JP2001287572A - Railway dc power source facility - Google Patents
Railway dc power source facilityInfo
- Publication number
- JP2001287572A JP2001287572A JP2000103593A JP2000103593A JP2001287572A JP 2001287572 A JP2001287572 A JP 2001287572A JP 2000103593 A JP2000103593 A JP 2000103593A JP 2000103593 A JP2000103593 A JP 2000103593A JP 2001287572 A JP2001287572 A JP 2001287572A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power
- power supply
- storage device
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 238000004146 energy storage Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 2
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 3
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 2
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 101100316860 Autographa californica nuclear polyhedrosis virus DA18 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/02—Electric propulsion with power supply external to the vehicle using DC motors
- B60L9/08—Electric propulsion with power supply external to the vehicle using DC motors fed from AC supply lines
- B60L9/12—Electric propulsion with power supply external to the vehicle using DC motors fed from AC supply lines with static converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/55—Capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Rectifiers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電鉄用直流電源設
備に係り、特に電圧降下対策、ピークカット対策、回生
電力対策等の目的で設置されるエネルギー蓄積装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power supply system for railways, and more particularly to an energy storage device installed for the purpose of measures against voltage drop, peak cut, regenerative power and the like.
【0002】[0002]
【従来の技術】電鉄用電源設備は、主な負荷が電気車に
なるため、他の一般の配電系統負荷とは電力供給能力と
して特異なものが要求される。2. Description of the Related Art Electric railway power supply equipment is mainly powered by electric vehicles, and therefore is required to have a power supply capability unique to other general distribution system loads.
【0003】(1)急激な負荷変動に追従可能であるこ
と。すなわち、電気鉄道の負荷である電気車は、複数台
がランダムに加速・定速・減速・停止等の運転状態変化
をしており、それらの総和が急激に変動する負荷にな
り、この急変負荷に対して応答性よく電力を供給できる
設備が要求される。(1) Capable of following a sudden load change. In other words, electric vehicles, which are loads on electric railways, have a plurality of randomly changing operating states such as acceleration, constant speed, deceleration, and stop, and the sum of these changes suddenly. Equipment that can supply power with good responsiveness is required.
【0004】(2)長時間にわたって安定した電力供給
が可能であること。すなわち、電気車には、特急電車な
ど長距離をノンストップ運転するものが含まれ、その運
転時間にわたって安定した電力供給能力が要求される。(2) A stable power supply is possible for a long time. That is, electric vehicles include those that operate non-stop over long distances, such as limited express trains, and require a stable power supply capability over the operation time.
【0005】(3)負荷の平準化が望まれる。すなわ
ち、急激な負荷変動は変電所からみて負荷の急変を伴
う。また、電気車の運転台数は朝夕のラッシュ時に運転
本数が多く、昼間の閑散時間帯では運転本数が少なくな
る。これら負荷の変化に対して変電所側からみて負荷の
平準化が電力変換効率の向上等から要求される。(3) It is desired to level the load. That is, a sudden load change involves a sudden change in the load as viewed from the substation. In addition, the number of electric vehicles to be driven is large during the morning and evening rush hours, and is reduced during the off hours during the day. For these load changes, load leveling is required from the substation side in order to improve power conversion efficiency and the like.
【0006】以上の各要求事項に対応できるものとし
て、エネルギー蓄積装置を設ける方法が提案されてい
る。例えば、蓄電池設備をエネルギー蓄積装置として利
用する試験が、JR可部線中島駅で昭和54年から5年
間実施され、その報告書も公表されている。[0006] To meet the above requirements, a method of providing an energy storage device has been proposed. For example, a test using a storage battery facility as an energy storage device has been performed at Nakajima Station on the JR Kabe Line for five years since 1979, and a report has been published.
【0007】他の方法として、直流き電システムにおい
て、電気車からの回生電力をき電線側に設けたエネルギ
ー蓄積装置に直流電力として回生させるシステムが提案
されている(例えば、特開平11−91415号公
報)。このエネルギー蓄積装置は、図4に示す構成にさ
れる。整流器(または順変換器)1からき電線に直流配
電、さらに開閉器2を介してトロリー線から電気車3に
電力を供給するにおいて、整流器1の直流側に電流制御
回路(昇降圧チョッパ)4と直流電力蓄積装置(二次電
池や電気二重層キャパシタ)5からなるエネルギー蓄積
装置を設備し、電気車が回生状態にある場合は電流制御
回路4を通して直流電力蓄積装置5を充電し、電気車が
力行状態にある場合は直流電力蓄積装置5から電流制御
回路4を通して放電させる。As another method, in a DC feeding system, a system has been proposed in which regenerative power from an electric vehicle is regenerated as DC power in an energy storage device provided on the feeder line side (for example, Japanese Patent Application Laid-Open No. 11-91415). No.). This energy storage device is configured as shown in FIG. In supplying DC power to the feeder line from the rectifier (or forward converter) 1 and further supplying power to the electric vehicle 3 from the trolley wire via the switch 2, a current control circuit (step-up / step-down chopper) 4 is provided on the DC side of the rectifier 1. An energy storage device including a DC power storage device (a secondary battery or an electric double layer capacitor) 5 is provided. When the electric vehicle is in a regenerative state, the DC power storage device 5 is charged through the current control circuit 4, and the electric vehicle is charged. In the power running state, the DC power storage device 5 is discharged through the current control circuit 4.
【0008】[0008]
【発明が解決しようとする課題】前記のように、直流電
鉄のき電電圧は、定格電圧1500Vに対して、電気車
特有の負荷急変やピーク時間帯によって、大きく変動す
る。この電圧変動に対して、エネルギー蓄積装置は、そ
の放電と充電によって最低電圧900V〜最高電圧18
00V程度の範囲に抑制する。As described above, the feeding voltage of a DC railroad fluctuates greatly with respect to a rated voltage of 1500 V due to a sudden load change and a peak time period peculiar to an electric vehicle. In response to the voltage fluctuation, the energy storage device discharges and charges the lowest voltage from 900 V to the highest voltage 18.
Suppress to about 00V.
【0009】このエネルギー蓄積装置による電圧抑制動
作は、図5に示すようになり、き電線電圧が制御電圧の
上限値1800Vを越えたときに電流制御回路4が降圧
充電動作し、き電線側から直流電力蓄積装置5に充電を
開始することで過電圧を抑制し、き電線電圧が制御電圧
の下限値900V以下になったときに電流制御回路4が
昇圧放電動作し、装置5からき電線側に放電を開始する
ことで不足電圧を抑制する。The voltage suppressing operation by this energy storage device is as shown in FIG. 5. When the feeder line voltage exceeds the upper limit value 1800 V of the control voltage, the current control circuit 4 performs the step-down charging operation, and Overvoltage is suppressed by starting charging the DC power storage device 5, and the current control circuit 4 performs a boost discharge operation when the feeder line voltage falls below the lower limit value 900V of the control voltage, and discharges from the device 5 to the feeder side. To suppress the undervoltage.
【0010】したがって、エネルギー蓄積装置として
は、補償電圧範囲900V(1800−900)を得る
のに、バイアス分900Vも含めた高い定格電圧のもの
を必要とする。Therefore, in order to obtain a compensation voltage range of 900 V (1800-900), an energy storage device having a high rated voltage including a bias voltage of 900 V is required.
【0011】なお、直流電力蓄積装置5のバイアス分電
圧は、実際には電流制御回路4の昇降圧比により、低く
した電圧(例えば、定格電圧600V)にされる。The bias divided voltage of the DC power storage device 5 is actually set to a lower voltage (for example, a rated voltage of 600 V) by the step-up / step-down ratio of the current control circuit 4.
【0012】ここで、エネルギー蓄積装置の電力蓄積手
段になる蓄電池や電気二重層キャパシタは、単セル当た
りの電圧が2V程度であり、直流電鉄回路のDC150
0Vに適用するためには750セル〜800セルを直列
接続し、さらには電流容量に応じて直列接続セルを並列
接続する構成になる。Here, the storage battery or electric double layer capacitor serving as the power storage means of the energy storage device has a voltage per unit cell of about 2 V, and has a DC
In order to apply the voltage to 0 V, a configuration is adopted in which 750 to 800 cells are connected in series, and further, cells connected in series are connected in parallel according to the current capacity.
【0013】したがって、直流電力蓄積装置5は、電流
制御回路4による昇降圧比により低くした電圧で済むに
しても、バイアス分電圧を確保するためには、その分も
含めた電池セルを多数直列接続した構成になり、大型で
設備効率の悪い装置になる問題があった。Therefore, even if the DC power storage device 5 needs only a voltage lowered by the step-up / step-down ratio by the current control circuit 4, a large number of battery cells including the voltage are connected in series in order to secure a bias divided voltage. In this case, there is a problem that the device becomes large and the equipment efficiency is low.
【0014】本発明の目的は、エネルギー蓄積装置の小
型化、および設備効率を高めることができる電鉄用直流
電源設備を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a DC power supply for electric railways capable of reducing the size of an energy storage device and improving the efficiency of the equipment.
【0015】[0015]
【課題を解決するための手段】本発明は、前記の課題を
解決するため、エネルギー蓄積装置の直流電力蓄積装置
に要求されるバイアス電圧分を、該装置に直列に設けた
半導体電力変換装置で負担するようにしたもので、以下
の構成を特徴とする。In order to solve the above-mentioned problems, the present invention provides a semiconductor power converter in which a bias voltage required for a DC power storage device of an energy storage device is provided in series with the device. It is designed to bear the burden, and is characterized by the following configuration.
【0016】き電線に直流電力を供給する整流器または
順変換器に並列に設けられ、負荷の変化に応じてき電線
からの充電で直流電力蓄積装置に蓄積および該直流電力
蓄積装置からき電線への直流電力の放電を行うエネルギ
ー蓄積装置を設けた電鉄用直流電源設備において、前記
直流電力蓄積装置は、二次電池または電気二重層キャパ
シタでセル構成し、き電線の電圧変動範囲に対応した定
格電圧を有する直流電力蓄積回路と、前記直流電力蓄積
回路と直列接続し、該直流電力蓄積回路に加えるバイア
ス分とする一定電圧を発生する半導体電力変換装置とを
備えたことを特徴とする。A rectifier or a forward converter that supplies DC power to the feeder is provided in parallel, and is stored in the DC power storage device by charging from the wire in response to a change in load, and is supplied from the DC power storage device to the feeder. In a direct current power supply facility for railways provided with an energy storage device for discharging power, the DC power storage device is configured by a cell with a secondary battery or an electric double layer capacitor, and a rated voltage corresponding to a voltage fluctuation range of a feeder line. And a semiconductor power converter connected in series with the DC power storage circuit and generating a constant voltage corresponding to a bias applied to the DC power storage circuit.
【0017】また、前記半導体電力変換装置は、前記整
流器または順変換器の直流出力を電源として一定電圧を
発生する昇降圧チョッパ、または前記整流器または順変
換器の交流電源を電源として一定電圧を発生する定電圧
直流電源とすることを特徴とする。Further, the semiconductor power conversion device may include a step-up / step-down chopper for generating a constant voltage using a DC output of the rectifier or the forward converter as a power supply, or a constant voltage using an AC power supply of the rectifier or the forward converter as a power supply. And a constant-voltage DC power supply.
【0018】[0018]
【発明の実施の形態】図1は、本発明の実施形態を示す
電鉄用電源設備であり、エネルギー蓄積装置の主回路構
成図を示す。同図が図4と異なる部分は、直流電力蓄積
回路5Aと、これに直列接続して一定電圧を発生する半
導体電力変換装置6を設けた点にある。FIG. 1 is a diagram showing a main circuit configuration of an energy storage device, which is an electric power supply system according to an embodiment of the present invention. 4 differs from FIG. 4 in that a DC power storage circuit 5A and a semiconductor power conversion device 6 connected in series to the DC power storage circuit 5A to generate a constant voltage are provided.
【0019】電力変換装置6は、発生する一定電圧とし
て、従来の直流電力蓄積装置5に要求されるバイアス分
電圧に、またはそれに近い電圧とする。なお、電力変換
装置6は、一定電圧を発生するのに必要な電源を整流器
1の直流出力、もしくは整流器1の交流電源から得る。The power conversion device 6 sets the generated constant voltage to a voltage close to or close to the bias voltage required for the conventional DC power storage device 5. The power conversion device 6 obtains a power supply necessary for generating a constant voltage from a DC output of the rectifier 1 or an AC power supply of the rectifier 1.
【0020】以上の構成により、直流電力蓄積装置5に
要求されるバイアス電圧分が半導体電力変換装置6が負
担するため、直流電力蓄積回路5Aの定格電圧として
は、従来のそれに比べて、バイアス電圧分を差し引い
た、低い電圧のもので済む。With the above configuration, the semiconductor power converter 6 bears the bias voltage required for the DC power storage device 5, so that the rated voltage of the DC power storage circuit 5A is higher than that of the conventional DC power storage circuit 5A. A lower voltage with less minutes is sufficient.
【0021】例えば、図5の電圧変動範囲をもつ電源構
成において、エネルギー蓄積装置が900Vのバイアス
分を有してき電線電圧を抑制する場合、直流電力蓄積回
路5Aは従来の1800Vの充放電動作に応動するのに
対して、900V分の充放電動作に応動できるように
し、半導体電力変換装置6が900Vの一定電圧を発生
するようにする。For example, in the power supply configuration having the voltage fluctuation range shown in FIG. 5, when the energy storage device has a bias of 900 V to suppress the line voltage, the DC power storage circuit 5A responds to the conventional 1800V charge / discharge operation. On the other hand, it is made possible to respond to the charge / discharge operation for 900 V, and the semiconductor power converter 6 generates a constant voltage of 900 V.
【0022】これにより、直流電力蓄積回路5Aは、従
来の半分の定格電圧をもつもので済み、そのセル構成段
数を半減し、装置の小型化、設備効率向上を図ることが
できる。As a result, the DC power storage circuit 5A only needs to have a rated voltage that is half that of the conventional DC power storage circuit, and the number of cell configuration stages can be reduced by half, so that the device can be reduced in size and the equipment efficiency can be improved.
【0023】半導体電力変換装置6は、チョッパ方式ま
たは外部電源による定電圧直流電源により実現できる。The semiconductor power converter 6 can be realized by a chopper system or a constant-voltage DC power supply using an external power supply.
【0024】図2は、昇降圧チョッパ方式の主回路構成
を示す。昇降圧チョッパ6Aは、IGBTで示す半導体
スイッチSW1,SW2を直列接続し、これらスイッチ
SW1,SW2にそれぞれ逆並列にフライホイールダイ
オードD1,D2を設けて上下アームを構成し、上下ア
ームの接続点から直流リアクトルLを介して電気二重層
キャパシタ(または電力用キャパシタ)C0との間を接
続する。FIG. 2 shows a main circuit configuration of the step-up / step-down chopper system. The step-up / step-down chopper 6A is configured by connecting semiconductor switches SW1 and SW2 represented by IGBTs in series, providing flywheel diodes D1 and D2 in anti-parallel to these switches SW1 and SW2 to form upper and lower arms. A connection is made to the electric double layer capacitor (or power capacitor) C0 via the DC reactor L.
【0025】なお、キャパシタC0の容量は、一定の電
圧を発生するためのもので、必要な充放電電流は昇降圧
チョッパ6A側が負担する。このことから、キャパシタ
C0は、高電圧で小電流容量のもの、すなわち小型のキ
ャパシタで済む。The capacity of the capacitor C0 is for generating a constant voltage, and the necessary charge / discharge current is borne by the step-up / step-down chopper 6A. For this reason, the capacitor C0 needs to be a high-voltage, small-current capacitor, that is, a small-sized capacitor.
【0026】この構成により、き電線側から電気二重層
キャパシタC0への降圧充電、またはキャパシタC0か
らき電線側への昇圧放電により、キャパシタC0を一定
電圧(バイアス分電圧)に制御する。With this configuration, the capacitor C0 is controlled to a constant voltage (bias divided voltage) by step-down charging from the feeder line to the electric double layer capacitor C0 or boosting discharge from the capacitor C0 to the feeder line side.
【0027】上記の昇降圧チョッパ6Aによる電気二重
層キャパシタC0の降圧充電は、スイッチSW1,SW
2の両端に印加される直流電圧に対して、スイッチSW
1をチョッパ動作させ、そのオン期間にはスイッチSW
1からリアクトルLを通して電気二重層キャパシタC0
に充電電流を供給し、そのオフ期間にはリアクトルLの
電流エネルギーを電気二重層キャパシタC0→ダイオー
ドD2の経路で電気二重層キャパシタC0に充電電流を
供給する。The step-down charging of the electric double layer capacitor C0 by the step-up / step-down chopper 6A is performed by switches SW1 and SW
Switch SW with respect to the DC voltage applied across
1 is operated as a chopper, and the switch SW
1 through the reactor L through the electric double layer capacitor C0
During the off period, the charging current is supplied to the electric double layer capacitor C0 through the path of the electric double layer capacitor C0 → diode D2.
【0028】昇降圧チョッパ6Aを通した電気二重層キ
ャパシタC0からの昇圧放電は、スイッチSW2をチョ
ッパ動作させ、そのオン期間には電気二重層キャパシタ
C0からリアクトルLに短絡電流を流すことでリアクト
ルLに電流エネルギーを蓄積し、そのオフ期間にリアク
トルLからダイオードD1を通してき電線側に放電す
る。The step-up discharge from the electric double layer capacitor C0 through the step-up / step-down chopper 6A causes the switch SW2 to perform a chopper operation, and a short-circuit current flows from the electric double layer capacitor C0 to the reactor L during the on-period thereof. During the off-period, the current energy flows from the reactor L through the diode D1 and is discharged to the electric wire side.
【0029】なお、昇降圧チョッパ6Aの高圧側に設け
るコンデンサCとリアクトルDCLは、電気二重層キャ
パシタC0から昇降圧チョッパ6Aを通した充放電電流
に含まれる高調波(チョッパ動作による高調波)を抑制
するためのものである。The capacitor C and the reactor DCL provided on the high voltage side of the step-up / step-down chopper 6A generate harmonics (harmonics due to chopper operation) included in the charge / discharge current from the electric double layer capacitor C0 through the step-up / step-down chopper 6A. It is for suppressing.
【0030】図3は、半導体電力変換装置6を定電圧直
流電源とする場合の主回路構成図である。定電圧直流電
源6Bは、整流器1の交流電源との間に、交流しゃ断器
CBと降圧トランスTRを介在させて該交流電源との間
の交流電力の授受を可能にする。FIG. 3 is a main circuit configuration diagram when the semiconductor power converter 6 is a constant-voltage DC power supply. The constant-voltage DC power supply 6B enables exchange of AC power between the AC power supply of the rectifier 1 and the AC power supply by interposing an AC circuit breaker CB and a step-down transformer TR therebetween.
【0031】降圧トランスTRの二次側には、順逆変換
器CONを設け、この変換器CONの直流出力で電気二
重層キャパシタC0を一定電圧に充放電する。すなわ
ち、キャパシタC0の電圧が低下しようとする場合に
は、変換器CONが順変換動作して該キャパシタC0を
一定電圧に制御する。また、キャパシタC0の電圧が上
昇しようとする場合には、変換器CONが逆変換動作し
て該キャパシタC0を一定電圧に制御する。A forward / inverse converter CON is provided on the secondary side of the step-down transformer TR. The DC output of the converter CON charges and discharges the electric double layer capacitor C0 to a constant voltage. That is, when the voltage of the capacitor C0 is about to decrease, the converter CON performs a forward conversion operation to control the capacitor C0 to a constant voltage. When the voltage of the capacitor C0 is about to rise, the converter CON performs an inverse conversion operation to control the capacitor C0 to a constant voltage.
【0032】なお、半導体電力変換装置6は、その入出
力電流容量には、直流電力蓄積回路5Aに要求される充
放電電流容量と同等のものにすることで、従来のエネル
ギー蓄積装置5がもつ応答性とほぼ同等の応答性を有し
て電圧変動を抑制することができる。このとき、該電流
容量をもつ半導体電力変換装置6に構成するにしても、
従来の直流電力蓄積装置5がもつバイアス分に相当する
セル構成に比べて、装置6を設ける構成の方が小型化す
ることができる。The semiconductor power conversion device 6 has an input / output current capacity equivalent to the charge / discharge current capacity required for the DC power storage circuit 5A, so that the conventional energy storage device 5 has Voltage fluctuation can be suppressed with a response almost equal to the response. At this time, even if the semiconductor power conversion device 6 having the current capacity is configured,
The configuration provided with the device 6 can be downsized compared to the cell configuration corresponding to the bias component of the conventional DC power storage device 5.
【0033】[0033]
【発明の効果】以上のとおり、本発明によれば、直流電
力蓄積装置に要求されるバイアス電圧分を、該装置に直
列に設けた半導体電力変換装置で負担するようにしたた
め、エネルギー蓄積装置の小型化、および設備効率を高
めることができる。As described above, according to the present invention, the bias voltage required for the DC power storage device is borne by the semiconductor power conversion device provided in series with the DC power storage device. Miniaturization and facility efficiency can be improved.
【図1】本発明の実施形態を示す主回路構成図。FIG. 1 is a main circuit configuration diagram showing an embodiment of the present invention.
【図2】実施形態における昇降圧チョッパの回路例。FIG. 2 is a circuit example of a step-up / step-down chopper according to the embodiment;
【図3】実施形態における定電圧直流電源の回路例。FIG. 3 is a circuit example of a constant-voltage DC power supply according to the embodiment.
【図4】電鉄用直流電源システムの構成例。FIG. 4 is a configuration example of a DC power supply system for railways.
【図5】エネルギー蓄積装置による電圧抑制範囲を示す
図。FIG. 5 is a diagram showing a voltage suppression range by the energy storage device.
1…整流器 4…電流制御回路 5…直流電力蓄積装置 5A…直流電力蓄積回路 6…半導体電力変換装置 6A…昇降圧チョッパ 6B…定電圧直流電源 REFERENCE SIGNS LIST 1 rectifier 4 current control circuit 5 DC power storage device 5A DC power storage circuit 6 semiconductor power conversion device 6A step-up / step-down chopper 6B constant voltage DC power supply
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 AA01 BA03 CA12 DA16 FA06 GA01 GB03 GB06 5H006 AA06 AA07 BB05 CA01 CA07 CA08 CA12 CB00 CC04 CC08 DA04 DB01 FA04 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G003 AA01 BA03 CA12 DA16 FA06 GA01 GB03 GB06 5H006 AA06 AA07 BB05 CA01 CA07 CA08 CA12 CB00 CC04 CC08 DA04 DB01 FA04
Claims (2)
は順変換器に並列に設けられ、負荷の変化に応じてき電
線からの充電で直流電力蓄積装置に蓄積および該直流電
力蓄積装置からき電線への直流電力の放電を行うエネル
ギー蓄積装置を設けた電鉄用直流電源設備において、 前記直流電力蓄積装置は、 二次電池または電気二重層キャパシタでセル構成し、き
電線の電圧変動範囲に対応した定格電圧を有する直流電
力蓄積回路と、 前記直流電力蓄積回路と直列接続し、該直流電力蓄積回
路に加えるバイアス分とする一定電圧を発生する半導体
電力変換装置とを備えたことを特徴とする電鉄用直流電
源設備。1. A rectifier or a forward converter that supplies DC power to a feeder line, and is provided in parallel with a rectifier or a forward converter. The charge from the feeder line accumulates in the DC power storage device and responds to the feeder line from the DC power storage device in response to a change in load. In a DC power supply facility for railways provided with an energy storage device for discharging DC power, the DC power storage device is composed of a secondary battery or an electric double layer capacitor, and has a rating corresponding to a voltage fluctuation range of a feeder line. A DC power storage circuit having a voltage, and a semiconductor power converter that is connected in series with the DC power storage circuit and generates a constant voltage as a bias applied to the DC power storage circuit. DC power supply equipment.
または順変換器の直流出力を電源として一定電圧を発生
する昇降圧チョッパ、または前記整流器または順変換器
の交流電源を電源として一定電圧を発生する定電圧直流
電源とすることを特徴とする請求項1に記載の電鉄用直
流電源。2. The step-up / step-down chopper for generating a constant voltage by using a DC output of the rectifier or the forward converter as a power supply, or a constant voltage by using an AC power supply of the rectifier or the forward converter as a power supply. The DC power supply for railways according to claim 1, wherein the DC power supply is a constant voltage DC power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000103593A JP2001287572A (en) | 2000-04-05 | 2000-04-05 | Railway dc power source facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000103593A JP2001287572A (en) | 2000-04-05 | 2000-04-05 | Railway dc power source facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001287572A true JP2001287572A (en) | 2001-10-16 |
Family
ID=18617272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000103593A Pending JP2001287572A (en) | 2000-04-05 | 2000-04-05 | Railway dc power source facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001287572A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006090536A1 (en) * | 2005-02-25 | 2006-08-31 | Meidensha Corporation | Traffic system |
WO2011055559A1 (en) * | 2009-11-09 | 2011-05-12 | 株式会社 東芝 | Power supply system |
WO2012015042A1 (en) * | 2010-07-30 | 2012-02-02 | 三菱重工業株式会社 | Overhead wire transportation system and control method therefor |
JP2014515916A (en) * | 2011-03-31 | 2014-07-03 | アドゥミニストゥラドル・デ・インフラエストゥルクトゥラス・フェロビアリアス(アデイエフェ) | System and method for controlling battery charging from an electric railway system |
RU2678826C1 (en) * | 2015-03-13 | 2019-02-04 | Кабусики Кайся Тосиба | Energy storage device |
KR20190037445A (en) * | 2017-09-29 | 2019-04-08 | (주)에스엔디파워닉스 | Battery charging system for electric automobile using battery for compensation |
-
2000
- 2000-04-05 JP JP2000103593A patent/JP2001287572A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006090536A1 (en) * | 2005-02-25 | 2006-08-31 | Meidensha Corporation | Traffic system |
WO2011055559A1 (en) * | 2009-11-09 | 2011-05-12 | 株式会社 東芝 | Power supply system |
JP2011101568A (en) * | 2009-11-09 | 2011-05-19 | Toshiba Corp | Power feed system |
EP2501017A4 (en) * | 2009-11-09 | 2016-04-13 | Toshiba Kk | Power supply system |
CN102668318A (en) * | 2009-11-09 | 2012-09-12 | 株式会社东芝 | Power supply system |
JP5331251B2 (en) * | 2010-07-30 | 2013-10-30 | 三菱重工業株式会社 | Overhead traffic system and control method thereof |
CN102958747A (en) * | 2010-07-30 | 2013-03-06 | 三菱重工业株式会社 | Overhead wire transportation system and control method therefor |
US8583311B2 (en) | 2010-07-30 | 2013-11-12 | Mitsubishi Heavy Industries, Ltd. | Overhead wire transportation system and control method thereof |
WO2012015042A1 (en) * | 2010-07-30 | 2012-02-02 | 三菱重工業株式会社 | Overhead wire transportation system and control method therefor |
JP2014515916A (en) * | 2011-03-31 | 2014-07-03 | アドゥミニストゥラドル・デ・インフラエストゥルクトゥラス・フェロビアリアス(アデイエフェ) | System and method for controlling battery charging from an electric railway system |
EP2693598A4 (en) * | 2011-03-31 | 2015-12-02 | Administrador De Infraestructuras Ferroviarias Adi | System and method for controlling the charging of batteries from an electric rail system |
RU2678826C1 (en) * | 2015-03-13 | 2019-02-04 | Кабусики Кайся Тосиба | Energy storage device |
KR20190037445A (en) * | 2017-09-29 | 2019-04-08 | (주)에스엔디파워닉스 | Battery charging system for electric automobile using battery for compensation |
KR102119925B1 (en) * | 2017-09-29 | 2020-06-05 | (주)에스엔디파워닉스 | Battery charging system for electric automobile using battery for compensation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9013066B2 (en) | High voltage electric accumulators with internal distributed DC-DC converters for self regulation and protection | |
US7667436B2 (en) | Energy storage type feeder voltage compensation apparatus and method of controlling feeder voltage | |
US20200180446A1 (en) | Apparatus for energy transfer using converter and method of manufacturing same | |
JP5674379B2 (en) | System for storing and managing a plurality of energies and method for producing the same | |
KR101715444B1 (en) | Battery device and method for installing and operating same | |
US6404151B1 (en) | Electric vehicle drive | |
US20030222502A1 (en) | Hybrid power supply system | |
US20060125319A1 (en) | System and method for providing power control of an energy storage system | |
JP2001260718A (en) | Dc power supply facility for electric railroad | |
CN106961150B (en) | Control method and system of composite energy storage battery | |
JP3618273B2 (en) | DC feeder system for electric railway | |
RU2660207C1 (en) | Device for energy storage | |
Lidozzi et al. | Power balance control of multiple-input DC-DC power converter for hybrid vehicles | |
JP4978354B2 (en) | DC power storage device | |
JP2001287572A (en) | Railway dc power source facility | |
EP2492132B1 (en) | Drive device for railway vehicle | |
JP2004236384A (en) | Power supply system for fuel cell vehicle | |
CN113715690B (en) | Power supply system and control method thereof | |
JP5509442B2 (en) | Power converter and electric railway system | |
JP2000341874A (en) | Charging/discharging apparatus for electric railway | |
JPS6056049B2 (en) | DC busbar response device with fluctuating loads | |
Deng et al. | A Multi-level Interleaved DC/DC Converter for Hybrid Energy Storage System in DC Microgrids | |
JP7372613B2 (en) | dc power system | |
KR101533011B1 (en) | Improved power system of vehicle for power converter structure and control method for the same | |
Akar | A computationally efficient energy management strategy for a plug-in fuel-cell hybrid electric vehicle composed of a multi-input converter |