JP2001267554A - 電界効果トランジスタ及びその製造方法 - Google Patents
電界効果トランジスタ及びその製造方法Info
- Publication number
- JP2001267554A JP2001267554A JP2000080201A JP2000080201A JP2001267554A JP 2001267554 A JP2001267554 A JP 2001267554A JP 2000080201 A JP2000080201 A JP 2000080201A JP 2000080201 A JP2000080201 A JP 2000080201A JP 2001267554 A JP2001267554 A JP 2001267554A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gan
- electron
- region
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000002955 isolation Methods 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 18
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910002704 AlGaN Inorganic materials 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 101100316860 Autographa californica nuclear polyhedrosis virus DA18 gene Proteins 0.000 description 1
- 102100031102 C-C motif chemokine 4 Human genes 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000777471 Homo sapiens C-C motif chemokine 4 Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Landscapes
- Element Separation (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】
【課題】 リーク電流を増大させ、耐圧や高周波特性を
低下させることなく、高い歩留まりで素子分離を確実に
行うFET構造及びその製造方法を提供すること 【解決手段】 トランジスタ領域以外をメサエッチング
により素子分離し、その領域にアンドープGaNを再成
長してから、電極を形成する。
低下させることなく、高い歩留まりで素子分離を確実に
行うFET構造及びその製造方法を提供すること 【解決手段】 トランジスタ領域以外をメサエッチング
により素子分離し、その領域にアンドープGaNを再成
長してから、電極を形成する。
Description
【0001】
【発明の属する技術分野】本発明は電界効果トランジス
タの構造および製造方法に関する。
タの構造および製造方法に関する。
【0002】
【従来の技術】近年、GaAs系やInP系に代わり、
GaNを用いた電界効果トランジスタ(FET)の開発
が活発化してきている。GaNは、禁制帯幅が大きい、
破壊電界が大きい、AlGaN/GaN接合においてピ
エゾ効果に伴い高い2次元電子ガス密度が得られる、等
の理由により、高耐圧・高出力素子として注目されてい
る。
GaNを用いた電界効果トランジスタ(FET)の開発
が活発化してきている。GaNは、禁制帯幅が大きい、
破壊電界が大きい、AlGaN/GaN接合においてピ
エゾ効果に伴い高い2次元電子ガス密度が得られる、等
の理由により、高耐圧・高出力素子として注目されてい
る。
【0003】図1にFETのレイアウトを示す。以下、
素子分離方法を中心に議論する。トランジスタ領域を規
定するためには、図1の点線で示した領域14の外側の
領域を電気的に分離する必要がある。FETは高周波特
性向上のために、サブミクロン級のゲート長を持つ素子
を作製する必要がある。段差があると、配線の断線の危
険性があるため、配線接続等プロセス上、プレーナー化
されていることが好ましい。そこで、図2にように、イ
オン注入を用いて周辺領域25を高抵抗化することによ
り素子分離する方法がある。イオン種としては、He+
やN+を用いて、イオン注入する方法が知られている。
ところが、FETの製造プロセスは、素子分離後に、ソ
ース電極・ドレイン電極の形成が行われる。これらオー
ミック電極は、一般的には、Ti/Al/Ni/Au積
層構造を蒸着・リフトオフ法により形成した後、熱処理
を加えることにより作製する。この際の、熱処理は、通
常、窒素雰囲気中で900℃で30秒行う。この熱処理
は、オーミック接合を得るためには不可欠である。しか
し、この温度における熱処理を行うと、素子分離のため
にイオン注入した高抵抗化領域が活性化してしまい、充
分な高抵抗領域が得られなくなってしまい、リーク電流
が増加してしまう、という問題が発生する。それに付随
して、耐圧が低下してしまうため、GaN系素子の特長
が失われてしまう。このような高抵抗領域の活性化を避
けるために、オーミック電極形成後にイオン注入による
素子分離を行う方法も考えられる。この場合、上記のよ
うなオーミック電極の熱処理に伴う高抵抗化領域の活性
化という問題は回避できる。ところが、イオン注入領域
に高電界をかけた際に生じるホッピング伝導等によりG
aN系FETの特長である高耐圧性は犠牲になってしま
う。
素子分離方法を中心に議論する。トランジスタ領域を規
定するためには、図1の点線で示した領域14の外側の
領域を電気的に分離する必要がある。FETは高周波特
性向上のために、サブミクロン級のゲート長を持つ素子
を作製する必要がある。段差があると、配線の断線の危
険性があるため、配線接続等プロセス上、プレーナー化
されていることが好ましい。そこで、図2にように、イ
オン注入を用いて周辺領域25を高抵抗化することによ
り素子分離する方法がある。イオン種としては、He+
やN+を用いて、イオン注入する方法が知られている。
ところが、FETの製造プロセスは、素子分離後に、ソ
ース電極・ドレイン電極の形成が行われる。これらオー
ミック電極は、一般的には、Ti/Al/Ni/Au積
層構造を蒸着・リフトオフ法により形成した後、熱処理
を加えることにより作製する。この際の、熱処理は、通
常、窒素雰囲気中で900℃で30秒行う。この熱処理
は、オーミック接合を得るためには不可欠である。しか
し、この温度における熱処理を行うと、素子分離のため
にイオン注入した高抵抗化領域が活性化してしまい、充
分な高抵抗領域が得られなくなってしまい、リーク電流
が増加してしまう、という問題が発生する。それに付随
して、耐圧が低下してしまうため、GaN系素子の特長
が失われてしまう。このような高抵抗領域の活性化を避
けるために、オーミック電極形成後にイオン注入による
素子分離を行う方法も考えられる。この場合、上記のよ
うなオーミック電極の熱処理に伴う高抵抗化領域の活性
化という問題は回避できる。ところが、イオン注入領域
に高電界をかけた際に生じるホッピング伝導等によりG
aN系FETの特長である高耐圧性は犠牲になってしま
う。
【0004】この問題を回避するために、メサエッチン
グにより素子分離を行う方法がある。図3にその断面構
造を示す。この場合、ゲート電極35は、寄生容量を低
減するため、ゲート電極引出し部はトランジスタ領域か
ら分離しておく必要がある。そうすると、必然的にゲー
ト電極がメサ端面において、2次元電子ガスが形成され
ているチャネル34に接触してしまうことになる。する
と、ソース・ゲート間リーク電流が増大してしまい、特
性の劣化に繋がってしまう。また、同様に耐圧も低下し
てしまう。更に、上記のように、段差上にゲート電極を
形成するため、ゲート抵抗が上昇して高周波特性が低下
してしまったり、更には断線による歩留まり低下が発生
してしまう。
グにより素子分離を行う方法がある。図3にその断面構
造を示す。この場合、ゲート電極35は、寄生容量を低
減するため、ゲート電極引出し部はトランジスタ領域か
ら分離しておく必要がある。そうすると、必然的にゲー
ト電極がメサ端面において、2次元電子ガスが形成され
ているチャネル34に接触してしまうことになる。する
と、ソース・ゲート間リーク電流が増大してしまい、特
性の劣化に繋がってしまう。また、同様に耐圧も低下し
てしまう。更に、上記のように、段差上にゲート電極を
形成するため、ゲート抵抗が上昇して高周波特性が低下
してしまったり、更には断線による歩留まり低下が発生
してしまう。
【0005】このように、リーク電流を増大させたり、
耐圧や高周波特性を低下させることなく、高歩留まりで
素子分離を確実に行うFET構造は、未だかつて得られ
ていない。
耐圧や高周波特性を低下させることなく、高歩留まりで
素子分離を確実に行うFET構造は、未だかつて得られ
ていない。
【0006】
【発明が解決しようとする課題】以上のように、リーク
電流を増大させたり、耐圧や高周波特性を低下させるこ
となく、高歩留まりで素子分離を確実に行うFET構造
は、未だかつて得られていない。
電流を増大させたり、耐圧や高周波特性を低下させるこ
となく、高歩留まりで素子分離を確実に行うFET構造
は、未だかつて得られていない。
【0007】本発明は、上記の点を鑑みなされたもの
で、リーク電流を増大させたり、耐圧や高周波特性を低
下させることなく、高い歩留まりで素子分離を確実に行
うFET構造及びその製造方法を提供することを目的と
する。
