Nothing Special   »   [go: up one dir, main page]

JP2001205384A - Method for forming gear with boss - Google Patents

Method for forming gear with boss

Info

Publication number
JP2001205384A
JP2001205384A JP2000016506A JP2000016506A JP2001205384A JP 2001205384 A JP2001205384 A JP 2001205384A JP 2000016506 A JP2000016506 A JP 2000016506A JP 2000016506 A JP2000016506 A JP 2000016506A JP 2001205384 A JP2001205384 A JP 2001205384A
Authority
JP
Japan
Prior art keywords
punch
pressing
boss
die
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000016506A
Other languages
Japanese (ja)
Other versions
JP3674437B2 (en
Inventor
Masayoshi Ogura
真義 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000016506A priority Critical patent/JP3674437B2/en
Publication of JP2001205384A publication Critical patent/JP2001205384A/en
Application granted granted Critical
Publication of JP3674437B2 publication Critical patent/JP3674437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of forming gears with bosses for which a boss diameter is the groove bottom diameter of an outer tooth or less and the height is respectively different with a high material yield. SOLUTION: Pressurizing started in an initial state where the upper punch of a tightly closed die provided with a die where a tooth die corresponding to the outer tooth is formed and the upper punch and a lower punch for closing the die hole of the die is divided by a diameter equal to the boss outer diameter of a product to be obtained and the pressurizing surface of the inner punch is moved backward or forward from the pressurizing surface of an outer punch for a prescribed dimension. Pressurizing by the outer punch is continued as it is until work is ended. For pressurizing by the inner punch, a prescribed tool surface pressure is maintained after the tool surface pressure is raised to a prescribed value by integral pressurizing with the outer punch until the pressurizing surface is moved back for a fixed distance from the initial position and then it is cancelled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、歯車、より具体的
には一方の端面にボスを有する平歯車やはすば歯車(以
下、単にボス付き歯車という)の密閉金型を用いた冷間
または温間による成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold gear using a hermetically closed mold of a gear, more specifically a spur gear or a helical gear having a boss on one end surface (hereinafter simply referred to as a bossed gear). Or, it relates to a warm forming method.

【0002】[0002]

【従来の技術】上記のボス付き歯車は、一般に、熱間鍛
造でブランクを成形し、このブランクに切削加工を施し
て製品とされていた。しかし、この方法は、旋削→ホブ
切り→面取り→シェービング→浸炭焼入→ホーニングと
製造工程が長く、コスト高につく。このため、製造工程
の短縮化の要望が強く、これに応えるために、従来から
金型を用いた冷間鍛造による種々の歯車成形方法の開発
がなされてきた。
2. Description of the Related Art Generally, the above-mentioned bossed gear is formed into a product by forming a blank by hot forging and subjecting the blank to a cutting process. However, this method requires a long manufacturing process of turning → hobbing → chamfering → shaving → carburizing and quenching → honing, resulting in high cost. For this reason, there is a strong demand for shortening the manufacturing process, and in order to meet this demand, various gear forming methods by cold forging using a mold have been conventionally developed.

【0003】図3は、その代表的な方法の1つで、低い
工具面圧での成形が可能な不完全密閉金型を用いた1段
階捨て軸法と称される方法を説明するための図である。
FIG. 3 is a diagram illustrating one of the typical methods, which is referred to as a one-stage discarding axle method using an imperfectly closed mold that can be formed at a low tool surface pressure. FIG.

【0004】すなわち、この1段階捨て軸法は、図に示
すように、ダイス孔の内周面に得るべき製品の外歯に対
応する歯型1aが形成され、この歯型1aに歯合する歯
型4aが外周面に形成された下パンチ4が歯合されたダ
イ1内に中空の被加工材料2を配置するとともに、被加
工材料2の軸心部にその大径部が位置するようにマンド
レル5を配置する。そして、この状態で内径がマンドレ
ル5の大径部の外径よりも大きい上パンチ3により加圧
し、加工中にマンドレル5と上パンチ3の内径で画成さ
れる空隙部に被加工材料2を流入させるようにした方法
である。
That is, in the one-stage discarding shaft method, as shown in the drawing, a tooth mold 1a corresponding to the external teeth of the product to be obtained is formed on the inner peripheral surface of the die hole, and meshes with the tooth mold 1a. The hollow work material 2 is arranged in the die 1 in which the lower punch 4 having the tooth mold 4a formed on the outer peripheral surface is meshed, and the large diameter portion is located at the axial center of the work material 2. The mandrel 5. Then, in this state, the inner material is pressurized by the upper punch 3 whose inner diameter is larger than the outer diameter of the large diameter portion of the mandrel 5, and the material 2 to be processed is filled in the gap defined by the inner diameter of the mandrel 5 and the upper punch 3 during processing. It is a method that is made to flow.

【0005】この1段階捨て軸法によれば、マンドレル
5と上パンチ3の内径で画成される空隙部に流入した材
料6の部分をボスと見なすことができ、ボス付き歯車が
成形可能である。しかし、この1段階捨で軸法は、ボス
径が歯車全体の横断面積に対する面積率で約40%以下
で、しかもボス高さがボス径に応じた一定高さのボス付
き歯車しか成形できないという欠点を有している。この
ことは、図4に示す実験結果から明らかである。
[0005] According to the one-stage discard shaft method, the portion of the material 6 flowing into the gap defined by the inner diameter of the mandrel 5 and the upper punch 3 can be regarded as a boss, and a bossed gear can be formed. is there. However, according to the single-step shaft method, the boss diameter is only about 40% or less in terms of the area ratio to the cross-sectional area of the entire gear, and the boss height can be formed only with a bossed gear having a constant height corresponding to the boss diameter. Has disadvantages. This is clear from the experimental results shown in FIG.

【0006】図4は、表1に示す化学組成を有する2鋼
種のうちの鋼種S10C製で、その寸法諸元が表2に示
すヘリカル歯車を、前述した図3の上パンチ3の内径を
種々変化させて室温下で成形した際における結果の一例
を示す図で、横軸に平均工具面圧、縦軸にボス高さを採
って示してある。
FIG. 4 shows a helical gear of the steel type S10C of the two steel types having the chemical compositions shown in Table 1 having the dimensional specifications shown in Table 2 and various inner diameters of the upper punch 3 shown in FIG. FIG. 7 is a diagram showing an example of a result when molding is performed at room temperature while changing the average tool surface pressure on the horizontal axis and the boss height on the vertical axis.

【0007】なお、横軸の平均工具面圧は下パンチに作
用する荷重をその受圧面積で除して求められる値(MP
a)、縦軸のボス高さはボスを含む全高さに対するボス
高さ率(%)であり、図中の( )内値はダイ1の歯型
に対する材料の充満率(%)である。
[0007] The average tool surface pressure on the horizontal axis is a value (MP) obtained by dividing the load acting on the lower punch by its pressure receiving area.
a), the boss height on the vertical axis is the boss height ratio (%) with respect to the total height including the boss, and the value in parentheses in the figure is the filling ratio (%) of the material for the die of the die 1.

【0008】また、図4は、被加工材料2として、その
質量がいずれも切削加工後の製品の質量の1.1倍のも
のを用いた場合の結果である。
FIG. 4 shows the results when the material 2 to be processed is 1.1 times the mass of the product after cutting.

【0009】[0009]

【表1】 [Table 1]

【表2】 この図4からわかるように、ボス径が歯車全体の横断面
積に対する面積率で33%と40%の場合には、ダイ1
の歯型1aに対する材料の充満率が100%になる平均
工具面圧が存在する。したがって、完全な外歯を有する
ボス(図3中の6部分)付き歯車の成形が可能である。
しかし、そのボス高さは、ボスの面積率が33%の場合
にはボスを含む全高さの40%、40%の場合には47
%と一定であり、これよりも高さの低いボスや高いボス
は成形できない。
[Table 2] As can be seen from FIG. 4, when the boss diameter is 33% or 40% in area ratio with respect to the cross-sectional area of the entire gear, the die 1
There is an average tool surface pressure at which the filling rate of the material with respect to the tooth mold 1a becomes 100%. Therefore, it is possible to form a gear with bosses (6 parts in FIG. 3) having complete external teeth.
However, the boss height is 40% of the total height including the boss when the boss area ratio is 33%, and 47% when the boss area ratio is 40%.
%, And bosses having a lower height or a higher boss cannot be formed.

【0010】これに対し、ボスの面積率が50%と65
%の場合には、ダイ1の歯型1aに対する材料の充満率
が100%になる平均工具面圧が存在しない。したがっ
て、ボスは成形されるが製品の外歯が成形されず、完全
な外歯を有するボス付き歯車の成形は不可能である。な
お、ボスの面積率65%とは、ボス径が外歯の溝底径に
等しいことを意味している。
On the other hand, the area ratio of the boss is 50% and 65%.
In the case of%, there is no average tool surface pressure at which the filling ratio of the material to the mold 1a of the die 1 becomes 100%. Therefore, the boss is formed, but the external teeth of the product are not formed, and it is impossible to form a bossed gear having complete external teeth. The boss area ratio of 65% means that the boss diameter is equal to the groove bottom diameter of the external teeth.

【0011】ここで、ボスの面積率が40%を超えると
完全な外歯を有するボス付き歯車の成形が不可能になる
のは、マンドレル5と上パンチ3の内径で画成される空
隙部の断面積が大きすぎ、この空隙部への材料流入抵抗
が不足するためである。
Here, if the area ratio of the boss exceeds 40%, it is impossible to form a bossed gear having complete external teeth because of the gap defined by the inner diameter of the mandrel 5 and the upper punch 3. Is too large, and the material inflow resistance into this gap is insufficient.

