
JP2001213662A (en) | Cement composition with electrical insulation property | |
Suzuki et al. | Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion | |
KR101347725B1 (en) | Binder Compositions Of Hybrid Modified Silicates And Method For Preparing The Same | |
JP2021127288A (en) | Aluminum nitride-based filler | |
JP3072697B2 (en) | Aluminum hydroxide for resin filling and resin composition for artificial marble using the same | |
JPH0598212A (en) | Coating composition | |
JP3089776B2 (en) | Aluminum hydroxide for resin filling and artificial marble using the same | |
JP2002348528A (en) | Epoxy resin powder coating | |
CN110387183B (en) | Aerogel multifunctional material and preparation method thereof | |
CN114410138A (en) | Inorganic waterproof flame-retardant coating and preparation method thereof | |
JPH06234558A (en) | Composition for cement and cement obtained from these compositions | |
JP2839365B2 (en) | Non-combustible cement for electronic components and method for producing the same | |
JP2000183240A (en) | Non-combustible sealing material for electronic component | |
JP2010070636A (en) | Composition for treating asbestos | |
JP3300475B2 (en) | Resin magnet composition and molded product thereof | |
JPH0618085B2 (en) | Method for producing nonflammable inorganic coating material for electronic parts | |
JPS6337141B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061225 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20061225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110510 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4977288 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |