Nothing Special   »   [go: up one dir, main page]

JP2001135356A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001135356A
JP2001135356A JP31600499A JP31600499A JP2001135356A JP 2001135356 A JP2001135356 A JP 2001135356A JP 31600499 A JP31600499 A JP 31600499A JP 31600499 A JP31600499 A JP 31600499A JP 2001135356 A JP2001135356 A JP 2001135356A
Authority
JP
Japan
Prior art keywords
natural graphite
negative electrode
active material
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31600499A
Other languages
Japanese (ja)
Inventor
Minoru Tejima
手嶋  稔
Toru Tabuchi
田渕  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP31600499A priority Critical patent/JP2001135356A/en
Publication of JP2001135356A publication Critical patent/JP2001135356A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having good contact with a collector, excellent cyclic characteristics, and easy handling of an electrode plate during coating wherein a scaly natural graphite is used as a negative electrode for a non- aqueous electrolyte secondary battery. SOLUTION: A scaly natural graphite is used for a negative electrode active substance for a nonaqueous electrolyte secondary battery, wherein the scaly natural graphite is processed into spherical.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質に黒鉛
を使用した非水電解質二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery using graphite as a negative electrode active material.

【0002】[0002]

【従来の技術】近年、盛んに研究されているリチウムイ
オン二次電池は、小型で軽量の電池が要求される分野を
中心に実用化された。これまで、リチウム二次電池の有
効性は古くから予測されていたものの、実用化に至るま
でに解決すべき多くの問題があった。特に二次電池の正
極材料にコバルト酸リチウム(LiCoO2)が有効で
あることが発見されてからは、負極活物質材料の開発が
大きな課題となった。
2. Description of the Related Art In recent years, lithium ion secondary batteries, which have been actively studied, have been put to practical use mainly in fields requiring small and lightweight batteries. Until now, the effectiveness of lithium secondary batteries has been predicted for a long time, but there are many problems to be solved before they can be put to practical use. In particular, since it was discovered that lithium cobalt oxide (LiCoO 2 ) was effective as a positive electrode material for a secondary battery, the development of a negative electrode active material became a major issue.

【0003】負極活物質にリチウム金属を用いた場合、
充放電を繰り返すうちに局所的にリチウムが樹枝状に成
長し、容量が低下するとともに、セパレータを突き破っ
て内部短絡を起こすという問題があった。そこでリチウ
ム金属に変わりリチウム合金の利用が考えられたが、サ
イクル特性やエネルギー密度に難点があった。
When lithium metal is used as a negative electrode active material,
As charge and discharge are repeated, lithium locally grows in a dendritic manner, resulting in a problem that the capacity is reduced and the separator breaks through to cause an internal short circuit. Therefore, use of a lithium alloy instead of lithium metal was considered, but there were difficulties in cycle characteristics and energy density.

【0004】現在では負極活物質として炭素材料を用
い、炭素中にリチウムイオンが挿入脱離する反応を負極
反応として用いる二次電池が実用化されている。
[0004] At present, a secondary battery using a carbon material as a negative electrode active material and using a reaction in which lithium ions are inserted into and desorbed from carbon as a negative electrode reaction has been put to practical use.

【0005】炭素材料には大きく分けて、黒鉛と無定型
炭素いわゆる難黒鉛化性炭素材料を熱処理したものがあ
る。黒鉛は、天然黒鉛と易黒鉛化性炭素を熱処理された
いわゆる人造黒鉛といった分類がなされている。難黒鉛
化性炭素は高温で熱処理しても炭素層面の再配列が起こ
らず黒鉛化しない炭素である。一方、易黒鉛化性炭素は
高温で熱処理すると黒鉛化される炭素である。
[0005] Carbon materials are roughly divided into those obtained by heat-treating graphite and amorphous carbon, so-called non-graphitizable carbon materials. Graphite is classified into so-called artificial graphite obtained by heat-treating natural graphite and graphitizable carbon. Non-graphitizable carbon is carbon that does not undergo graphitization even after heat treatment at a high temperature without rearrangement of the carbon layer surface. On the other hand, graphitizable carbon is carbon that is graphitized when heat-treated at a high temperature.

【0006】これらの炭素材料の中でも天然黒鉛は、人
造黒鉛に比べて安価であり、地球上にも豊富に存在する
上、結晶性が高く、非水電解質二次電池の負極活物質と
して用いた場合、黒鉛の理論容量である372mAh/
gに近い放電容量を示す。
Among these carbon materials, natural graphite is cheaper than artificial graphite, abundant on the earth, has high crystallinity, and has been used as a negative electrode active material for nonaqueous electrolyte secondary batteries. In this case, the theoretical capacity of graphite is 372 mAh /
It shows a discharge capacity close to g.

【0007】[0007]

【発明が解決しようとする課題】鱗片状天然黒鉛を負極
活物質に用いた電池においては、一般的には、集電体で
ある金属箔に炭素材料を塗工し、プレスして使用されて
いる。しかし、鱗片状天然黒鉛を非水電解質二次電池の
負極として用いる際、極板塗工時のハンドリングが容易
ではない上、極板プレス時に鱗片状天然黒鉛のc軸方向
が集電箔と垂直になるように配向してしまい、集電体と
の密着性が悪いことや、鱗片状天然黒鉛へのリチウム挿
入脱離反応による活物質の膨張収縮に伴って活物質の脱
落が起こり、電池のサイクル劣化を引き起こすという問
題があった。
In a battery using scaly natural graphite as a negative electrode active material, generally, a carbon material is coated on a metal foil as a current collector and pressed to be used. I have. However, when flaky natural graphite is used as a negative electrode of a non-aqueous electrolyte secondary battery, handling during electrode coating is not easy, and the c-axis direction of the flaky natural graphite is perpendicular to the current collector foil during electrode pressing. The active material falls off due to the poor adhesion to the current collector and the expansion and contraction of the active material due to the lithium insertion / desorption reaction into the flaky natural graphite. There is a problem of causing cycle deterioration.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたものであり、非水電解質二次電池
の負極活物質として球状に加工した鱗片状天然黒鉛を使
用することを特徴とする。そして、好ましくは負極活物
質合計重量に対する球状に加工した鱗片状天然黒鉛の含
有量が20〜80重量部であることを特徴とする。ま
た、負極活物質中の球状に加工した鱗片状天然黒鉛以外
の活物質が球状に加工しない鱗片状天然黒鉛であること
を特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to use spherical shaped flake natural graphite as a negative electrode active material of a non-aqueous electrolyte secondary battery. Features. Preferably, the content of the flaky natural graphite processed into a sphere with respect to the total weight of the negative electrode active material is 20 to 80 parts by weight. Further, the active material other than the flaky natural graphite processed into a spherical shape in the negative electrode active material is a flaky natural graphite which is not processed into a spherical shape.

【0009】さらに本発明において、好ましくは、負極
活物質としての球状に加工した鱗片状天然黒鉛のBET
比表面積が3.5m2/g以下で、平均粒径が10〜3
0μmであることを特徴とする。
Further, in the present invention, preferably, BET of flaky natural graphite processed into a spherical shape as a negative electrode active material is used.
The specific surface area is 3.5 m 2 / g or less, and the average particle size is 10 to 3
0 μm.

【0010】[0010]

【発明の実施の形態】天然黒鉛は六方晶系、六角板状の
平たい結晶であり、結晶性が高く、形状としては鱗片
状、粒状、鱗片状、塊状、土状などがあるが、本発明に
おいては、非水電解質二次電池の負極活物質として球状
に加工した鱗片状天然黒鉛を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION Natural graphite is a hexagonal or hexagonal plate-like flat crystal having high crystallinity, and has a shape such as flaky, granular, flaky, massive, or earth-like. In this method, flaky natural graphite processed into a spherical shape is used as a negative electrode active material of a nonaqueous electrolyte secondary battery.

【0011】鱗片状天然黒鉛を球状に加工する方法とし
ては、鱗片状天然黒鉛を粉砕して球状粒子のみをふるい
わけする方法や、鱗片状天然黒鉛を加圧してペレットと
し、これを粉砕して、多数の鱗片状天然黒鉛を集めて球
状の塊とする方法などがある。
As a method of processing the flaky natural graphite into a sphere, a method of pulverizing the flaky natural graphite and sieving only the spherical particles, or a method of pressing the flaky natural graphite into a pellet and pulverizing it And a method of collecting a large number of flaky natural graphite into a spherical mass.

【0012】なお、ここで「球状に加工した鱗片状天然
黒鉛」とは、必ずしも完全な球状のみを意味するのでは
なく、球状に近い形状も含まれるし、表面に凹凸があっ
てもよい。
Here, the term “scale-shaped natural graphite processed into a sphere” does not necessarily mean only a perfect sphere, but also includes a shape close to a sphere and may have irregularities on the surface.

【0013】そして、負極活物質合計重量に対する球状
に加工した鱗片状天然黒鉛の含有量は100重量部でも
かまわないが、特に20〜80重量部とすることによっ
て、負極合剤の集電体への密着性が向上し、サイクル特
性の優れた電池が得られるものである。なお、この場
合、負極活物質中の球状に加工した鱗片状天然黒鉛以外
の活物質を球状に加工しない鱗片状天然黒鉛とすること
により、よりいっそうその効果が得られるものである。
The content of the flaky natural graphite processed into a sphere with respect to the total weight of the negative electrode active material may be 100 parts by weight, but by setting the content to 20 to 80 parts by weight, the current collector of the negative electrode mixture can be used. Is improved, and a battery having excellent cycle characteristics can be obtained. In this case, the effect can be obtained even more by using a flaky natural graphite which is not processed into a spherical shape from an active material other than the flaky natural graphite processed into a spherical shape in the negative electrode active material.

【0014】さらに本発明においては、負極活物質とし
ての球状に加工した鱗片状天然黒鉛のBET比表面積が
3.5m2/g以下で、平均粒径が10〜30μmとす
ることにより、負極合剤中における活物質どおしおよび
活物質と集電体との密着性が良好となるものである。そ
れによって、放電容量の増大が可能となり、さらなる高
エネルギー密度の非水電解質二次電池が獲得できる。
Further, in the present invention, the spherical shaped flake natural graphite as the negative electrode active material has a BET specific surface area of 3.5 m 2 / g or less and an average particle size of 10 to 30 μm. The adhesiveness between the active material and the active material and the current collector in the agent is improved. Thereby, the discharge capacity can be increased, and a non-aqueous electrolyte secondary battery with a higher energy density can be obtained.

【0015】非水電解質電池の負極活物質に、球状に加
工した鱗片状天然黒鉛を使用することより、負極活物質
および負極合剤と集電体との密着性が向上する。この結
果、充放電を繰り返しても鱗片状天然黒鉛粒子間および
鱗片状天然黒鉛と集電体との電子伝導性が維持されて、
電池のサイクル特性が改善される。
By using flaky natural graphite processed into a sphere as the negative electrode active material of the nonaqueous electrolyte battery, the adhesion between the negative electrode active material and the negative electrode mixture and the current collector is improved. As a result, the electron conductivity between the scaly natural graphite particles and the scaly natural graphite and the current collector is maintained even after repeated charging and discharging,
The cycle characteristics of the battery are improved.

【0016】本発明になる非水電解質二次電池の正極活
物質としては、リチウムまたはリチウムイオンを吸蔵・
放出する化合物ならいかなる種類の化合物も使用可能で
あるが、特にLixMO2(ただし、Mは一種以上の遷移
金属をあらわす)およびLixMn24を主体とする化
合物を単独で、または2種以上混合して使用することが
好ましい。さらに、放電電圧の高さからは、これらの化
合物において、遷移金属MとしてはCo、NiおよびM
nよりなる群から選ばれる遷移金属を使用することがよ
り好ましい。
As the positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention, lithium or lithium ions are occluded.
Although the compounds of any type if releasing compounds can also be used, especially LixMO 2 (however, M represents one or more transition metals) and Li x Mn 2 O 4 compound mainly alone, or two or more mixed It is preferable to use them. Furthermore, from these discharge compounds, it is apparent that Co, Ni and M
It is more preferable to use a transition metal selected from the group consisting of n.

【0017】非水電解質の溶媒としては、エチレンカー
ボネート、プロピレンカーボネート、ブチレンカーボネ
ート、トリフルオロプロピレンカーボネート、γ-ブチ
ロラクトン、スルホラン、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、3−メチル−1,3−ジオ
キソン、酢酸メチル、酢酸エチル、プロピオン酸メチ
ル、プロピオン酸エチル、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート、ジプロ
ピルカーボネート、メチルプロピルカーボネート等の非
水溶媒を、単独でまたはこれらの混合溶媒を使用するこ
とができる。
As the solvent for the non-aqueous electrolyte, ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane,
1,2-diethoxyethane, tetrahydrofuran, 2-
Non-aqueous solvents such as methyl tetrahydrofuran, 3-methyl-1,3-dioxone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc. , Alone or a mixed solvent thereof can be used.

【0018】非水電解質は、これらの非水溶媒に支持塩
を溶解して使用する。支持塩としては、LiClO4
LiAsF6、LiPF6、LiBF4、LiAsF6、L
iCF3CO2、LiCF3SO3、LiCF3CF2
3、LiCF3CF2CF2SO3、LiN(CF3
22、LiN(CF2CF3SO22、LiN(CF3
CO) 2およびLiN(CF2CF3CO)2などの塩もし
くはこれらの混合物を使用することができる。
The non-aqueous electrolyte is prepared by adding a supporting salt to these non-aqueous solvents.
Dissolve and use. As the supporting salt, LiClOFour,
LiAsF6, LiPF6, LiBFFour, LiAsF6, L
iCFThreeCOTwo, LiCFThreeSOThree, LiCFThreeCFTwoS
OThree, LiCFThreeCFTwoCFTwoSOThree, LiN (CFThreeS
OTwo)Two, LiN (CFTwoCFThreeSOTwo)Two, LiN (CFThree
CO) TwoAnd LiN (CFTwoCFThreeCO)TwoSalt if
Alternatively, a mixture of these can be used.

【0019】また、このような液状の電解質のかわりに
固体のイオン導電性ポリマー電解質を用いることもでき
る。ポリマー電解質膜が、ポリエチレンオキシド、ポリ
アクリロニトリル、ポリエチレングリコールおよびこれ
らの変性体などの場合には、軽量で柔軟性があり、巻回
極板に使用する場合に有利である。さらに、イオン導電
性ポリマー電解質膜と有機電解液を組み合わせて使用す
ることができる。また、電解質としては、ポリマー電解
質以外にも、無機固体電解質あるいは有機ポリマー電解
質と無機固体電解質の混合材料、もしくは有機バインダ
ーによって結着された無機固体粉末など、いずれも公知
のものの使用が可能である。
Further, instead of such a liquid electrolyte, a solid ionic conductive polymer electrolyte can be used. When the polymer electrolyte membrane is made of polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, it is lightweight and flexible, and is advantageous when used for a wound electrode plate. Furthermore, the ion conductive polymer electrolyte membrane and the organic electrolyte can be used in combination. In addition, as the electrolyte, other than the polymer electrolyte, any known inorganic solid electrolyte or a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder, any of which can be used. .

【0020】また、本発明になる非水電解質二次電池
は、普通その構成として正極、負極およびセパレータと
非水電解液との組み合わせからなっているが、セパレー
タとしては、多孔性ポリ塩化ビニル膜などの多孔性ポリ
マー膜やリチウムイオンまたはイオン導電性ポリマー電
解質膜を、単独または組み合わせて使用することができ
る。さらに、電池の形状としては、円筒形、角型、コイ
ン型、ボタン型、ペーパー型などの種々の形状にするこ
とができる。
The non-aqueous electrolyte secondary battery according to the present invention usually comprises a positive electrode, a negative electrode and a combination of a separator and a non-aqueous electrolyte. The separator is a porous polyvinyl chloride membrane. Such a porous polymer membrane or a lithium ion or ionic conductive polymer electrolyte membrane can be used alone or in combination. Further, the shape of the battery can be various shapes such as a cylinder, a square, a coin, a button, and a paper.

【0021】[0021]

【実施例】以下に好適な実施例を用いて本発明を説明す
るが、本発明の主旨を超えない限り、以下の実施例に限
定されるものではないことはいうまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments, but it goes without saying that the present invention is not limited to the following embodiments unless it exceeds the gist of the present invention.

【0022】正極活物質にコバルト酸リチウム、負極活
物質に炭素材料を使用した、角型非水電解質二次電池を
作製した。図1は角型非水電解質二次電池の断面構造を
示した図である。図1において、1は角型非水電解質二
次電池、2は巻回型電極群、3は正極、4は負極、5は
セパレータ、6は電池ケース、7は電池蓋、8は安全
弁、9は正極端子、10は正極リード線である。
A prismatic nonaqueous electrolyte secondary battery using lithium cobaltate as a positive electrode active material and a carbon material as a negative electrode active material was manufactured. FIG. 1 is a diagram showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a prismatic nonaqueous electrolyte secondary battery, 2 is a wound electrode group, 3 is a positive electrode, 4 is a negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery cover, 8 is a safety valve, 9 Denotes a positive electrode terminal, and 10 denotes a positive electrode lead wire.