【0012】なお、図示は省略するが、表1に示す鋼種
SCr420Hの場合も、横軸の平均工具面圧がS10
Cの場合よりも変形抵抗が大きい分だけ増大するが、図
4と同じ結果であった。すなわち、S10Cの変形抵抗
は、ひずみが1の時、482MPaであり、SCr42
0Hでは623MPaで、その比1.3倍だけ、平均工
具面圧が増大した結果であった。
Although not shown, in the case of steel type SCr420H shown in Table 1, the average tool surface pressure on the horizontal axis is S10.
Although the deformation resistance is increased by a greater amount than in the case of C, the same result as in FIG. 4 was obtained. That is, the deformation resistance of S10C is 482 MPa when the strain is 1, and
At 0H, the average tool surface pressure was 623 MPa, which was 1.3 times that of the average pressure.

【0013】ところが、実際に要求されるボス付き歯車
には、ボスの面積率が40%を超えるものや、40%以
下でもその高さが種々異なるものがある。具体的に例示
すると、例えば自動車の手動変速機用のボス付き歯車に
は、表3に示すような寸法範囲のものが多い。また、そ
の軸孔の内周面にはスプラインと称される内歯を有する
ものもあり、このようなボス付き歯車を高い材料歩留ま
りで成形することが可能な方法の開発が強く望まれてい
た。
However, the bossed gears actually required include those having an area ratio of the boss exceeding 40% and those having various heights even when the boss area ratio is 40% or less. Specifically, for example, many bossed gears for a manual transmission of an automobile have a size range as shown in Table 3. In addition, some of the inner peripheral surfaces of the shaft holes have internal teeth called splines, and development of a method capable of forming such a bossed gear with a high material yield has been strongly desired. .

【0014】[0014]

【表3】 [Table 3]

【発明が解決しようとする課題】本発明の第1の目的
は、ボスの面積率が65%以下、すなわちボス径が外歯
の溝底径以下で、かつその高さが種々異なるボス付き歯
車を高い材料歩留まりで成形することが可能な方法を提
供することにある。また、第2の目的は、得るべき製品
が内歯を備えた軸孔を有する場合、全高さにわたって十
分な深さを有する内歯を備えたボス付き歯車を成形する
ことが可能な方法を提供することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to provide a bossed gear in which the area ratio of the boss is 65% or less, that is, the boss diameter is not more than the groove bottom diameter of the external teeth and the height thereof is variously different. Is to provide a method that can be molded with a high material yield. A second object is to provide a method capable of forming a bossed gear with internal teeth having a sufficient depth over the entire height when a product to be obtained has a shaft hole with internal teeth. Is to do.

【0015】[0015]

【発明が解決しようとする課題】本発明者は、上記の課
題を達成するために数多くの実験を行った。その結果、
以下のことを知見した。
The present inventor has conducted a number of experiments to achieve the above object. as a result,
The following has been found.

【0016】上パンチには、得るべき製品のボス径に等
しい径で分割された内パンチと外パンチとからなるもの
を用いる必要がある。
It is necessary to use an upper punch having an inner punch and an outer punch divided by a diameter equal to the diameter of a boss of a product to be obtained.

【0017】内パンチと外パンチによる加圧は、内パン
チの加圧面を得るべき製品のボス高さに等しい寸法だけ
外パンチの加圧面から後退させた位置に初期設定して加
圧する方法では不十分で、下記のいずれかに初期設定し
て内外パンチの両方で加圧を開始する必要がある。
Pressing by the inner punch and the outer punch is not performed by a method in which the inner punch is initially set at a position retracted from the pressing surface of the outer punch by a dimension equal to the boss height of the product to obtain the pressing surface of the inner punch, and the pressing is not performed. Sufficient, it is necessary to initialize to one of the following and start pressurization with both inner and outer punches.

【0018】すなわち、その1つは、内パンチの加圧面
を外パンチの加圧面から所定の距離だけ後退させた位
置、具体的には得るべき製品のボス高さの90%以下の
範囲内で後退させた位置に設定する。他の1つは、内外
パンチの加圧面を一致させるか、または内パンチの加圧
面を外パンチの加圧面から所定の距離だけ前進させた位
置、具体的には得るべき製品のボス高さの30%以下の
範囲内で前進させた位置に設定する。
That is, one of them is a position where the pressing surface of the inner punch is retreated by a predetermined distance from the pressing surface of the outer punch, specifically, within a range of 90% or less of the boss height of the product to be obtained. Set to the retracted position. The other is to match the pressing surfaces of the inner and outer punches or to advance the pressing surface of the inner punch by a predetermined distance from the pressing surface of the outer punch, specifically, the height of the boss height of the product to be obtained. Set to a position advanced within 30% or less.

【0019】そして、内外パンチの両方による加圧開始
後は、外パンチによる加圧はそのまま加工終了まで継続
してよいが、内パンチによる加圧はその加圧面が初期設
定位置から一定の距離だけ後退する間、所定の工具面圧
に維持し、しかる後に内パンチによる加圧を解除する必
要がある。
After the start of pressurization by both the inner and outer punches, pressurization by the outer punch may be continued as it is until processing is completed. During retraction, it is necessary to maintain a predetermined tool surface pressure, and then release the pressurization by the inner punch.

【0020】また、得るべきボス付き歯車が内歯を備え
た軸孔を有する場合は、外径が前記の軸孔径に等しく、
その外周面に製品の内歯に対応する歯型が形成されたマ
ンドレルを被加工材料の軸心部に配置する。しかし、そ
れだけでは不十分で、上記の内パンチによる加圧解除後
における外パンチのみでの加圧による加工終了後、所定
の工具面圧で内パンチによる再加圧を行う必要がある。
When the bossed gear to be obtained has a shaft hole with internal teeth, the outer diameter is equal to the shaft hole diameter.
A mandrel having a tooth pattern corresponding to the internal teeth of the product formed on its outer peripheral surface is arranged at the axial center of the material to be processed. However, this is not enough, and it is necessary to perform re-pressing by the inner punch at a predetermined tool surface pressure after the end of working by pressurizing only by the outer punch after releasing the press by the inner punch.

【0021】上記の知見に基づく本発明の要旨は、下記
(1)〜(3)のボス付き歯車の成形方法にある。 (1)ダイス孔の内周面に製品の外歯に対応する歯型が
形成されたダイと、ダイのダイス孔を閉塞する上パンチ
と下パンチとを具備する密閉金型を用い、ダイのダイス
孔に配置された被加工材料を主に上パンチで加圧してダ
イス孔の隅々にまで被加工材料を完全充満させることに
よって一方の端面にボスを有するボス付き歯車を成形す
る際、前記の上パンチとして得るべき製品のボス外径と
等しい径で外パンチと内パンチとに分割された分割パン
チを用いるとともに、内パンチの加圧面を得るべき製品
のボス高さの90%以下の範囲内で外パンチの加圧面よ
りも後退させた初期設定状態で内外パンチの両方による
加圧を開始し、その後外パンチによる加圧はそのまま継
続する一方、内パンチによる加圧はその加圧面が前記の
初期設定位置から一定の距離だけ後退するまでの間、所
定の工具面圧に維持した後に内パンチによる加圧を解除
し、この内パンチの加圧解除後もさらに外パンチによる
加圧を継続するボス付き歯車の成形方法。 (2)ダイス孔の内周面に製品の外歯に対応する歯型が
形成されたダイと、ダイのダイス孔を閉塞する主パンチ
と下パンチとを具備する密閉金型を用い、ダイのダイス
孔に配置された被加工材料を主に主パンチで加圧してダ
イス孔の隅々にまで被加工材料を完全充満させることに
よって一方の端面にボスを有するボス付き歯車を成形す
る際、前記の上パンチとして得るべき製品のボス外径と
等しい径で外パンチと内パンチとに分割された分割パン
チを用いるとともに、内外パンチの加圧面を一致させる
か、または内パンチの加圧面を得るべき製品のボス高さ
の30%以下の範囲内で外パンチの加圧面よりも前進さ
せた初期設定状態で内外パンチの両方による加圧を開始
し、その後外パンチによる加圧は継続する一方、内パン
チによる加圧はその加圧面が前記の初期設定位置から一
定の距離だけ後退するまでの間、所定の工具面圧に維持
した後に内パンチによる加圧を解除し、この内パンチの
加圧解除後もさらに外パンチによる加圧を継続するボス
付き歯車の成形方法。 (3)上記(1)または(2)に記載のボス付き歯車の
成形方法において、得るべき製品が内歯を備えた軸孔を
有する場合、被加工材料の軸心部に内パンチと下パンチ
の軸深部を貫通する外径が前記の軸孔径に等しく、その
外周面に得るべき製品の内歯に対応する歯型が形成され
た形成されたマンドレルを配置する一方、内パンチによ
る加圧解除後における外パンチによる加圧終了後、外パ
ンチを後退させた後に被加工材料の変形抵抗の2.7〜
3.3倍の工具面圧で内パンチによる再加圧を行うボス
付き歯車の成形方法。
The gist of the present invention based on the above findings lies in the following method (1) to (3) for forming a bossed gear. (1) Using a die in which a tooth pattern corresponding to the external teeth of the product is formed on the inner peripheral surface of the die hole, and a closed die having an upper punch and a lower punch for closing the die hole of the die, When forming a bossed gear having a boss on one end face by pressing the work material arranged in the die hole mainly with an upper punch and completely filling the work material to every corner of the die hole, A split punch having a diameter equal to the outer diameter of the boss of the product to be obtained as the upper punch, divided into an outer punch and an inner punch, and having a pressing surface of the inner punch of 90% or less of the boss height of the product to be obtained. Pressurization by both the inner and outer punches is started in the initial setting state in which the inner punch is retracted from the pressurizing surface of the outer punch, and then pressurization by the outer punch is continued as it is, while pressurization by the inner punch is such that the pressurizing surface is From the default setting Until retreating by a certain distance, the pressurization by the inner punch is released after maintaining the predetermined tool surface pressure, and after the release of pressurization of the inner punch, the gear with boss that continues to pressurize by the outer punch further Molding method. (2) Using a die in which a tooth pattern corresponding to the external teeth of the product is formed on the inner peripheral surface of the die hole, and a closed die having a main punch and a lower punch for closing the die hole of the die, When forming a bossed gear having a boss on one end face by pressing the work material arranged in the die hole mainly with a main punch to completely fill the work material to every corner of the die hole, Use the split punch divided into an outer punch and an inner punch with a diameter equal to the outer diameter of the boss of the product to be obtained as the upper punch, and match the pressing surfaces of the inner and outer punches or obtain the pressing surface of the inner punch Pressing by both the inner and outer punches is started in an initial setting state in which the outer punch is advanced from the pressing surface of the outer punch within a range of 30% or less of the boss height of the product. Pressing with a punch Until the pressing surface retreats by a certain distance from the initial setting position, the pressing by the inner punch is released after maintaining the predetermined tool surface pressure, and after the releasing of the inner punch, the pressing by the outer punch is further performed. A method of forming a bossed gear that continues to be pressurized. (3) In the method of forming a bossed gear according to the above (1) or (2), when the product to be obtained has a shaft hole having internal teeth, an inner punch and a lower punch are provided at the shaft center of the material to be processed. The outer diameter penetrating the deep part of the shaft is equal to the diameter of the shaft hole, and a mandrel formed with a tooth pattern corresponding to the internal teeth of the product to be obtained is arranged on the outer peripheral surface thereof, while the pressure is released by the inner punch. After the pressing by the outer punch is completed, the outer punch is retracted, and then the deformation resistance of the material to be processed is 2.7 to 2.7.
3.3 A method of forming a bossed gear in which re-pressing is performed by an inner punch with a tool pressure three times as large.

【0022】上記(1)の方法においては、内外パンチ
による加圧開始の前に、内パンチの加圧面を外パンチの
加圧面よりも前進させた状態で加圧を行うのが好まし
い。
In the above-mentioned method (1), it is preferable that the pressing is performed with the pressing surface of the inner punch being advanced from the pressing surface of the outer punch before the pressing by the inner and outer punches is started.

【0023】また、(1)と(2)の方法における前記
所定の工具面圧は、前者の場合には被加工材料の変形抵
抗の2.5倍または下パンチに加わる荷重を下パンチの
受圧面積で除して求められる平均工具面圧の0.80倍
以下、後者の場合には被加工材料の変形抵抗の2.15
倍または下パンチに加わる荷重を下パンチの受圧面積で
除して求められる平均工具面圧の0.80倍以下とする
のが好ましい。
In the case of the former, the predetermined tool surface pressure in the methods of (1) and (2) is 2.5 times the deformation resistance of the work material or the load applied to the lower punch, 0.80 times or less of the average tool surface pressure obtained by dividing by the area, and in the latter case, 2.15 of the deformation resistance of the work material
It is preferable that the average tool surface pressure is 0.80 times or less of the average tool surface pressure obtained by dividing the load applied to the double punch or the lower punch by the pressure receiving area of the lower punch.

【0024】さらに、(3)の方法における内パンチに
よる再加圧は、被加工材料の変形抵抗の2.8〜3.1
倍の工具面圧で行うのがより好ましい。
Further, the re-pressing by the inner punch in the method (3) causes the deformation resistance of the material to be processed to be 2.8 to 3.1.
It is more preferable to carry out with double tool surface pressure.

【0025】[0025]

【発明の実施の形態】以下、本発明のボス付き歯車の成
形方法について、得るべき製品がはすば歯車の場合を例
に挙げて、添付図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for forming a bossed gear of the present invention will be described in detail with reference to the accompanying drawings, taking a case where a product to be obtained is a helical gear as an example.

【0026】まず始めに、本発明で用いる完全密閉型の
金型について説明する。なお、従来の一段階捨て軸法で
用いられる不完全密閉金型と同様の部材には、従来と同
じ符号を付して説明する。
First, a completely closed mold used in the present invention will be described. The same members as those of the incompletely closed mold used in the conventional one-stage discard shaft method will be described with the same reference numerals.

【0027】図1は、本発明の方法で用いる完全密閉型
の金型の一例を示す模式的縦断面である。図に示すよう
に、金型は、軸長方向の全長にわたってはすば歯車の外
歯を成形するための歯型1aがその全周面に形成された
ダイス孔を有するダイ1、前記の歯型1aに歯合する歯
型4aが外周面に形成されていてその一部が前記の歯型
1aに歯合された中空の下パンチ4、この下パンチ4の
中空部に配置された中実の軸長方向に同一外径のマンド
レル50、得るべき製品のボス径と等しい径で2分割さ
れ、その内径がマンドレル50の外径と実質的に等しい
内パンチ3aと、外径がダイ1のダイス孔径よりも大き
い外パンチ3bで構成されている。
FIG. 1 is a schematic longitudinal sectional view showing an example of a completely closed mold used in the method of the present invention. As shown in the figure, the mold is a die 1 having a die hole formed on the entire peripheral surface thereof with a tooth mold 1a for forming the external teeth of the helical gear over the entire length in the axial direction, and the teeth described above. A lower mold 4 is formed on the outer peripheral surface of the mold 4a meshing with the mold 1a, a part of which is meshed with the mold 1a, and a solid arranged in the hollow portion of the lower punch 4. A mandrel 50 having the same outer diameter in the axial direction, an inner punch 3a having an inner diameter substantially equal to the outer diameter of the mandrel 50, and an inner punch 3a having an inner diameter substantially equal to the outer diameter of the mandrel 50; The outer punch 3b is larger than the die hole diameter.

【0028】上記のダイ1は、複動プレスの基台7に対
し、スラストベアリングなどの適宜な手段を介してスプ
リングなどの伸縮自在な部材8により、その下面が支持
されている。
The lower surface of the die 1 is supported on a base 7 of a double-acting press by a telescopic member 8 such as a spring via an appropriate means such as a thrust bearing.

【0029】金型を構成する上記各工具のうち、下パン
チ4、マンドレル50、内パンチ3aおよび外パンチ3
bは、複動プレス(図示は省略するが、下方が2シリン
ダー、上方が3シリンダーの複動プレス)の各ラムに対
して個別に連結されている。
Among the above-mentioned tools constituting the mold, the lower punch 4, the mandrel 50, the inner punch 3a and the outer punch 3
b is individually connected to each ram of a double-acting press (a double-acting press having two cylinders at the bottom and three cylinders at the top, although not shown).

【0030】なお、プレスは油圧ダイセット付きの機械
式プレスであってもよい。また、内パンチ3aが連結さ
れたラムには、荷重計と距離計が取り付けられており、
内パンチ3aに作用する工具面圧(加圧力)と外パンチ
3bに対する内パンチ3aの相対移動距離が測定可能
で、その工具面圧を所定の値に一定の時間保持できるよ
うになっている。なお、荷重計は各工具に取り付けても
よく、距離計は外パンチ3bにも取り付けるのが望まし
い。
The press may be a mechanical press with a hydraulic die set. A load meter and a distance meter are attached to the ram to which the inner punch 3a is connected.
The tool surface pressure (pressing force) acting on the inner punch 3a and the relative movement distance of the inner punch 3a with respect to the outer punch 3b can be measured, and the tool surface pressure can be maintained at a predetermined value for a certain period of time. The load meter may be attached to each tool, and the distance meter is desirably attached to the outer punch 3b.

【0031】次に、上記のように構成された金型による
はすば歯車の成形方法のうち、第1の方法(特許請求の
範囲の欄の請求項1に記載の方法)について説明する。
Next, the first method (the method described in claim 1 of the claims) will be described among the methods of forming the helical gear using the mold configured as described above.

【0032】すなわち、第1の方法においては、図1の
(a)に示すように、内パンチ3aの加圧面を外パンチ
3bの加圧面よりも距離Aだけ後退させた位置に初期設
定する。また、この初期設定前または後に、被加工材料
2をダイ1のダイス孔内に装入して下パンチ4上に載置
する。この時、被加工材料2としては、外径がダイス孔
内径と同一またはそれよりも若干小さく、内径がマンド
レル50の外径と同一またはそれよりも若干大きく、か
つ質量が得るべき製品の質量に成形後の切削代に相当す
る質量を加えた質量のものを用いる。
That is, in the first method, as shown in FIG. 1A, the pressing surface of the inner punch 3a is initially set to a position retracted by a distance A from the pressing surface of the outer punch 3b. Before or after the initial setting, the work material 2 is loaded into the die hole of the die 1 and placed on the lower punch 4. At this time, as the material to be processed 2, the outer diameter is equal to or slightly smaller than the inner diameter of the die hole, the inner diameter is equal to or slightly larger than the outer diameter of the mandrel 50, and the mass is equal to the mass of the product to be obtained. A material having a mass obtained by adding a mass corresponding to a cutting allowance after molding is used.

【0033】次いで、内パンチ3aと外パンチ3bを同
時に下降させて両パンチの相互の位置関係を変えずに加
圧を行い、内パンチ3aの工具面圧が所定の値になるま
で継続する。その後、外パンチ3bは外歯の高さが得る
べき製品の高さに達するまで加圧を継続する。
Next, the inner punch 3a and the outer punch 3b are simultaneously lowered to apply pressure without changing the mutual positional relationship between the two punches, and continue until the tool surface pressure of the inner punch 3a reaches a predetermined value. Thereafter, the outer punch 3b continues pressurizing until the height of the external teeth reaches the height of the product to be obtained.