で、リーク電流を増大させたり、耐圧や高周波特性を低
下させることなく、高い歩留まりで素子分離を確実に行
うFET構造及びその製造方法を提供することを目的と
する。
【0008】
【課題を解決するための手段】上記課題を解決するため
に、本発明は、メサエッチングにより素子分離を行った
後、その領域に例えばアンドープGaNを再成長し、ト
ランジスタ領域から再成長GaNにかけてゲート電極を
形成した構造とする。このような構造とすることによ
り、トランジスタ領域端におけるリーク電流の発生を防
止し、しかも耐圧が高いFETを提供することが可能で
ある。
に、本発明は、メサエッチングにより素子分離を行った
後、その領域に例えばアンドープGaNを再成長し、ト
ランジスタ領域から再成長GaNにかけてゲート電極を
形成した構造とする。このような構造とすることによ
り、トランジスタ領域端におけるリーク電流の発生を防
止し、しかも耐圧が高いFETを提供することが可能で
ある。
【0009】
【発明の実施の形態】実施例として、本発明をAlGa
N/GaN系ヘテロ接合電界効果トランジスタ(HFE
T)に適用した場合を説明する。まず、図4に示したよ
うに、分子線エピタキシャル(MBE)法もしくは有機
金属気相成長(MOCVD)法等の成長方法により、サ
ファイア基板41上に、GaNバッファ層42、アンド
ープGaN電子走行層43、アンドープAlGaNスペ
ーサ層44、n型AlGaN電子供給層45、アンドー
プAlGaNショットキーコンタクト層46、n型Ga
Nオーミックコンタクト層47を順次積層する。ここ
で、GaNバッファ層42は膜厚500nm、アンドー
プGaN電子走行層43は膜厚2μm、アンドープAl
GaNスペーサ層44は膜厚3nm、n型AlGaN電
子供給層45はドーパントとしてSiを用い、Si濃度
2E18cm−3、膜厚20nm、アンドープAlGa
Nショットキーコンタクト層46は膜厚5nm、n型G
aNオーミックコンタクト層47はSi濃度5E18c
m−3、膜厚20nmとした。ここでは、AlGaNの
Al組成は、0.25とした。
N/GaN系ヘテロ接合電界効果トランジスタ(HFE
T)に適用した場合を説明する。まず、図4に示したよ
うに、分子線エピタキシャル(MBE)法もしくは有機
金属気相成長(MOCVD)法等の成長方法により、サ
ファイア基板41上に、GaNバッファ層42、アンド
ープGaN電子走行層43、アンドープAlGaNスペ
ーサ層44、n型AlGaN電子供給層45、アンドー
プAlGaNショットキーコンタクト層46、n型Ga
Nオーミックコンタクト層47を順次積層する。ここ
で、GaNバッファ層42は膜厚500nm、アンドー
プGaN電子走行層43は膜厚2μm、アンドープAl
GaNスペーサ層44は膜厚3nm、n型AlGaN電
子供給層45はドーパントとしてSiを用い、Si濃度
2E18cm−3、膜厚20nm、アンドープAlGa
Nショットキーコンタクト層46は膜厚5nm、n型G
aNオーミックコンタクト層47はSi濃度5E18c
m−3、膜厚20nmとした。ここでは、AlGaNの
Al組成は、0.25とした。
【0010】次に、全面に熱CVD法等により、SiO
2膜51を堆積させた後、トランジスタ領域を保護する
ようにフォトレジスト52をパターニングする(図
5)。フォトレジスト52をマスクとして、反応性イオ
ンエッチング(RIE)法等のドライエッチング、もし
くは弗化アンモニウムを用いたウェットエッチングによ
り、SiO2膜51をエッチングする。フォトレジスト
を酸素アッシングや有機溶剤を用いて除去した後、今度
は、残ったSiO2膜53をマスクにして、n型GaN
オーミックコンタクト層47、アンドープAlGaNシ
ョットキーコンタクト層46、n型AlGaN電子供給
層45、アンドープAlGaNスペーサ層44、アンド
ープGaN電子走行層43を順次エッチングする(図
6)。エッチングは、塩素系ガスおよびアルゴン等の不
活性ガスを用いた、例えばECR(Electron
Cyclotron Resonance)−RIEに
より行う。アンドープGaN電子走行層43のエッチン
グ量は、2次元電子ガスが形成される領域が充分エッチ
ングされていれば、完全にエッチングにより除去する必
要はない。
2膜51を堆積させた後、トランジスタ領域を保護する
ようにフォトレジスト52をパターニングする(図
5)。フォトレジスト52をマスクとして、反応性イオ
ンエッチング(RIE)法等のドライエッチング、もし
くは弗化アンモニウムを用いたウェットエッチングによ
り、SiO2膜51をエッチングする。フォトレジスト
を酸素アッシングや有機溶剤を用いて除去した後、今度
は、残ったSiO2膜53をマスクにして、n型GaN
オーミックコンタクト層47、アンドープAlGaNシ
ョットキーコンタクト層46、n型AlGaN電子供給
層45、アンドープAlGaNスペーサ層44、アンド
ープGaN電子走行層43を順次エッチングする(図
6)。エッチングは、塩素系ガスおよびアルゴン等の不
活性ガスを用いた、例えばECR(Electron
Cyclotron Resonance)−RIEに
より行う。アンドープGaN電子走行層43のエッチン
グ量は、2次元電子ガスが形成される領域が充分エッチ
ングされていれば、完全にエッチングにより除去する必
要はない。
【0011】続いて、燐酸、塩酸、硝酸等の酸にディッ
プすることにより、表面処理を行った後に、再びMOC
VD法等の成長方法によりアンドープGaN54を再成
長する。ここでは、成長温度は1100℃で行った。す
ると、SiO2膜上には、GaNは成長せず、図7のよ
うにGaNやAlGaN上にのみ選択的に成長される。
エッチング端面にも結晶成長する。
プすることにより、表面処理を行った後に、再びMOC
VD法等の成長方法によりアンドープGaN54を再成
長する。ここでは、成長温度は1100℃で行った。す
ると、SiO2膜上には、GaNは成長せず、図7のよ
うにGaNやAlGaN上にのみ選択的に成長される。
エッチング端面にも結晶成長する。
【0012】SiO2膜を弗化アンモニウムにより除去
したのち、ソース電極及びドレイン電極形成領域を開口
するようにフォトレジストをパターニングし、n型Ga
N層上にTi/Al/Ni/Auを順次蒸着・リフトオ
フする。続いて、窒素雰囲気中で900℃、30秒の熱
処理を行うことにより、オーミック接合を得る。
したのち、ソース電極及びドレイン電極形成領域を開口
するようにフォトレジストをパターニングし、n型Ga
N層上にTi/Al/Ni/Auを順次蒸着・リフトオ
フする。続いて、窒素雰囲気中で900℃、30秒の熱
処理を行うことにより、オーミック接合を得る。
【0013】次に、ゲート電極形成領域を開口するよう
に、レジストをパターニングする。パターニングには、
ステッパ露光や、電子線描画を用いる。続いて、n型G
aNオーミックコンタクト層47を、例えば塩素系ガス
およびアルゴン等の不活性ガスを用いたECR(Ele
ctron Cyclotron Resonanc
e)−RIEによりエッチングし、アンドープAlGa
Nショットキーコンタクト層46を露出してから、Ni
/Auを順次蒸着・リフトオフする(図8)。その後
に、900℃にて熱処理することにより、ショットキー
特性を改善させる。
に、レジストをパターニングする。パターニングには、
ステッパ露光や、電子線描画を用いる。続いて、n型G
aNオーミックコンタクト層47を、例えば塩素系ガス
およびアルゴン等の不活性ガスを用いたECR(Ele
ctron Cyclotron Resonanc
e)−RIEによりエッチングし、アンドープAlGa
Nショットキーコンタクト層46を露出してから、Ni
/Auを順次蒸着・リフトオフする(図8)。その後
に、900℃にて熱処理することにより、ショットキー
特性を改善させる。
【0014】このようにして作製したHFETの特性を
図9に示す。トランジスタ領域をメサエッチングで分離
した従来例と比較して、耐圧が充分にとれていることが
分かる。
図9に示す。トランジスタ領域をメサエッチングで分離
した従来例と比較して、耐圧が充分にとれていることが
分かる。
【0015】また、本実施例では、リセスゲート型トラ
ンジスタに適用して説明したが、n型GaNオーミック
コンタクト層がなく、オーミック電極をAlGaN層上
に形成する場合、オーミック電極形成領域にn型GaN
層を再成長して、その上にオーミック電極を形成する場
合にも同様に適用可能である。更に、素子分離領域のG
aN再成長の際に、SiO2膜が覆われてウェハ全面が
平坦になるまで充分再成長を行い、全面をECR−RI
Eによりエッチバックすることにより、素子分離領域に
埋め込む方法もある。
ンジスタに適用して説明したが、n型GaNオーミック
コンタクト層がなく、オーミック電極をAlGaN層上
に形成する場合、オーミック電極形成領域にn型GaN
層を再成長して、その上にオーミック電極を形成する場
合にも同様に適用可能である。更に、素子分離領域のG
aN再成長の際に、SiO2膜が覆われてウェハ全面が
平坦になるまで充分再成長を行い、全面をECR−RI
Eによりエッチバックすることにより、素子分離領域に
埋め込む方法もある。
【0016】
【発明の効果】以上の方法により、リーク電流も小さ
く、しかも高周波特性及び耐圧が高いGaN系FETを
提供することができる。
く、しかも高周波特性及び耐圧が高いGaN系FETを
提供することができる。
【図1】FETの電極の平面レイアウトを説明する図。
【図2】第1の従来例のゲート電極長手方向の断面を示
す図。
す図。
【図3】第2の従来例のゲート電極長手方向の断面を示
す図。
す図。
【図4】本発明の実施例のFETの層構造を示す図。
【図5】本発明による電界効果トランジスタの製造方法
に係わる実施形態を示すFETの工程断面図。
に係わる実施形態を示すFETの工程断面図。
【図6】図5に続くFETの工程断面図。
【図7】図6に続くFETの工程断面図。
【図8】図7に続くFETの工程断面図。
【図9】本発明の実施例のトランジスタ特性を従来例と
比較して説明する図。
比較して説明する図。
11: ドレイン電極 12: ソース電極 13: ゲート電極 14: 素子分離領域 21: ショットキーコンタクト層 22: 電子供給層 23: 電子走行層 24: 2次元電子ガス 25: イオン注入領域 26: ゲート電極 31: ショットキーコンタクト層 32: 電子供給層 33: 電子走行層 34: 2次元電子ガス 35: ゲート電極 41: サファイア基板 42: GaNバッファ層 43: アンドープGaN電子走行層 44: アンドープAlGaNスペーサ層 45: n型AlGaN電子供給層 46: アンドープAlGaNショットキーコンタク
ト層 47: n型GaNオーミックコンタクト層 51: SiO2膜 52: レジスト 53: SiO2膜 54: アンドープGaN再成長層 55: ゲート電極
ト層 47: n型GaNオーミックコンタクト層 51: SiO2膜 52: レジスト 53: SiO2膜 54: アンドープGaN再成長層 55: ゲート電極
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F032 AA35 AA54 CA05 CA09 CA16 DA02 DA12 DA16 DA23 DA24 DA25 DA34 DA78 5F102 FA01 GB01 GC01 GD01 GJ10 GK04 GL04 GM04 GN04 GQ01 GR04 GS01 GT01 HC02 HC16 HC21
Claims (4)
- 【請求項1】 電子供給層及び電子走行層の少なくとも
2層が積層されている電界効果トランジスタ領域を取り
囲む領域が、表面から2次元電子ガスが形成されている
深さ以上の深さに亙って、電子供給層よりも低いドーピ
ング濃度である単一の半導体層で形成されていることを
特徴とする、電界効果トランジスタ。 - 【請求項2】 電子供給層がAlxGa1−xN(0<
x≦1)で構成され、電子走行層がGaNで構成され、
素子分離領域を形成する上記単一の半導体層がGaNで
構成されていることを特徴とする請求項1記載の電界効
果トランジスタ。 - 【請求項3】 電子供給層及び電子走行層の少なくとも
2層が積層されている電界効果トランジスタにおいて、
酸化シリコン膜をマスクとして、電子供給層及び、電子
走行層の一部をエッチングする工程と、エッチングした
領域に電子供給層よりも低いドーピング濃度の半導体層
を成長する工程と、しかる後に電極を形成する工程とを
含むことを特徴とする、電界効果トランジスタの製造方
法。 - 【請求項4】 電子供給層がAlxGa1−xN(0<
x≦1)で構成され、電子走行層がGaNで構成され、
エッチング後に成長する半導体層がGaNで構成されて
いることを特徴とする、請求項3記載の電界効果トラン
ジスタの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080201A JP2001267554A (ja) | 2000-03-22 | 2000-03-22 | 電界効果トランジスタ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080201A JP2001267554A (ja) | 2000-03-22 | 2000-03-22 | 電界効果トランジスタ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001267554A true JP2001267554A (ja) | 2001-09-28 |
Family
ID=18597341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000080201A Pending JP2001267554A (ja) | 2000-03-22 | 2000-03-22 | 電界効果トランジスタ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001267554A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080341A (ja) * | 2004-09-10 | 2006-03-23 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2006135274A (ja) * | 2004-10-06 | 2006-05-25 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2007251171A (ja) * | 2006-03-14 | 2007-09-27 | Northrop Grumman Corp | GaN系HEMTアクティブデバイスのためのリークバリヤ |
-
2000
- 2000-03-22 JP JP2000080201A patent/JP2001267554A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080341A (ja) * | 2004-09-10 | 2006-03-23 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2006135274A (ja) * | 2004-10-06 | 2006-05-25 | New Japan Radio Co Ltd | 窒化物半導体装置及びその製造方法 |
JP2007251171A (ja) * | 2006-03-14 | 2007-09-27 | Northrop Grumman Corp | GaN系HEMTアクティブデバイスのためのリークバリヤ |
US8809907B2 (en) | 2006-03-14 | 2014-08-19 | Northrop Grumman Systems Corporation | Leakage barrier for GaN based HEMT active device |
US8809137B2 (en) | 2006-03-14 | 2014-08-19 | Northrop Grumman Systems Corporation | Leakage barrier for GaN based HEMT active device |
JP2016213478A (ja) * | 2006-03-14 | 2016-12-15 | ノースロップ グラマン システムズ コーポレーション | GaN系HEMTアクティブデバイスのためのリークバリヤ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12034051B2 (en) | Nitride-based semiconductor device and method of manufacturing the same | |
JP3716906B2 (ja) | 電界効果トランジスタ | |
JP2001230407A (ja) | 半導体装置 | |
JP2003209124A (ja) | 電界効果半導体素子の製造方法及び電界効果半導体素子 | |
US20070194295A1 (en) | Semiconductor device of Group III nitride semiconductor having oxide protective insulating film formed on part of the active region | |
JP3951743B2 (ja) | 半導体装置およびその製造方法 | |
JP3294411B2 (ja) | 半導体装置の製造方法 | |
JP4906023B2 (ja) | GaN系半導体装置 | |
JPH11354541A (ja) | 半導体装置およびその製造方法 | |
JP3147036B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP2003086608A (ja) | 電界効果トランジスタ及びその製造方法 | |
JP5487590B2 (ja) | 半導体装置及びその製造方法 | |
JP3690594B2 (ja) | ナイトライド系化合物半導体の電界効果トランジスタ | |
KR0174879B1 (ko) | 화합물 반도체 소자의 격리방법 | |
JP4869576B2 (ja) | 窒化物半導体装置及びその製造方法 | |
JP2001185717A (ja) | 半導体装置及びその製造方法 | |
CN113140630B (zh) | 增强型HEMT的p型氮化物栅的制备方法及应用其制备增强型氮化物HEMT的方法 | |
JP2010165783A (ja) | 電界効果型トランジスタおよびその製造方法 | |
JP5463529B2 (ja) | 電界効果トランジスタの製造方法 | |
JP4850410B2 (ja) | 窒化物半導体装置及びその製造方法 | |
JP2001267554A (ja) | 電界効果トランジスタ及びその製造方法 | |
JP2014060427A (ja) | 半導体装置及びその製造方法 | |
JP3381787B2 (ja) | 半導体装置およびその製造方法 | |
JP2003273130A (ja) | 半導体装置及びその製造方法 | |
JP4869585B2 (ja) | 窒化物半導体装置の製造方法 |