【0023】巻回型電極群2は電池ケース6に収納して
あり、電池ケース6には安全弁8を設け、電池蓋7と電
池ケース6はレーザー溶接で密閉されている。正極端子
9は正極リード10を介して正極3と接続され、負極4
は電池ケース6の内壁と接触により接続されている。
The wound electrode group 2 is housed in a battery case 6, a safety valve 8 is provided in the battery case 6, and the battery lid 7 and the battery case 6 are sealed by laser welding. The positive electrode terminal 9 is connected to the positive electrode 3 via the positive electrode lead 10 and the negative electrode 4
Is connected to the inner wall of the battery case 6 by contact.

【0024】正極は以下のように作製した。活物質とし
てLiCoO290重量部と、導電剤としてのアセチレ
ンブラック5重量部と、結着剤としてのポリフッ化ビニ
リデン5重量部とを混合して正極合剤とし、 N−メチ
ル−2−ピロリドンに分散させることによりペーストを
製造した。このペーストを厚さ20μmのアルミニウム
集電体に均一に塗布して、乾燥させた後、ロールプレス
で圧縮成型することにより正極を作製した。
The positive electrode was manufactured as follows. 90 parts by weight of LiCoO 2 as an active material, 5 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder were mixed to form a positive electrode mixture, and N-methyl-2-pyrrolidone was added. A paste was produced by dispersing. This paste was uniformly applied to an aluminum current collector having a thickness of 20 μm, dried, and then compression molded by a roll press to produce a positive electrode.

【0025】負極合剤は、表1に示した組成比で、球状
に加工した鱗片状天然黒鉛と球状に加工しない鱗片状黒
鉛を混合して作製した。
The negative electrode mixture was prepared by mixing spherical natural flake graphite and non-spherical flake graphite at the composition ratios shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】これらの混合した炭素材料90重量部と、
結着剤としてのポリフッ化ビニリデン10重量部とを混
合して負極合剤とし、 N−メチル−2−ピロリドンに
分散させることによりペーストを製造した。
90 parts by weight of these mixed carbon materials,
A paste was produced by mixing 10 parts by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture and dispersing the mixture in N-methyl-2-pyrrolidone.

【0028】上記負極ペーストを厚さ15μmの銅箔に
均一に塗布して100℃で5時間乾燥させた後、ロール
プレスで圧縮成型することにより負極を作製した。
The negative electrode paste was uniformly applied to a copper foil having a thickness of 15 μm, dried at 100 ° C. for 5 hours, and then compression molded by a roll press to produce a negative electrode.

【0029】セパレータとしては、厚さ25μm程度の
微多孔性ポリエチレンフィルムを用いた。
As the separator, a microporous polyethylene film having a thickness of about 25 μm was used.

【0030】電解質には、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)の1:1混合溶
媒(体積比)にLiPF6を1.0M溶解した非水電解
液を用いた。以上により、表記載の実施例1〜5、およ
び比較例1、2の7種類の電池を作製した。
As the electrolyte, ethylene carbonate (E
A non-aqueous electrolyte obtained by dissolving 1.0 M of LiPF 6 in a 1: 1 mixed solvent (volume ratio) of C) and diethyl carbonate (DEC) was used. As described above, seven types of batteries of Examples 1 to 5 and Comparative Examples 1 and 2 shown in the table were produced.

【0031】このリチウム二次電池を25℃において1
Cの電流で4.1Vまで定電流定電圧充電を3時間おこ
なって満充電状態とした。続いて1Cの電流で2.75
Vまで放電させた。これを1サイクルとし、合計300
サイクルおこない放電容量の推移を調査した。
This lithium secondary battery was heated at 25 ° C. for 1 hour.
The battery was charged at a constant current and a constant voltage up to 4.1 V with a current of C for 3 hours to obtain a fully charged state. Subsequently, the current of 1C is 2.75.
Discharged to V. This is taken as one cycle, for a total of 300
The transition of the discharge capacity was examined by cycling.

【0032】実施例1〜5、および比較例1、2の7種
類の電池のサイクル試験結果を図2に示す。図2より、
負極活物質中の球状に加工した鱗片状天然黒鉛の含有量
が20、50、80重量部である負極を用いた非水電解
質二次電池(実施例1、2、3)のサイクル特性は非常
に良好であり、300サイクル後の容量保持率は80%
以上を示した。なお、ここで300サイクル後の容量保
持率とは、1サイクル目の放電容量に対する300サイ
クル目の放電容量の比率とした。
FIG. 2 shows the cycle test results of the seven types of batteries of Examples 1 to 5 and Comparative Examples 1 and 2. From FIG.
The cycle characteristics of the non-aqueous electrolyte secondary batteries (Examples 1, 2, and 3) using the negative electrode in which the content of the flaky natural graphite processed into a spherical shape in the negative electrode active material is 20, 50, and 80 parts by weight are extremely high. Good and the capacity retention after 300 cycles is 80%
The above is shown. Here, the capacity retention after 300 cycles was the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle.

【0033】負極活物質中の球状に加工した鱗片状天然
黒鉛の含有量が90重量部および100重量部である負
極を用いた非水電解質二次電池(実施例4、5)のサイ
クル特性は、上記負極活物質中の球状に加工した鱗片状
天然黒鉛の含有量が20、50、80重量部である負極
に用いた非水電解質二次電池(実施例1、2、3)より
は若干劣るが、それでも良好であった。
The cycle characteristics of the non-aqueous electrolyte secondary batteries (Examples 4 and 5) using the negative electrode in which the content of the spherically shaped flaky natural graphite in the negative electrode active material is 90 parts by weight and 100 parts by weight are as follows. The content of the spherically shaped flaky natural graphite in the negative electrode active material was slightly higher than that of the nonaqueous electrolyte secondary battery used in the negative electrode (Examples 1, 2, and 3) in which the content of the flaky natural graphite was 20, 50, and 80 parts by weight. Poor, but still good.

【0034】また、負極活物質として球状に加工しない
鱗片状天然黒鉛のみを使用した非水電解質二次電池(比
較例1)、もしくは負極活物質中の球状に加工した鱗片
状天然黒鉛の含有量が10重量部である負極に用いた非
水電解質二次電池(比較例2)のサイクル特性は劣悪で
あった。
A non-aqueous electrolyte secondary battery using only non-spherical flake natural graphite as the negative electrode active material (Comparative Example 1), or the content of spherically processed flake natural graphite in the negative electrode active material The cycle characteristics of the nonaqueous electrolyte secondary battery (Comparative Example 2) used for the negative electrode, which was 10 parts by weight, were poor.

【0035】比較例1および2の非水電解質二次電池で
は、負極活物質中の全部あるいは大部分を占めるのが球
状に加工しない鱗片状天然黒鉛であり、集電体との密着
性が悪い結果、充放電を繰り返すと、球状に加工しない
鱗片状天然黒鉛へのリチウム挿入脱離反応による活物質
の膨張収縮に伴う活物質の脱落が起こり、サイクル特性
が劣悪となるためであると考えられる。
In the non-aqueous electrolyte secondary batteries of Comparative Examples 1 and 2, all or most of the negative electrode active material is flaky natural graphite that is not processed into a spherical shape, and has poor adhesion to the current collector. As a result, when charging and discharging are repeated, it is considered that the active material falls off due to the expansion and contraction of the active material due to the lithium insertion / desorption reaction into the flaky natural graphite that is not processed into a spherical shape, and the cycle characteristics are degraded. .

【0036】以上の理由から、負極活物質中に、球状に
加工した鱗片状天然黒鉛を20〜80重量部含有するこ
とがより好ましい。
For the above reasons, it is more preferable that the negative electrode active material contains 20 to 80 parts by weight of flaky natural graphite processed into a spherical shape.

【0037】次に、球状に加工した鱗片状天然黒鉛のB
ET比表面積、および平均粒径と密着性との関係を図3
に示す。なお、平均粒径はすべてレーザー回折法により
測定した。密着性は碁盤目剥離試験にて評価した。碁盤
目剥離試験とは、1cm角内に1mm間隔で縦横に切り
込みを入れて、1mm角を100マス作製し、テープを
密着させて、はがし、剥離状態を観察するものである。
今回の剥離試験では、テープ剥離後、集電体である銅箔
が目視できるマスが30%以下であるものを良好、30
%を超えたものを不良とした。
Next, B of the flaky natural graphite processed into a spherical shape
FIG. 3 shows the relationship between the ET specific surface area, the average particle size, and the adhesion.
Shown in In addition, all the average particle diameters were measured by the laser diffraction method. The adhesion was evaluated by a cross-cut peel test. The cross-cut peeling test is a test in which 100 squares of 1 mm square are prepared by making cuts in 1 cm squares at 1 mm intervals in a vertical and horizontal direction, a tape is adhered, peeled off, and the peeled state is observed.
In the present peeling test, after the tape was peeled off, the copper foil as the current collector had a visible mass of 30% or less.
% Is judged as defective.

【0038】BET比表面積が3.5m2/g以下のも
のは、活物質どうしおよび活物質と集電体との密着性が
良好であり、剥離はほとんど生じなかった。一方、BE
T比表面積が3.5m2/gを超えるものは、剥離が生
じ、不良であった。これは、比表面積が大きいためで、
バインダーが活物質どうしおよび活物質と集電体とを十
分に密着できていないからである。
When the BET specific surface area was 3.5 m 2 / g or less, the adhesion between the active materials and between the active material and the current collector was good, and peeling hardly occurred. On the other hand, BE
Those having a T specific surface area of more than 3.5 m 2 / g were peeled off and defective. This is due to the large specific surface area,
This is because the binder does not sufficiently adhere the active materials and the active material and the current collector.

【0039】また、平均粒径が10μm以上、30μm
以下のものにおいては、剥離状態は良好であったが、平
均粒径が10μmより小さいものは、剥離が生じ、不良
であった。これは、平均粒径が小さいため、バインダー
が活物質どうしおよび活物質と集電体とを十分に密着で
きていないからである。また、平均粒径が30μmを超
えるものも、剥離が生じ、不良であった。これは、異常
に大きい粒子のものが存在しているためである。
The average particle size is 10 μm or more and 30 μm
In the following, the peeling state was good, but those having an average particle size of less than 10 μm were peeled off and defective. This is because the binder cannot sufficiently adhere the active materials and the active material to the current collector because the average particle size is small. In addition, those having an average particle size of more than 30 μm were peeled off and were defective. This is due to the presence of abnormally large particles.

【0040】このことから、球状に加工した鱗片状天然
黒鉛のBET比表面積は3.5m2/g以下であり、平
均粒径は10〜30μmであることが好ましい。
From the above, it is preferable that the BET specific surface area of the flaky natural graphite processed into a spherical shape is 3.5 m 2 / g or less, and the average particle size is 10 to 30 μm.

【0041】なお、上記実施例および比較例において
は、負極活物質中の球状に加工した鱗片状天然黒鉛以外
の活物質として、球状に加工しない鱗片状天然黒鉛を使
用した場合について述べたが、球状に加工しない鱗片状
天然黒鉛以外にも、鱗片状でない天然黒鉛、人造黒鉛、
その他の炭素材料を使用した場合でも、本発明は有効で
ある。
In the above Examples and Comparative Examples, a case was described in which flaky natural graphite which was not processed into a spherical shape was used as an active material other than the spherically shaped flaky natural graphite in the negative electrode active material. In addition to flaky natural graphite that is not processed into a spherical shape, non-flaky natural graphite, artificial graphite,
The present invention is effective even when other carbon materials are used.

【0042】[0042]

【発明の効果】本発明による非水電解質二次電池におい
ては、球状に加工した鱗片状天然黒鉛を負極活物質に使
用する。球状に加工することによって、電極作製時の取
り扱いが容易となる。すなわち、活物質の比表面積が小
さくなるため、負極合剤を作製する際の溶媒は少なくて
すみ、集電体への塗布が容易となり、しかも電極とした
場合に剥離しにくくなる。その結果、充放電を繰り返し
ても鱗片状天然黒鉛粒子間および鱗片状天然黒鉛と集電
体との電子伝導性が維持されて、電池のサイクル特性が
改善される。よって、本発明の工業的価値はきわめて高
い。
In the nonaqueous electrolyte secondary battery according to the present invention, flaky natural graphite processed into a spherical shape is used as a negative electrode active material. By processing into a spherical shape, handling during electrode fabrication becomes easy. That is, since the specific surface area of the active material is small, the amount of the solvent used for producing the negative electrode mixture is small, the application to the current collector is easy, and the electrode is less likely to be peeled off. As a result, the electron conductivity between the scaly natural graphite particles and between the scaly natural graphite and the current collector is maintained even after repeated charge and discharge, and the cycle characteristics of the battery are improved. Therefore, the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、実施例および比較例の角型電池の断
面構造を示す図。
FIG. 1 is a diagram showing a cross-sectional structure of a prismatic battery of an example and a comparative example of the present invention.

【図2】本発明の、実施例および比較例の電池の、負極
活物質組成を変化させた場合の寿命試験の結果を示した
図。
FIG. 2 is a diagram showing the results of a life test of the batteries of Examples and Comparative Examples of the present invention when the composition of the negative electrode active material was changed.

【図3】本発明の鱗片状の黒鉛を球状に加工したものの
BET比表面積、および平均粒径と密着性との関係を示
した図。
FIG. 3 is a diagram showing the relationship between the BET specific surface area, the average particle size, and the adhesion of the flaky graphite of the present invention processed into a sphere.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 電極群 3 正極板 4 負極板 5 セパレータ 6 ケース 7 蓋 8 安全弁 9 正極端子 10 正極リード DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Positive electrode plate 4 Negative electrode plate 5 Separator 6 Case 7 Lid 8 Safety valve 9 Positive electrode terminal 10 Positive electrode lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 AA08 BA03 BA04 BB02 BC00 BD02 BD04 BD05 5H014 AA02 BB06 EE08 HH01 HH06 5H029 AJ05 AJ14 AK03 AL06 AL07 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ03 BJ04 BJ14 CJ01 DJ11 HJ01 HJ05 HJ07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 AA08 BA03 BA04 BB02 BC00 BD02 BD04 BD05 5H014 AA02 BB06 EE08 HH01 HH06 5H029 AJ05 AJ14 AK03 AL06 AL07 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ03 H01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質として球状に加工した鱗片状
天然黒鉛を使用することを特徴とする非水電解質二次電
池。
1. A non-aqueous electrolyte secondary battery using flaky natural graphite processed into a sphere as a negative electrode active material.
【請求項2】 負極活物質合計重量に対する球状に加工
した鱗片状天然黒鉛の含有量が20〜80重量部である
ことを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the flaky natural graphite processed into a sphere with respect to the total weight of the negative electrode active material is 20 to 80 parts by weight.
【請求項3】 負極活物質中の球状に加工した鱗片状天
然黒鉛以外の活物質が球状に加工しない鱗片状天然黒鉛
であることを特徴とする請求項1または2記載の非水電
解質二次電池。
3. The non-aqueous electrolyte secondary according to claim 1, wherein the active material other than the spherically processed flaky natural graphite in the negative electrode active material is a flaky natural graphite that is not spherically processed. battery.
【請求項4】 負極活物質としての球状に加工した鱗片
状天然黒鉛のBET比表面積が3.5m2/g以下で、
平均粒径が10〜30μmであることを特徴とする請求
項1、2または3記載の非水電解質二次電池。
4. A BET specific surface area of a flaky natural graphite processed into a sphere as a negative electrode active material is 3.5 m 2 / g or less,
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the average particle diameter is 10 to 30 [mu] m.
JP31600499A 1999-11-05 1999-11-05 Nonaqueous electrolyte secondary battery Pending JP2001135356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31600499A JP2001135356A (en) 1999-11-05 1999-11-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31600499A JP2001135356A (en) 1999-11-05 1999-11-05 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001135356A true JP2001135356A (en) 2001-05-18

Family

ID=18072180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31600499A Pending JP2001135356A (en) 1999-11-05 1999-11-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001135356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319287A (en) * 2003-04-16 2004-11-11 Tdk Corp Lithium ion secondary battery
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
CN113381017A (en) * 2020-02-25 2021-09-10 三星Sdi株式会社 All-solid-state secondary battery
US12100838B2 (en) 2018-09-11 2024-09-24 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319287A (en) * 2003-04-16 2004-11-11 Tdk Corp Lithium ion secondary battery
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
US12100838B2 (en) 2018-09-11 2024-09-24 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
CN113381017A (en) * 2020-02-25 2021-09-10 三星Sdi株式会社 All-solid-state secondary battery
JP2021136239A (en) * 2020-02-25 2021-09-13 三星エスディアイ株式会社Samsung SDI Co., Ltd. All-solid secondary battery
JP7284773B2 (en) 2020-02-25 2023-05-31 三星エスディアイ株式会社 All-solid secondary battery
US12095039B2 (en) 2020-02-25 2024-09-17 Samsung Sdi Co., Ltd. All-solid secondary battery

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JP2002075368A (en) Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
JP2004139886A (en) Nonaqueous electrolyte secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
CN111183538A (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2971403B2 (en) Non-aqueous solvent secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3533664B2 (en) Negative electrode material and battery using the same
JP2002151066A (en) Negative electrode material for lithium secondary battery
JP2003308831A (en) Nonaqueous secondary battery
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JPH10284053A (en) Electrode for secondary battery, secondary battery using it, and manufacture of electrode for secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2001135356A (en) Nonaqueous electrolyte secondary battery
JP2009087946A (en) Lithium secondary cell
JP3373978B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040611