【0034】一方、内パンチ3aは、外パンチ3bとの
一体の加圧により所定の工具面圧の値に到達してから、
加圧の進行に伴って被加工材料2が塑性変形して図1
(b)を経て図1(c)に示す状態、すなわち、内パン
チ3aの加圧面が初期設定位置から一定の距離Bだけ後
退するまでの間、その工具面圧を所定の値に保持して加
圧し、内パンチ3aの加圧面が距離Bだけ後退した時点
で内パンチによる加圧を解除する。
On the other hand, after the inner punch 3a reaches a predetermined tool surface pressure value by the integral pressurization with the outer punch 3b,
The material 2 to be processed is plastically deformed with the progress of pressurization.
After the state shown in FIG. 1C, the tool surface pressure is maintained at a predetermined value until the pressing surface of the inner punch 3a retreats by a predetermined distance B from the initial setting position, as shown in FIG. 1C. When the pressure is applied and the pressing surface of the inner punch 3a retreats by the distance B, the pressing by the inner punch is released.

【0035】上記のようにして外パンチ3bと内パンチ
3aで被加工材料2を加圧する場合には、ボスの面積率
が40%を超える場合でも、マンドレル50に沿った上
方への材料流入量が内パンチ3aの加圧面によって規制
されるので、図1(c)に示すように、ダイ1の歯型1
aに対する材料の充満率が100%となる。
When the work material 2 is pressed by the outer punch 3b and the inner punch 3a as described above, even when the area ratio of the boss exceeds 40%, the amount of material flowing upward along the mandrel 50 is increased. Is regulated by the pressing surface of the inner punch 3a, and as shown in FIG.
The filling rate of the material with respect to a becomes 100%.

【0036】また、ボスの高さは、図1(d)に示すよ
うに、上記内ダイス3aによる加圧解除後も継続する外
パンチ3bによる加圧により、材料が内ダイス3aの抵
抗を受けることなくマンドレル50に沿って上方へ流入
するので確保される。
Further, as shown in FIG. 1D, the height of the boss is such that the material receives the resistance of the inner die 3a due to the pressing by the outer punch 3b which continues even after the pressing by the inner die 3a is released. It is ensured because it flows upward along the mandrel 50 without any problem.

【0037】この第1の方法において、上記の距離Aと
Bおよび内パンチ3aが距離Bだけ後退する間保持する
内パンチ3aの工具面圧は、得るべきボス付き歯車の鋼
種によっては、ひずみが1の時の変形抵抗の大きさの比
で決まるだけであるが、その寸法および歯車諸元によっ
て異なる。したがって、これらの値は、予め実験を行っ
て適宜定める必要があるが、例えば、鋼種が前述の表1
に示すS10C製、歯車本体が同じく前述の表2に示す
はすば歯車で、かつボスの面積率が40%と50%であ
り、ボス高さがいずれもボスを含む全高さの40〜50
%のボス付きはすば歯車の場合、上記の距離Aは10m
m、距離Bは1mmとし、内パンチ3aの加圧面が距離
Bだけ後退する間保持する内パンチ3aの工具面圧はボ
スの面積率に応じて表4に示す範囲とするのがよい。
In the first method, the tool surface pressure of the inner punch 3a, which is maintained while the distances A and B and the inner punch 3a are retracted by the distance B, depends on the steel type of the bossed gear to be obtained. It is determined only by the ratio of the magnitude of the deformation resistance at the time of 1, but it depends on the size and gear specifications. Therefore, these values need to be determined as appropriate by conducting experiments in advance.
The gear body is also a helical gear shown in Table 2 above, and the area ratio of the boss is 40% and 50%, and the boss height is 40 to 50 of the total height including the boss.
In the case of a helical gear with a boss of%, the above distance A is 10 m
m, the distance B is 1 mm, and the tool surface pressure of the inner punch 3a, which is maintained while the pressing surface of the inner punch 3a is retracted by the distance B, is preferably in the range shown in Table 4 according to the area ratio of the boss.

【0038】[0038]

【表4】 ただし、距離Aは、得るべき製品のボス高さの90%以
下の値とする必要がある。その理由は、距離Aが得るべ
き製品のボス高さの90%を超えると、実質的に距離B
が確保できなくなり、下パンチ4に作用する平均工具面
圧が過大になって金型が破損する恐れがある。このた
め、上記第1の方法では、距離Aを得るべき製品のボス
高さの90%以下の範囲内とした。
[Table 4] However, the distance A needs to be a value of 90% or less of the boss height of the product to be obtained. The reason is that if the distance A exceeds 90% of the boss height of the product to be obtained, the distance
Cannot be secured, and the average tool surface pressure acting on the lower punch 4 becomes excessive, which may damage the mold. For this reason, in the first method, the distance A is set within a range of 90% or less of the boss height of the product for which the distance A is to be obtained.

【0039】なお、以上に述べた第1の方法は、ボスの
面積率が大きい場合、成形途中において上部の外歯は十
分に成形されるが下部の外歯が十分に成形されず、加工
途中でダイ1の上部のダイス孔が大きくなることがあ
る。その結果、得られた製品のオーバーボールダイアが
上部で大きく、下部で小さくなり、用途によっては要求
される寸法仕様を満たさなくなるものや、著しい場合に
は外歯の部分に被さり疵と称される欠陥が生じることが
ある。
In the first method described above, when the area ratio of the boss is large, the upper external teeth are sufficiently formed during the forming, but the lower external teeth are not sufficiently formed during the forming. As a result, the die hole above the die 1 may become large. As a result, the overball die of the obtained product is large in the upper part and small in the lower part. Depending on the application, it does not satisfy the required dimensional specification, and in the case of extreme, it is called a flaw on the external teeth part Defects may occur.

【0040】例えば、上記のボスの面積率が50%のボ
ス付き歯車の場合、上下のオーバーボールダイア差が
0.07〜0.09mmにもなって自動車のトランスミ
ッション用には不適なものになったり、ボスの面積率が
65%のボス付き歯車の場合、上記の欠陥が生じること
がある。
For example, in the case of a gear with a boss having an area ratio of the boss of 50%, the difference between the upper and lower overball dias is 0.07 to 0.09 mm, which is unsuitable for an automobile transmission. In the case of a bossed gear having a boss area ratio of 65%, the above-described defect may occur.

【0041】第1の方法において生じる上記のような問
題は、次の手段を講じることにより解決することができ
る。すなわち、その手段は、上記の初期設定状態での内
外パンチの両方による加圧開始の前に、内パンチ3aの
加圧面を外パンチ3bの加圧面よりも前進させた状態で
予備加圧を行う方法である。この予備加圧を行う場合に
は、被加工材料2の中央部分が主として圧縮変形し、長
手方向の中央部が外側に膨らんだ形状になる。その結
果、その後の加工において上記のような変形態様が生じ
なくなり、上下のオーバーボールダイア差の小さな製品
が得られるようになる。
The above-described problem that occurs in the first method can be solved by taking the following measures. That is, the means performs pre-pressurization in a state where the pressurized surface of the inner punch 3a is advanced from the pressurized surface of the outer punch 3b before the pressurization by both the inner and outer punches in the initial setting state starts. Is the way. When this preliminary pressurization is performed, the central portion of the workpiece 2 mainly undergoes compressive deformation, and the central portion in the longitudinal direction has a shape bulging outward. As a result, in the subsequent processing, the above-described deformation mode does not occur, and a product having a small difference between the upper and lower overball dies can be obtained.

【0042】したがって、第1の方法においては、上記
の初期設定状態での内外パンチの両方による加圧開始の
前に、内パンチ3aの加圧面を外パンチ3bの加圧面よ
りも前進させた状態で予備加圧を行うのが好ましい。な
お、その際の予備加圧量としては、加圧前の被加工材料
2の高さをH0、製品の外歯の高さをH1とした時、下式
で定義される据込み率で15〜25%程度とするのがよ
い。
Therefore, in the first method, before the pressurization by both the inner and outer punches in the initial setting state, the pressurized surface of the inner punch 3a is advanced from the pressurized surface of the outer punch 3b. It is preferable to perform preliminary pressurization. The pre-pressurizing amount at this time is as follows: when the height of the workpiece 2 before pressing is H 0 and the height of the external teeth of the product is H 1 , the upsetting ratio defined by the following equation: And about 15 to 25%.

【0043】 据込み率=(1−H1/H0)×100(%) しかし、この予備加圧工程の付加は加工時間の増加を招
くが、この問題は次に説明する第2の方法(特許請求の
範囲の欄の請求項4に記載の方法)により解決できる。
Upsetting ratio = (1−H 1 / H 0 ) × 100 (%) However, the addition of the pre-pressing step causes an increase in processing time, but this problem is caused by a second method described below. (The method according to claim 4 in the claims).

【0044】図2は、第2の方法を説明するための図で
あり、この第2の方法は、図2の(a)に示すように、
内パンチ3aの加圧面を外パンチ3bの加圧面よりも距
離Cだけ前進させた位置に初期設定した状態で内パンチ
3aと外パンチ3bの両方による加圧を開始し、その後
は実質的に第1の方法と同じ工程を採る方法である。具
体的には、外パンチ3bによる加圧は、第1の方法と同
じく、外歯の高さが得るべき製品の高さに達するまでそ
のまま継続する。これに対し、内パンチ3aによる加圧
は、外パンチ3bと一体の加圧の進行に伴ってその工具
面圧が所定の値にまで上昇した時点から被加工材料2が
塑性変形して図2(b)を経て図2(c)に示す状態、
すなわち、内パンチ3aの加圧面が初期設定位置から一
定の距離Dだけ後退するまでの間、その工具面圧を所定
の値に保持して加圧し、内パンチ3aの加圧面が距離D
だけ後退して時点で内パンチによる加圧を解除する。
FIG. 2 is a diagram for explaining the second method. As shown in FIG.
Pressing by both the inner punch 3a and the outer punch 3b is started in a state where the pressing surface of the inner punch 3a is initially set at a position advanced by a distance C from the pressing surface of the outer punch 3b, and thereafter the second punch is substantially turned on. This method employs the same steps as the method 1. Specifically, the pressurization by the outer punch 3b is continued as in the first method until the height of the external teeth reaches the height of the product to be obtained. On the other hand, the pressurization by the inner punch 3a starts with the work material 2 being plastically deformed from the time when the tool surface pressure rises to a predetermined value with the progress of pressurization integrated with the outer punch 3b. The state shown in FIG. 2C through (b),
That is, until the pressing surface of the inner punch 3a retreats from the initial setting position by a certain distance D, the tool surface pressure is maintained at a predetermined value and the pressing is performed.
At this point, the pressure by the inner punch is released.

【0045】上記のようにして外パンチ3bと内パンチ
3aで被加工材料2を加圧する場合には、第1の方法の
場合と同様に、ボスの面積率が40%を超える場合で
も、マンドレル50に沿った上方への材料流入量が内パ
ンチ3aの加圧面によって規制されるので、図2(c)
に示すように、ダイ1の歯型1aに対する材料の充満率
が100%となる。
When the work material 2 is pressed by the outer punch 3b and the inner punch 3a as described above, even when the area ratio of the boss exceeds 40%, as in the case of the first method, the mandrel is pressed. Since the amount of material flowing upward along 50 is regulated by the pressing surface of the inner punch 3a, FIG.
As shown in the figure, the filling ratio of the material to the tooth mold 1a of the die 1 becomes 100%.

【0046】また、ボスの高さは、図2(d)に示すよ
うに、上記内ダイス3aによる加圧解除後も継続する外
パンチ3bによる加圧により、材料が内ダイス3aの抵
抗を受けることなくマンドレル50に沿って上方へ流入
するので確保される。
Further, as shown in FIG. 2D, the material receives the resistance of the inner die 3a due to the pressing by the outer punch 3b which continues even after the inner die 3a releases the pressing, as shown in FIG. 2D. It is ensured because it flows upward along the mandrel 50 without any problem.

【0047】さらに、加圧の初期に内パンチ3aによる
加圧を受けて被加工材料2の中央部分が圧縮変形し、そ
の材料形状が長手方向の中央部が外側に膨らんだ形状に
なるので、上下のオーバーボールダイア差の小さな製品
が得られる。
Further, the central portion of the material to be processed 2 is compressed and deformed by being pressed by the inner punch 3a at the initial stage of pressing, and the material shape becomes a shape in which the central portion in the longitudinal direction expands outward. A product with a small difference between the upper and lower overball dies can be obtained.

【0048】この第2の方法においても、第1の方法の
場合同様に、上記の距離CとDおよび内パンチ3aが距
離Dだけ後退する間保持する内パンチ3aの工具面圧
は、得るべきボス付き歯車の鋼種によっては、ひずみが
1の時の変形抵抗の大きさの比で決まるだけであるが、
その寸法および歯車諸元によって異なる。したがって、
これらの値は、予め実験を行って適宜定める必要がある
が、例えば、鋼種が前述の表1に示すS10C製、歯車
本体が同じく前述の表2に示すはすば歯車で、かつボス
の面積率が40%、50%および65%であり、ボス高
さがボスを含む全高さの30〜50%のボス付きはすば
歯車の場合、上記の距離CとDはいずれも1mmとし、
内パンチ3aの加圧面が距離Dだけ後退する間保持する
内パンチ3aの工具面圧はボスの面積率に応じて表5に
示す範囲とするのがよい。
In the second method, similarly to the first method, the tool surface pressure of the inner punch 3a to be held while the distances C and D and the inner punch 3a are retracted by the distance D should be obtained. Depending on the steel type of the bossed gear, it is determined only by the ratio of the magnitude of the deformation resistance when the strain is 1.
It depends on its size and gear specifications. Therefore,
These values need to be determined as appropriate by conducting experiments in advance. For example, the steel type is made of S10C shown in Table 1 above, the gear body is a helical gear also shown in Table 2 above, and the area of the boss is In the case of a helical gear with a boss having a ratio of 40%, 50%, and 65% and a boss height of 30 to 50% of the total height including the boss, the distances C and D are all 1 mm,
The tool surface pressure of the inner punch 3a, which is maintained while the pressing surface of the inner punch 3a retreats by the distance D, is preferably in the range shown in Table 5 according to the area ratio of the boss.

【0049】[0049]

【表5】 ただし、距離Cは、得るべき製品のボス高さの30%以
下の値とする必要がある。その理由は、距離Cが得るべ
き製品のボス高さの30%を超えると、必要なボス高さ
が確保できなくなる。このため、この第2の方法では、
距離Cを得るべき製品のボス高さの30%以下の範囲内
とした。
[Table 5] However, the distance C needs to be a value of 30% or less of the boss height of the product to be obtained. The reason is that if the distance C exceeds 30% of the boss height of the product to be obtained, the required boss height cannot be secured. Therefore, in this second method,
The distance C was set within a range of 30% or less of the boss height of the product to be obtained.

【0050】なお、この第2の方法においては、内外パ
ンチの加圧面の初期位置を上記のように設定する必要は
必ずしもなく、外パンチ3bの加圧面と内パンチ3aの
加圧面を一致させて両パンチによる加圧を開始しするよ
うにしてもよい。しかし、この場合には、得られた製品
の上下のオーバーボールダイア差が、第1の方法によっ
た場合よりも小さいものの若干大きくなる。このため、
その初期設定位置は上記のようにするのが好ましい。
In the second method, it is not always necessary to set the initial positions of the pressing surfaces of the inner and outer punches as described above, and the pressing surface of the outer punch 3b and the pressing surface of the inner punch 3a are matched. Pressurization by both punches may be started. However, in this case, the difference between the upper and lower overball dies of the obtained product is slightly larger than that obtained by the first method. For this reason,
The initial position is preferably as described above.

【0051】次に、第3の方法(特許請求の範囲の欄の
請求項6に記載の方法)について説明する。この第3の
方法は、上記の第1の方法または第2の方法により、軸
孔の内周面にスプラインと称される軸長方向に平行な内
歯が形成されたボス付き歯車を成形する方法である。
Next, the third method (the method described in claim 6 of the claims) will be described. According to the third method, a bossed gear in which internal teeth called splines are formed on the inner peripheral surface of the shaft hole in the axial direction parallel to the axial direction by the first method or the second method. Is the way.

【0052】したがって、この第3の方法においては、
図1と図2に示すマンドレル50に代えて、図示は省略
するが、その外周面に得るべき製品の内歯に対応する歯
型が形成されたマンドレルを用いる。しかし、この場
合、上記の第1の方法または第2の方法によっただけで
は、外歯に対向する部分の内歯は成形されるものの、ボ
スに対向する部分の内歯、なかでもボスの上部に対向す
る部分の内歯は成形されない。これは、内パンチ3aに
よる加圧解除後も継続される外パンチ3bによる加圧時
における被加工材料2の軸方向への変形量が径方向への
変形量よりも大きく、マンドレルに形成された歯型の凹
部に対して材料が十分に充満しないためである。
Therefore, in this third method,
Instead of the mandrel 50 shown in FIGS. 1 and 2, a mandrel having a tooth pattern corresponding to the internal teeth of the product to be obtained is used on the outer peripheral surface thereof, although not shown. However, in this case, only the first method or the second method described above forms the internal teeth of the portion facing the external teeth, but the internal teeth of the portion facing the boss, especially the boss. The internal teeth of the part facing the upper part are not formed. This is because the amount of deformation of the workpiece 2 in the axial direction during pressurization by the outer punch 3b, which is continued even after the pressurization by the inner punch 3a is released, is greater than the amount of deformation in the radial direction, and is formed on the mandrel. This is because the material is not sufficiently filled in the concave portion of the tooth mold.

【0053】このため、この第3の方法では、内パンチ
3aによる加圧解除後も継続される外パンチ3bによる
加圧終了(図1と図2の(d))後、外パンチ3bを後
退させ、しかる後に内パンチ3aによる再加圧を行うこ
ととした。
Therefore, in the third method, after the pressurization by the outer punch 3b which is continued even after the pressurization by the inner punch 3a is released (FIG. 1 and FIG. 2D), the outer punch 3b is retracted. After that, re-pressing by the inner punch 3a is performed.

【0054】しかし、この内パンチ3aによる再加圧時
の加圧力、すなわち内パンチ3aの工具面圧が適切でな
いと、必要とされる内歯は成形されない。したがって、
内パンチ3aによる再加圧時におけるその工具面圧は所
定の値に設定する必要があるが、この値は必要とされる
内歯の材料充満率によって異なる。
However, if the pressing force at the time of re-pressing by the inner punch 3a, that is, the tool surface pressure of the inner punch 3a is not appropriate, the required inner teeth are not formed. Therefore,
The tool surface pressure at the time of re-pressing by the inner punch 3a needs to be set to a predetermined value, and this value differs depending on the required material filling ratio of the internal teeth.

【0055】このため、その工具面圧は、予め実験を行
って適宜定める必要があるが、例えば、鋼種が前述の表
1に示すS10C製、歯車本体が同じく前述の表2に示
すはすば歯車で、内歯の大径(内歯の溝底径)が35m
m、小径(軸孔径)が33mm、歯数が24であり、か
つボスの面積率が40%、50%および65%で、ボス
高さがボスを含む全高さの30〜50%の内歯を有すボ
ス付きはすば歯車の場合、その工具面圧は要求される内
歯の材料充満率に応じて表6に示す値以上とするのがよ
い。
For this reason, it is necessary to determine the tool surface pressure appropriately by conducting experiments in advance. For example, the steel type is made of S10C shown in Table 1 above, and the gear body is the same as that shown in Table 2 shown in Table 2 above. With gear, large diameter of internal teeth (groove bottom diameter of internal teeth) is 35m
m, small diameter (shaft hole diameter) is 33 mm, number of teeth is 24, boss area ratio is 40%, 50%, and 65%, and boss height is 30 to 50% of the total height including the boss. In the case of a helical gear with a boss having a boss, the tool surface pressure is preferably equal to or greater than the value shown in Table 6 according to the required material filling ratio of the internal teeth.

【0056】ただし、金型の寿命を考慮した場合、その
上限は3.3倍以下、より好ましくは3.1倍以下とす
るのがよい。これは、前述の表1に示す2鋼種のうち、
鋼種SCr420Hの場合、その工具面圧がSCr42
0Hの変形抵抗の3.3倍を超えると金型が破損する恐
れがあるからである。
However, in consideration of the life of the mold, the upper limit is preferably 3.3 times or less, more preferably 3.1 times or less. This is one of the two steel types shown in Table 1 above.
In the case of steel type SCr420H, the tool surface pressure is SCr42
If the deformation resistance is more than 3.3 times the deformation resistance of 0H, the mold may be damaged.

【0057】[0057]

【表6】 なお、以上の説明は、外歯がはすば歯車の場合である
が、外歯が平歯車の場合にはダイ1と下パンチ4に形成
する歯型を平歯車用にすることにより、成形可能であ
る。
[Table 6] The above description is for the case where the external teeth are helical gears. However, when the external teeth are spur gears, the tooth mold formed on the die 1 and the lower punch 4 is formed by using a spur gear. It is possible.

【0058】[0058]

【実施例】《実施例1》鋼種が前述の表1に示すS10
C、歯車本体が前述の表2に示す寸法、ボスの面積率が
40%と50%で、ボス高さがボスを含む全高さの40
〜50%のボス付きはすば歯車を第1の方法によって成
形した。
EXAMPLES Example 1 The steel type was S10 shown in Table 1 above.
C, the gear body has the dimensions shown in Table 2 above, the area ratio of the boss is 40% and 50%, and the boss height is 40% of the total height including the boss.
〜50% bossed helical gears were formed by the first method.

【0059】その際、内パンチ3aの加圧面は外パンチ
3bの加圧面よりも10mm後退した位置に初期設定し
た。また、内パンチ3aによる加圧は、工具面圧を種々
変え、その加圧面が初期設定位置から1mm後退する
間、一定に保持して加圧した。
At this time, the pressing surface of the inner punch 3a was initially set to a position retracted by 10 mm from the pressing surface of the outer punch 3b. Pressing by the inner punch 3a changed the tool surface pressure variously, and the pressure was held constant while the pressing surface was retracted by 1 mm from the initial setting position.

【0060】なお、被加工材料2には、いずれの場合
も、外径55.1mm、内径35.2mm、高さ30.
5mmのものを用いた。
In any case, the material to be processed 2 has an outer diameter of 55.1 mm, an inner diameter of 35.2 mm, and a height of 30.5 mm.
The thing of 5 mm was used.

【0061】そして、各条件のもとに成形して得られた
ボス付きはすば歯車の外歯の材料充満率、ボス高さを調
べる一方、各条件下での据込み率と下パンチ4の平均工
具面圧も併せて調べた。
The material filling ratio and the boss height of the external teeth of the helical gear with boss obtained by molding under each condition are examined, while the upsetting ratio and the lower punch 4 under each condition are examined. The average tool surface pressure was also examined.

【0062】以上の調査結果を、成形条件と合わせて表
7に示した。
The results of the above investigation are shown in Table 7 together with the molding conditions.

【0063】[0063]

【表7】 表7からわかるように、ボスの面積率が40%のもの
は、いずれの条件においても外歯の材料充満率100
%、ボス高さ40%以上のものが得られたが、試番3は
下パンチ4の平均工具面圧が被加工材料の変形抵抗の
3.3倍と過大なため、鋼種がS10Cの場合には問題
ないが、SCr420Hの場合では金型破損の恐れがあ
った。
[Table 7] As can be seen from Table 7, when the area ratio of the boss is 40%, the material filling rate of the external teeth is 100% under any condition.
% And a boss height of 40% or more were obtained, but in Test No. 3, the average tool surface pressure of the lower punch 4 was 3.3 times the deformation resistance of the work material, so the steel type was S10C. Although there is no problem in the case of SCr420H, there was a risk of mold damage.

【0064】また、ボスの面積率が50%のものは、い
ずれの条件においてもボス高さ40%以上のものが得ら
れた。しかし、試番4〜6では外歯の材料充満率が60
%以下のものしか得られず、試番14と15では外歯の
材料充満率は100%であるが、下パンチ4の平均工具
面圧が被加工材料の変形抵抗の3.3倍と過大なため、
金型破損の恐れがあった。
When the boss area ratio was 50%, a boss height of 40% or more was obtained under any conditions. However, in Test Nos. 4 to 6, the material filling rate of the external teeth was 60%.
%, The material filling rate of the external teeth is 100% in Test Nos. 14 and 15, but the average tool surface pressure of the lower punch 4 is 3.3 times as large as the deformation resistance of the work material. Because
There was a risk of mold damage.

【0065】以上のことは、第1の方法によって上記の
鋼種、寸法のボス付きはすば歯車を成形する場合におけ
る内パンチ3aの工具面圧としては、前述した表4に示
す範囲に設定するのがよいことを意味している。
As described above, the tool surface pressure of the inner punch 3a in the case of forming a helical gear with a boss of the above steel type and dimensions by the first method is set to the range shown in Table 4 described above. Means better.

【0066】なお、表7中への記載は省略したが、各試
番のうち、良否判定結果が良の製品の上下のオーバーボ
ールダイア差は、0.07〜0.09mmであった。
Although not shown in Table 7, the difference between the upper and lower overball dies of the products having good pass / fail judgment results in each test number was 0.07 to 0.09 mm.

【0067】《実施例2》鋼種が前述の表1に示すS1
0C、歯車本体が前述の表2に示す寸法、ボスの面積率
が40%、50%および65%で、ボス高さがボスを含
む全高さの30〜50%のボス付きはすば歯車を第2の
方法によって成形した。
Example 2 The steel type was S1 shown in Table 1 above.
0C, the gear body has the dimensions shown in Table 2 above, the boss area ratio is 40%, 50%, and 65%, and the boss height is 30 to 50% of the total height including the boss. Molded by the second method.

【0068】その際、内パンチ3aの加圧面は外パンチ
3bの加圧面よりも1mm前進した位置に初期設定し
た。また、内パンチ3aによる加圧は、工具面圧を種々
変え、その加圧面が初期設定位置から1mm後退する
間、一定に保持して加圧した。
At this time, the pressing surface of the inner punch 3a was initially set to a position advanced by 1 mm from the pressing surface of the outer punch 3b. Pressing by the inner punch 3a changed the tool surface pressure variously, and the pressure was held constant while the pressing surface was retracted by 1 mm from the initial setting position.

【0069】ただし、試番26は0.5mm、試番27
は0.3mm、試番28は0.2mm、試番29と30
は0.1mm、試番31〜35は4mm、内パンチの加
圧面が初期設定位置から後退する間、その工具面圧を一
定に保持して加圧した。これは、ボス成形前に外歯の材
料充満率を高めながらボス高さ率を上昇させることを意
図したものである。
However, the trial number 26 is 0.5 mm and the trial number 27 is
Is 0.3 mm, sample number 28 is 0.2 mm, sample numbers 29 and 30
Is 0.1 mm, the test numbers 31 to 35 are 4 mm, and while the pressurizing surface of the inner punch is retracted from the initial setting position, the tool surface pressure is kept constant and pressurized. This is intended to increase the boss height ratio while increasing the material filling ratio of the external teeth before forming the boss.

【0070】なお、被加工材料2には、いずれの場合
も、外径55.1mm、内径35.2mm、高さ30.
5mmのものを用いた。
The material to be processed 2 has an outer diameter of 55.1 mm, an inner diameter of 35.2 mm and a height of 30.
The thing of 5 mm was used.

【0071】そして、各条件のもとに成形して得られた
ボス付きはすば歯車の外歯の材料充満率、ボス高さを調
べる一方、各条件下での据込み率と下パンチ4の平均工
具面圧も併せて調べた。
While the material filling ratio and the boss height of the external teeth of the helical gear with boss obtained by molding under each condition were examined, the upsetting ratio and the lower punch 4 under each condition were examined. The average tool surface pressure was also examined.

【0072】以上の調査結果を、成形条件と合わせて表
8に示した。
The results of the above investigation are shown in Table 8 together with the molding conditions.

【0073】[0073]

【表8】 表8からわかるように、ボスの面積率が40%のもの
は、いずれの条件においても外歯の材料充満率は100
%のものが得られるが、試番19と20は目標の30%
以上のボス高さは得られなかった。
[Table 8] As can be seen from Table 8, when the area ratio of the boss is 40%, the material filling rate of the external teeth is 100% under any conditions.
No. 19 and 20 are 30% of the target
The above boss height could not be obtained.

【0074】また、ボスの面積率が50%のものは、試
番21〜29ではボス高さ30%以上のものが得られた
が、そのうち試番21と22は外歯の材料充満率が85
%以下のものしか得られなかった。また、試番30は外
歯の材料充満率は100%であるが、目標の30%以上
のボス高さは得られなかった。
When the boss area ratio was 50%, boss heights of 30% or more were obtained in Test Nos. 21 to 29. Of these, Test Nos. 21 and 22 showed that the material filling ratio of the external teeth was lower. 85
% Or less. In Test No. 30, the material filling ratio of the external teeth was 100%, but the target boss height of 30% or more could not be obtained.

【0075】さらに、ボスの面積率が65%のものは、
試番31〜38ではボス高さ30%以上のものが得られ
たが、そのうち試番31と32は外歯の材料充満率が6
0%以下のものしか得られなかった。また、試番39は
外歯の材料充満率は100%であるが、目標の30%以
上のボス高さは得られなかった。
Further, when the boss area ratio is 65%,
In Test Nos. 31 to 38, boss heights of 30% or more were obtained, and among Test Nos. 31 and 32, the material filling rate of the external teeth was 6%.
Only less than 0% was obtained. In Test No. 39, the material filling ratio of the external teeth was 100%, but the target boss height of 30% or more was not obtained.

【0076】以上のことは、第2の方法によって上記の
鋼種、寸法のボス付きはすば歯車を成形する場合におけ
る内パンチ3aの工具面圧としては、前述した表5に示
す範囲に設定するのがよいことを意味している。
The above description indicates that the tool surface pressure of the inner punch 3a in the case of forming a helical gear with a boss of the above-mentioned steel type and dimensions by the second method is set in the range shown in Table 5 described above. Means better.

【0077】なお、表8中への記載は省略したが、各試
番のうち、良否判定結果が良の製品の上下のオーバーボ
ールダイア差は、0.02〜0.04mmであり、第1
の方法によった場合に比べ大幅に小さく、自動車のトラ
ンスミッション用として十分な寸法精度を有していた。
Although the description in Table 8 is omitted, the difference between the upper and lower overball dia of the products having good pass / fail judgment results in each test number is 0.02 to 0.04 mm.
This method is much smaller than the method according to the method described above, and has sufficient dimensional accuracy for a transmission of an automobile.

【0078】《実施例3》鋼種が前述の表1に示すS1
0C、歯車本体が前述の表2に示す寸法、ボスの面積率
が40%、50%および65%で、ボス高さがボスを含
む全高さの30〜50%であり、内径(小径)33mm
の軸孔の内周面に溝底径(大径)が35mm、歯数が2
4の内歯を有するボス付きはすば歯車を第3の方法によ
って成形した。
Example 3 The steel type was S1 shown in Table 1 above.
0C, the gear body has the dimensions shown in Table 2 above, the area ratio of the boss is 40%, 50%, and 65%, the boss height is 30 to 50% of the total height including the boss, and the inner diameter (small diameter) is 33 mm.
The groove bottom diameter (large diameter) is 35 mm and the number of teeth is 2 on the inner peripheral surface of the shaft hole.
A bossed helical gear having 4 internal teeth was formed by the third method.

【0079】その際、内パンチ3aによる再加圧までの
工程は、上記の実施例2における試番24と同じとし、
外パンチ3bを後退させた後、種々異なる工具面圧で再
加圧した。
At this time, the steps up to re-pressurization by the inner punch 3a are the same as the trial number 24 in the second embodiment,
After retreating the outer punch 3b, it was repressurized with various tool surface pressures.

【0080】そして、各条件のもとに成形して得られた
ボス付きはすば歯車の内歯全体とボスに対向する部分の
内歯の材料充満率を調べた。その結果、内歯全体とボス
に対向する部分の内歯の材料充満率は、ボスの面積率に
かかわらず同じであり、表9に示す通りであった。
Then, the material filling ratio of the entire internal teeth of the helical gear with boss obtained by molding under each condition and the internal teeth of the portion facing the boss was examined. As a result, the material filling ratio of the entire internal teeth and the portion of the internal teeth facing the boss was the same regardless of the area ratio of the boss, as shown in Table 9.

【0081】[0081]

【表9】 この表9から明らかなように、内歯の材料充満率は再加
圧時の内パンチの工具面圧によって異なり、例えば、一
般に、製品として許容される内歯全体の材料充満率が8
0%以上のものを得るためには、被加工材料の変形抵抗
の2.7倍以上の工具面圧で加圧する必要があり、10
0%のものを得るためには2.8倍以上の工具面圧で加
圧する必要があることがわかる。
[Table 9] As is clear from Table 9, the material filling rate of the internal teeth varies depending on the tool surface pressure of the inner punch at the time of re-pressing. For example, in general, the material filling rate of the entire internal teeth as a product is 8%.
In order to obtain 0% or more, it is necessary to apply a tool surface pressure of 2.7 times or more of the deformation resistance of the material to be processed.
It can be seen that in order to obtain 0%, it is necessary to pressurize at a tool surface pressure of 2.8 times or more.

【0082】このことは、第3の方法によって上記の鋼
種、寸法の内歯を有するボス付きはすば歯車を成形する
場合における再加圧時の内パンチ3aの工具面圧として
は、前述した表6に示す範囲に設定するのがよいことを
意味している。
This means that the tool surface pressure of the inner punch 3a at the time of re-pressing when forming a helical gear with a boss having internal teeth of the above-mentioned steel type and dimensions by the third method is as described above. It means that it is better to set it in the range shown in Table 6.

【0083】なお、表6の説明おける上限値3.3は、
前述の実施例1で述べたように、これを超えると鋼種が
SCr420Hの場合に金型破損の恐れあり、金型破損
を確実に避ける観点からは3.1倍以下であることが望
ましいことから定めた値である。
The upper limit value 3.3 described in Table 6 is:
As described in Example 1 above, if the steel type exceeds this, there is a risk of mold breakage when the steel type is SCr420H, and from the viewpoint of reliably avoiding mold breakage, it is desirable that the ratio be 3.1 times or less. It is a determined value.

【0084】以上の実施例1〜3の結果から明らかなよ
うに、本発明によれば、ボスの面積率が40%を超える
ものは勿論、40%以下のものであっても、製品のボス
の面積率に応じて内パンチの工具面圧を適正に設定する
ことにより、高さの異なるボスを有し、さらには適正な
材料充満率の内歯を有するボス付き歯車を成形すること
が可能なことがわかる。
As is apparent from the results of Examples 1 to 3 described above, according to the present invention, even if the boss area ratio is not less than 40% or less than 40%, the boss area of the product is not limited. By properly setting the tool surface pressure of the inner punch according to the area ratio of the boss, it is possible to form a bossed gear with bosses with different heights and with internal teeth with an appropriate material filling rate I understand that.

【0085】[0085]

【発明の効果】本発明によれば、外径が外歯の溝底径以
下で高さが種々異なるボス、さらにはその軸孔の内周面
に内歯を有する高寸法精度のボス付き歯車を高い材料歩
留まりで高能率に製造することができる。
According to the present invention, a boss having a boss having an outer diameter of not more than the groove bottom diameter of the external teeth and having various heights, and a boss with high dimensional accuracy having internal teeth on the inner peripheral surface of the shaft hole. Can be manufactured with high material yield and high efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の方法を説明するための図であ
る。
FIG. 1 is a diagram for explaining a first method of the present invention.

【図2】本発明の第2の方法を説明するための図であ
る。
FIG. 2 is a diagram for explaining a second method of the present invention.

【図3】従来の一段階捨て軸法を説明するための図であ
る。
FIG. 3 is a view for explaining a conventional one-stage discard axis method.

【図4】従来の一段階捨て軸法により面積率が異なるボ
ス付き歯車を成形した場合における結果の一例を示す図
である。
FIG. 4 is a view showing an example of a result in a case where bossed gears having different area ratios are formed by a conventional one-stage discarding shaft method.

【符号の説明】[Explanation of symbols]

1:ダイ、 2:被加工材料、 3:上パンチ、 3a:内パンチ、 3b:外パンチ、 4:下パンチ、 5、50:マンドレル、 6:材料(ボスに相当)、 7:基台、 8:伸縮自在な部材。 1: die, 2: work material, 3: upper punch, 3a: inner punch, 3b: outer punch, 4: lower punch, 5, 50: mandrel, 6: material (corresponding to boss), 7: base, 8: Elastic member.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ダイス孔の内周面に製品の外歯に対応する
歯型が形成されたダイと、ダイのダイス孔を閉塞する上
パンチと下パンチとを具備する密閉金型を用い、ダイの
ダイス孔に配置された被加工材料を主に上パンチで加圧
してダイス孔の隅々にまで被加工材料を完全充満させる
ことによって一方の端面にボスを有するボス付き歯車を
成形する際、前記の上パンチとして得るべき製品のボス
外径と等しい径で外パンチと内パンチとに分割された分
割パンチを用いるとともに、内パンチの加圧面を得るべ
き製品のボス高さの90%以下の範囲内で外パンチの加
圧面よりも後退させた初期設定状態で内外パンチの両方
による加圧を開始し、その後外パンチによる加圧はその
まま継続する一方、内パンチによる加圧はその加圧面が
前記の初期設定位置から一定の距離だけ後退するまでの
間、所定の工具面圧に維持した後に内パンチによる加圧
を解除し、この内パンチの加圧解除後もさらに外パンチ
による加圧を継続するボス付き歯車の成形方法。
1. A closed die comprising a die having a tooth pattern corresponding to the external teeth of a product formed on an inner peripheral surface of the die hole, and an upper punch and a lower punch for closing the die hole of the die. When forming a bossed gear having a boss on one end face by pressing the work material arranged in the die hole of the die mainly with the upper punch and completely filling the work material to every corner of the die hole Using a split punch having a diameter equal to the outer diameter of the boss of the product to be obtained as the upper punch and being divided into an outer punch and an inner punch, and having a pressing surface of the inner punch of 90% or less of the boss height of the product to obtain the pressing surface In the initial setting state in which the outer punch is retracted from the pressing surface of the outer punch within the range, the pressing by both the inner and outer punches is started, and then the pressing by the outer punch is continued as it is, while the pressing by the inner punch is performed on the pressing surface. Is the initial setting A bossed gear that releases the pressurization by the inner punch after maintaining a predetermined tool surface pressure until it is retracted by a certain distance from, and continues pressurization by the outer punch even after the pressurization of the inner punch is released Molding method.
【請求項2】内外パンチによる加圧開始の前に、内パン
チの加圧面を外パンチの加圧面よりも前進させた状態で
加圧を行う請求項1に記載のボス付き歯車の成形方法。
2. The method for forming a bossed gear according to claim 1, wherein the pressing is performed with the pressing surface of the inner punch advanced beyond the pressing surface of the outer punch before the pressing by the inner and outer punches is started.
【請求項3】前記所定の工具面圧を、被加工材料の変形
抵抗の2.5倍または下パンチに加わる荷重を下パンチ
の受圧面積で除して求められる平均工具面圧の0.80
倍以下にする請求項1または2に記載のボス付き歯車の
成形方法。
3. The average tool surface pressure obtained by dividing the predetermined tool surface pressure by 2.5 times the deformation resistance of the workpiece or the load applied to the lower punch by the pressure receiving area of the lower punch is 0.80.
The method for forming a bossed gear according to claim 1 or 2, wherein the number is not more than twice.
【請求項4】ダイス孔の内周面に製品の外歯に対応する
歯型が形成されたダイと、ダイのダイス孔を閉塞する主
パンチと下パンチとを具備する密閉金型を用い、ダイの
ダイス孔に配置された被加工材料を主に主パンチで加圧
してダイス孔の隅々にまで被加工材料を完全充満させる
ことによって一方の端面にボスを有するボス付き歯車を
成形する際、前記の上パンチとして得るべき製品のボス
外径と等しい径で外パンチと内パンチとに分割された分
割パンチを用いるとともに、内外パンチの加圧面を一致
させるか、または内パンチの加圧面を得るべき製品のボ
ス高さの30%以下の範囲内で外パンチの加圧面よりも
前進させた初期設定状態で内外パンチの両方による加圧
を開始し、その後外パンチによる加圧は継続する一方、
内パンチによる加圧はその加圧面が前記の初期設定位置
から一定の距離だけ後退するまでの間、所定の工具面圧
に維持した後に内パンチによる加圧を解除し、この内パ
ンチの加圧解除後もさらに外パンチによる加圧を継続す
るボス付き歯車の成形方法。
4. A closed die having a die in which a die corresponding to the external teeth of the product is formed on the inner peripheral surface of the die hole, a main punch for closing the die hole of the die, and a lower punch, When forming a bossed gear having a boss on one end face by pressing the work material arranged in the die hole of the die mainly with the main punch and completely filling the work material to every corner of the die hole Using a split punch divided into an outer punch and an inner punch with a diameter equal to the outer diameter of the boss of the product to be obtained as the upper punch, and matching the pressing surfaces of the inner and outer punches or the pressing surface of the inner punch. Pressing by both the inner and outer punches is started in an initial setting state in which the outer punch is advanced beyond the pressing surface of the outer punch within a range of 30% or less of the boss height of the product to be obtained. ,
Pressing by the inner punch is continued until the pressing surface retreats by a certain distance from the above-mentioned initial setting position. A method of forming a bossed gear that continues to pressurize with an external punch even after release.
【請求項5】前記所定の工具面圧を、被加工材料の変形
抵抗の2.15倍または下パンチに加わる荷重を下パン
チの受圧面積で除して求められる平均工具面圧の0.8
0倍以下にする請求項4に記載のボス付き歯車の成形方
法。
5. The average tool surface pressure obtained by dividing the predetermined tool surface pressure by 2.15 times the deformation resistance of the workpiece or the load applied to the lower punch by the pressure receiving area of the lower punch.
The method for forming a bossed gear according to claim 4, wherein the gear is set to 0 times or less.
【請求項6】請求項1〜5のいずれかに記載のボス付き
歯車の成形方法において、得るべき製品が内歯を備えた
軸孔を有する場合、被加工材料の軸心部に内パンチと下
パンチの軸深部を貫通する外径が前記の軸孔径に等し
く、その外周面に製品の内歯に対応する歯型が形成され
たマンドレルを配置する一方、内パンチによる加圧解除
後における外パンチによる加圧終了後、外パンチを後退
させた後に被加工材料の変形抵抗の2.7〜3.3倍の
工具面圧で内パンチによる再加圧を行うボス付き歯車の
成形方法。
6. A method for forming a bossed gear according to any one of claims 1 to 5, wherein when a product to be obtained has a shaft hole provided with internal teeth, an inner punch is provided at a shaft center portion of the material to be processed. The outer diameter of the lower punch penetrating the shaft deep portion is equal to the above-mentioned shaft hole diameter, and a mandrel having a tooth pattern corresponding to the internal teeth of the product is disposed on the outer peripheral surface thereof. A method of forming a bossed gear, in which after the pressurization by the punch is completed, the outer punch is retracted, and then the inner punch is repressurized with a tool surface pressure of 2.7 to 3.3 times the deformation resistance of the workpiece.
【請求項7】内パンチによる再加圧を、被加工材料の変
形抵抗の2.8〜3.1倍で行う請求項6に記載のボス
付き歯車の成形方法。
7. The method for forming a bossed gear according to claim 6, wherein the re-pressing by the inner punch is performed at 2.8 to 3.1 times the deformation resistance of the material to be processed.
JP2000016506A 2000-01-26 2000-01-26 Boss gear forming method Expired - Fee Related JP3674437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000016506A JP3674437B2 (en) 2000-01-26 2000-01-26 Boss gear forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000016506A JP3674437B2 (en) 2000-01-26 2000-01-26 Boss gear forming method

Publications (2)

Publication Number Publication Date
JP2001205384A true JP2001205384A (en) 2001-07-31
JP3674437B2 JP3674437B2 (en) 2005-07-20

Family

ID=18543632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000016506A Expired - Fee Related JP3674437B2 (en) 2000-01-26 2000-01-26 Boss gear forming method

Country Status (1)

Country Link
JP (1) JP3674437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983796A (en) * 2010-12-04 2011-03-09 江苏飞船股份有限公司 Dual gear precision forging die with floating type mold core
JP2012206128A (en) * 2011-03-29 2012-10-25 Aisin Aw Co Ltd Gear forming device and method
JP2013237056A (en) * 2012-05-11 2013-11-28 Toyota Jidosha Hokkaido Kk Gear forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983796A (en) * 2010-12-04 2011-03-09 江苏飞船股份有限公司 Dual gear precision forging die with floating type mold core
JP2012206128A (en) * 2011-03-29 2012-10-25 Aisin Aw Co Ltd Gear forming device and method
JP2013237056A (en) * 2012-05-11 2013-11-28 Toyota Jidosha Hokkaido Kk Gear forming method

Also Published As

Publication number Publication date
JP3674437B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US10814370B2 (en) Special-purpose die for shaping aluminum-magnesium alloy by rotating extrusion
JP5610062B2 (en) Tooth profile part manufacturing method, tooth profile part manufacturing apparatus, and tooth profile part
TWI491455B (en) Fabricating method of forging material
EP2080571B1 (en) Method and apparatus for producing a high-strength process material
JP5609291B2 (en) Mandrel for manufacturing internal gear and method and apparatus for manufacturing internal gear using the mandrel
CN111014554A (en) Forging process and forging die for deep hole shaft head
JP5246588B2 (en) Gear manufacturing apparatus and method
JP2001205384A (en) Method for forming gear with boss
KR20080102033A (en) Manufacturing method using of back pressure forming type cold working device for extruded forging workpiece
JP4382627B2 (en) Forging method, forged product and forging device
JPH07236937A (en) Production of bevel gear
WO1992020475A1 (en) Precision forming apparatus, method and article
JP3758103B2 (en) Upset forging method
JP3674399B2 (en) Stepped shaft manufacturing method and stepped shaft manufacturing apparatus
WO2017163161A1 (en) A finisher die assembly and a forging process to make a pinion drive, and a pinion drive
CN107520390A (en) Double floating type lock ring cold closed-die forging one step forming mould
JP4723769B2 (en) Method for producing hollow rack bar
JP4000861B2 (en) Manufacturing method of stepped shaft
JP4156063B2 (en) Method and apparatus for manufacturing cylindrical part having toothed flange
JPS6137341A (en) Method and apparatus for producing preform blank material for closed forging having irregular sectional shape
JP2002307126A (en) Tooth profile forming method
JP3908884B2 (en) Gear forming apparatus and gear forming method
CN109454190A (en) A kind of environment-friendly type hardware casing cold forging die structure
JP3951463B2 (en) Method and apparatus for manufacturing helical gear or spur gear
RU2085321C1 (en) Method for making axially symmetrical products by rolling out

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3674437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees