Nothing Special   »   [go: up one dir, main page]

JP2001187320A - Waste gas treating method - Google Patents

Waste gas treating method

Info

Publication number
JP2001187320A
JP2001187320A JP37412099A JP37412099A JP2001187320A JP 2001187320 A JP2001187320 A JP 2001187320A JP 37412099 A JP37412099 A JP 37412099A JP 37412099 A JP37412099 A JP 37412099A JP 2001187320 A JP2001187320 A JP 2001187320A
Authority
JP
Japan
Prior art keywords
catalyst
waste gas
exhaust gas
dioxins
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37412099A
Other languages
Japanese (ja)
Other versions
JP3795720B2 (en
Inventor
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP37412099A priority Critical patent/JP3795720B2/en
Priority to TW089127567A priority patent/TW565470B/en
Priority to US09/740,971 priority patent/US6716404B2/en
Priority to DE60034207T priority patent/DE60034207T2/en
Priority to EP00128287A priority patent/EP1112772B1/en
Priority to KR10-2000-0081736A priority patent/KR100518957B1/en
Publication of JP2001187320A publication Critical patent/JP2001187320A/en
Application granted granted Critical
Publication of JP3795720B2 publication Critical patent/JP3795720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste gas treating method in which the discharge of dioxins can be effectively prevented by reconstructing at a low cost the existing incineration equipment constituted of an incinerator, an electric dust collector or a cyclone. SOLUTION: The waste gas of the incinerator is subjected to dust removing treatment by an electric dust collector or cyclone, moreover the waste gas is treated by a ceramic filter to sufficiently remove the dust in the waste gas, then the waste gas is brought into contact with the catalyst layer to decompose and remove the dioxins in the waste gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は排ガスの処理方法に
関し、詳しくは焼却炉からの排ガス中に含まれるダイオ
キシンなどの有害物質を長期にわたり安定して除去し得
るようにした排ガスの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas, and more particularly to a method for treating exhaust gas capable of stably removing harmful substances such as dioxin contained in exhaust gas from an incinerator for a long period of time.

【従来の技術】既設の焼却炉の多くは、焼却炉からの排
ガスを電気集塵器またはサイクロンで処理して除塵した
後、大気中に放出するタイプのものである。しかし、除
塵処理しただけの排ガス中にはダイオキシンなどの有害
物質(本発明ではダイオキシン類という。)が含まれて
おり、社会的に重大な問題となっている。ダイオキシン
類の除去については効果的な方法が開発されており、こ
れら新規技術を採用した焼却炉を新設することによりダ
イオキシン類の問題はかなり解決することができる。し
かし、直ちに既存の焼却炉を取り壊して、新規技術を採
用した焼却炉を新設することは経済的に困難である。こ
のため、既存の焼却設備を利用し、大幅な改造工事を行
うことなく、ダイオキシン類の問題を解決できるように
することが望まれている。
2. Description of the Related Art Many existing incinerators are of a type in which exhaust gas from an incinerator is treated with an electric dust collector or a cyclone to remove dust, and then discharged into the atmosphere. However, harmful substances such as dioxin (referred to as dioxins in the present invention) are contained in the exhaust gas that has just been subjected to the dust removal treatment, which is a serious social problem. Effective methods have been developed for the removal of dioxins, and the construction of incinerators employing these new technologies can substantially solve the problem of dioxins. However, it is economically difficult to immediately demolish existing incinerators and install new incinerators employing new technologies. For this reason, it is desired to be able to solve the problem of dioxins by using existing incineration equipment and without performing significant remodeling work.

【発明が解決しようとする課題】本発明は、焼却炉と電
気集塵器またはサイクロンとからなる既存の焼却設備を
低コストで改造し、ダイオキシン類の排出を効果的に防
止し得るようにした、排ガスの処理方法を提供しようと
するものである。
SUMMARY OF THE INVENTION According to the present invention, an existing incinerator comprising an incinerator and an electric precipitator or a cyclone is modified at a low cost so that the emission of dioxins can be effectively prevented. And a method for treating exhaust gas.

【課題を解決するための手段】本発明者らの研究により
次のことがわかった。 電気集塵器またはサイクロンの後に触媒層を設置する
ことによりダイオキシン類を効果的に除去できる。 電気集塵器またはサイクロンの集塵効率は悪いのでダ
ストの除去が不十分である。触媒層では、ガス状のダイ
オキシン類は分解できるが、ダスト中に含まれるダイオ
キシン類や粒子状のダイオキシン類は除去することがで
きない。ダイオキシン類は、通常、ダスト、粒子状、ガ
ス状のものを合わせて測定する。このため、結果とし
て、十分に高いダイオキシン類除去率を得ることができ
ないことになる。 電気集塵器またはサイクロンの代わりにバグフィルタ
ーを設置することも考えられるが、転換工事に多大のコ
ストがかかる。バグフィルターは集塵効率が高いためダ
スト、粒子状のダイオキシン類の大部分は除去できる
が、バグフィルターの運転温度は低いため、触媒層での
ダイオキシン類の十分な分解のためには、触媒量を増加
させる必要があり、結果として経済的に不利となる。ま
た、運転温度が低いがために、排ガスに硫黄酸化物が含
まれることになり、これが触媒劣化の問題を引き起こす
ことになる。なお、バグフィルターで処理した排ガスを
加熱して触媒層に導入することも考えられるが、加熱が
コストアップにつながる。 電気集塵器またはサイクロンの後にセラミックフィル
ターを設けて除塵効率を高め、排ガス中のダストを十分
除去した後に触媒層に導入することにより排ガス中のダ
イオキシン類を効果的に除去することができる。また、
触媒層の耐久性を高めることができる。 本発明は上記知見に基づいて完成されたものである。す
なわち、本発明は、焼却炉の排ガスを、電気集塵器また
はサイクロンで除塵処理した後、さらにセラミックフィ
ルターで処理し、次いで触媒層と接触させることを特徴
とする排ガスの処理方法である。
The following has been found from the studies by the present inventors. By installing a catalyst layer after an electric dust collector or a cyclone, dioxins can be effectively removed. The dust collection efficiency of the electric precipitator or the cyclone is poor, so the dust removal is insufficient. In the catalyst layer, gaseous dioxins can be decomposed, but dioxins and particulate dioxins contained in dust cannot be removed. The dioxins are usually measured together with dust, particles, and gas. Therefore, as a result, a sufficiently high dioxin removal rate cannot be obtained. It is conceivable to install a bag filter instead of an electric dust collector or cyclone, but the conversion work is very costly. The bag filter has a high dust collection efficiency and can remove most of dust and particulate dioxins.However, since the operation temperature of the bag filter is low, the amount of catalyst is required for sufficient decomposition of dioxins in the catalyst layer. Must be increased, resulting in an economic disadvantage. Further, since the operating temperature is low, the exhaust gas contains sulfur oxides, which causes a problem of catalyst deterioration. In addition, it is conceivable that the exhaust gas treated by the bag filter is heated and introduced into the catalyst layer, but heating leads to an increase in cost. A dioxin in the exhaust gas can be effectively removed by introducing a ceramic filter after the electrostatic precipitator or the cyclone to enhance the dust removal efficiency, sufficiently removing the dust in the exhaust gas, and then introducing the dust into the catalyst layer. Also,
The durability of the catalyst layer can be increased. The present invention has been completed based on the above findings. That is, the present invention is a method for treating exhaust gas, wherein the exhaust gas from the incinerator is subjected to dust removal treatment using an electric dust collector or a cyclone, further treated with a ceramic filter, and then brought into contact with a catalyst layer.

【発明の実施の形態】図1は本発明の方法の系統図であ
る。図1において、1は焼却炉、2は電気集塵器(また
はサイクロン)、3はセラミックフィルター、4は触媒
反応器、5は煙突を示す。焼却炉1からの排ガスを電気
集塵器2に導入して除塵処理を行った後、セラミックフ
ィルター3に導入して更なる除塵処理を行う。このよう
に除塵処理してダストを十分に除去した排ガスを触媒反
応器4に導入し、ここで触媒層と接触させて排ガス中の
ダイオキシン類を分解除去する。セラミックフィルター
としては、ダストの除去に一般に用いられているセラミ
ックフィルターを用いることができる。材質としては、
ムライト、SiC、コージェライトなど、500℃以上
の耐熱性を有するものが好適に用いられる。形状につい
ては特に制限はないが、ろ過面積が大きく、圧力損失の
少ないハニカム形状が好ましい。また、電気集塵器の後
流側に設置するため、微細粒子(0.1μm程度)の集
塵効率が90%以上のものが好適である。触媒として
は、ダイオキシン類を分解し得るものであればいずれで
もよく、公知のダイオキシン類分解触媒のなかから適宜
選ぶことができる。なかでも、本出願人がさきに提案し
た下記触媒(1)、(2)が好適に用いられる(特願平
11−180933号明細書参照)。なお、触媒
(1)、(2)における細孔径分布は水銀圧入式ポロシ
メータを用いて測定したものである。 <触媒(1)> (a)チタン酸化物、(b)バナジウム酸化物および
(c)マンガン、コバルト、ニッケル、亜鉛、ジルコニ
ウム、ニオブ、モリブデン、スズ、タンタル、ランタン
およびセリウムから選ばれる少なくとも1種の元素の酸
化物を含有し、0.01〜0.05μmおよび0.1〜
0.8μmの範囲にピークを有する細孔径分布を示す触
媒。なかでも、全細孔容積が0.2〜0.6cc/gで
あり、0.01〜0.05μmの範囲の細孔群の細孔容
積が全細孔容積の10〜70%であり、0.1〜0.8
μmの範囲の細孔群の細孔容積が全細孔容積の10〜7
0%である触媒が好ましい。また、成分(c)がモリブ
デンである触媒は、活性に優れ、好適に用いられる。成
分(b)の含有量は、成分(a)の0.1〜25重量%
であり、成分(c)の含有量は、成分(a)の0.1〜
25重量%である。平均粒子径は0.001〜100μ
m、好ましくは0.01〜100μmである。また、B
ET法による比表面積は30〜250m2/g、好まし
くは40〜200m2/gである。触媒(1)は、触媒
活性成分として成分(a)〜(c)を含有させる点を除
けば、この種の触媒に一般に用いられている方法にした
がって調製することができる。上記細孔径分布を有する
触媒も、触媒調製時にデンプンなどの成型助剤や水分
の添加量を調製する、触媒焼成時に分解または揮発す
る樹脂を混練り時に添加する、などの従来公知の方法に
よって容易に得ることができる。 <触媒(2)> (a)チタン酸化物、(b)バナジウム酸化物、(c)
マンガン、コバルト、ニッケル、亜鉛、ジルコニウム、
ニオブ、モリブデン、スズ、タンタル、ランタンおよび
セリウムから選ばれる少なくとも1種の元素の酸化物お
よび(d)チタン−ケイ素複合酸化物を含有し、0.0
1〜0.05μmおよび0.8〜4μmの範囲にピーク
を有する細孔径分布を示す触媒。なかでも、全細孔容積
が0.2〜0.6cc/gであり、0.01〜0.05
μmの範囲の細孔群の細孔容積が全細孔容積の20〜8
0%であり、0.8〜4μmの範囲の細孔群の細孔容積
が全細孔容積の5〜70%である触媒が好ましい。ま
た、成分(c)がモリブデンである触媒は、活性に優
れ、好適に用いられる。成分(b)の含有量は、成分
(a)の0.1〜25重量%であり、成分(c)の含有
量は、成分(a)の0.1〜25重量%であり、成分
(d)の含有量は成分(a)の0.01〜7重量倍であ
る。平均粒子径は0.001〜100μm、好ましくは
0.01〜100μmである。また、BET法による比
表面積は30〜250m2/g、好ましくは40〜20
0m2/gである。触媒(2)は、触媒(1)と同様
に、触媒活性成分として成分(a)〜(d)を含有させ
る点を除けば、この種の触媒に一般に用いられている方
法にしたがって調製することができる。触媒(1)、
(2)の形状については特に制限はなく、板状、波板
状、網状、ハニカム状、円柱状、円筒状など適宜選ぶこ
とができる。また、アルミナ、シリカ、コージェライ
ト、チタニア、ステンレス鋼などからなる板状、波板
状、網状、ハニカム状、円柱状、円筒状などの担体に担
持して使用してもよい。電気集塵器2、セラミックフィ
ルター3および触媒層4の運転条件については特に制限
はなく、排ガスの種類、性状、要求される除去性能など
を考慮して適宜決定することができる。セラミックフィ
ルターおよび触媒の使用温度は、電気集塵器2で集塵処
理した後の排ガスは、通常、そのままセラミックフィル
ター3および触媒層4に導入するので、一般に採用され
ている電気集塵器の運転温度範囲内で適宜選ぶことがで
き、好ましくは200℃以上450℃未満である。セラ
ミックフィルター3および触媒層4での排ガスの空間速
度は、通常、各々100〜100,000h-1(ST
P)、好ましくは200〜50,000h-1(STP)
である。本発明のダイオキシン類とは、一般にダイオキ
シンといわれているものであり、具体的には、ポリハロ
ゲン化ジベンゾパラダイオキシン、ポリハロゲン化ジベ
ンゾフラン、ポリハロゲン化ビフェニルなどを挙げるこ
とができる。
FIG. 1 is a system diagram of the method of the present invention. In FIG. 1, 1 is an incinerator, 2 is an electric dust collector (or cyclone), 3 is a ceramic filter, 4 is a catalytic reactor, and 5 is a chimney. After exhaust gas from the incinerator 1 is introduced into the electric precipitator 2 to perform dust removal processing, the exhaust gas is introduced into the ceramic filter 3 to perform further dust removal processing. The exhaust gas from which dust has been sufficiently removed by the dust removal process is introduced into the catalytic reactor 4, where it is brought into contact with the catalyst layer to decompose and remove dioxins in the exhaust gas. As the ceramic filter, a ceramic filter generally used for removing dust can be used. As the material,
Those having a heat resistance of 500 ° C. or more, such as mullite, SiC and cordierite, are suitably used. The shape is not particularly limited, but a honeycomb shape having a large filtration area and a small pressure loss is preferable. Further, since it is installed on the downstream side of the electric precipitator, it is preferable that the precipitating efficiency of fine particles (about 0.1 μm) is 90% or more. Any catalyst can be used as long as it can decompose dioxins, and can be appropriately selected from known dioxin decomposition catalysts. Among them, the following catalysts (1) and (2) proposed earlier by the present applicant are preferably used (see Japanese Patent Application No. 11-180933). The pore size distribution in the catalysts (1) and (2) was measured using a mercury intrusion porosimeter. <Catalyst (1)> At least one selected from (a) titanium oxide, (b) vanadium oxide, and (c) manganese, cobalt, nickel, zinc, zirconium, niobium, molybdenum, tin, tantalum, lanthanum, and cerium. Containing an oxide of the element of 0.01 to 0.05 μm and 0.1 to
A catalyst having a pore size distribution having a peak in the range of 0.8 μm. Above all, the total pore volume is 0.2 to 0.6 cc / g, the pore volume of the pore group in the range of 0.01 to 0.05 μm is 10 to 70% of the total pore volume, 0.1-0.8
The pore volume of the pore group in the range of μm is 10 to 7 of the total pore volume.
A catalyst that is 0% is preferred. A catalyst in which the component (c) is molybdenum has excellent activity and is preferably used. The content of the component (b) is 0.1 to 25% by weight of the component (a).
And the content of the component (c) is 0.1 to 0.1 of the component (a).
25% by weight. Average particle size is 0.001-100μ
m, preferably 0.01 to 100 μm. Also, B
The specific surface area by ET method 30~250m 2 / g, preferably from 40 to 200 m 2 / g. The catalyst (1) can be prepared according to a method generally used for a catalyst of this type except that components (a) to (c) are contained as a catalytically active component. The catalyst having the above pore size distribution can also be easily prepared by a conventionally known method such as adjusting the amount of a molding aid such as starch or water added during catalyst preparation, or adding a resin that decomposes or volatilizes during calcining the catalyst during kneading. Can be obtained. <Catalyst (2)> (a) titanium oxide, (b) vanadium oxide, (c)
Manganese, cobalt, nickel, zinc, zirconium,
An oxide of at least one element selected from niobium, molybdenum, tin, tantalum, lanthanum and cerium, and (d) a titanium-silicon composite oxide;
A catalyst having a pore size distribution having peaks in the range of 1 to 0.05 μm and 0.8 to 4 μm. Above all, the total pore volume is 0.2 to 0.6 cc / g, and 0.01 to 0.05 cc / g.
The pore volume of the pore group in the range of μm is 20 to 8 of the total pore volume.
The catalyst is preferably 0%, and the pore volume of the pore group in the range of 0.8 to 4 μm is 5 to 70% of the total pore volume. A catalyst in which the component (c) is molybdenum has excellent activity and is preferably used. The content of the component (b) is 0.1 to 25% by weight of the component (a), and the content of the component (c) is 0.1 to 25% by weight of the component (a). The content of d) is 0.01 to 7 times the weight of the component (a). The average particle size is 0.001 to 100 μm, preferably 0.01 to 100 μm. The specific surface area by the BET method is 30 to 250 m 2 / g, preferably 40 to 20 m 2 / g.
0 m 2 / g. The catalyst (2) is prepared according to a method generally used for this type of catalyst, except that the catalyst (2) contains components (a) to (d) as catalytically active components, similarly to the catalyst (1). Can be. Catalyst (1),
The shape of (2) is not particularly limited, and can be appropriately selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, and the like. Further, it may be used by being supported on a carrier made of alumina, silica, cordierite, titania, stainless steel, or the like, in the form of a plate, corrugated plate, mesh, honeycomb, column, or cylinder. The operating conditions of the electrostatic precipitator 2, the ceramic filter 3, and the catalyst layer 4 are not particularly limited, and can be appropriately determined in consideration of the type and properties of the exhaust gas, required removal performance, and the like. The operating temperature of the ceramic filter and the catalyst is such that the exhaust gas after the dust collection processing by the electric precipitator 2 is usually introduced as it is into the ceramic filter 3 and the catalyst layer 4, so that the operation of the commonly used electric precipitator is performed. The temperature can be appropriately selected within the temperature range, and is preferably 200 ° C. or more and less than 450 ° C. The space velocity of the exhaust gas in the ceramic filter 3 and the catalyst layer 4 is usually 100 to 100,000 h -1 (ST
P), preferably 200 to 50,000 h -1 (STP)
It is. The dioxins of the present invention are generally referred to as dioxins, and specific examples thereof include polyhalogenated dibenzoparadioxins, polyhalogenated dibenzofurans, and polyhalogenated biphenyls.

【発明の効果】本発明の主たる効果を列挙すると次のと
おりである。 電気集塵器またはサイクロンを備えた既設の焼却炉に
セラミックフィルターと触媒層を設置するだけで排ガス
中のダイオキシン類を効果的に除去することができる。 既設の焼却設備の改造を低コストで行うことができ
る。 セラミックフィルターは耐熱性があるため、高温域で
運転可能であり、結果として、排ガスを高温で触媒層に
導入できるので、触媒の分解効率が高まり、触媒量を低
減することができる。 除塵効率が向上するので触媒の耐久性が向上し、しか
もダイオキシン類の除去効率も向上し、粒子状およびガ
ス状いずれのダイオキシン類も効率よく除去可能であ
り、結果として、出口ダイオキシン類濃度を0.1ng
−TEQ/m3以下の低濃度まで低減することが可能で
ある。 排ガス中のダイオキシン類を長期にわたり安定して除
去することができる。 触媒によるダイオキシン類の分解を200℃以上45
0℃未満で行えるので、触媒性能が十分に発揮され、ダ
イオキシン類除去率が向上する。特に、前記触媒
(1)、(2)を用いることによりダイオキシン類除去
率が一段と向上する。
The main effects of the present invention are listed below. Dioxins in exhaust gas can be effectively removed only by installing a ceramic filter and a catalyst layer in an existing incinerator equipped with an electric dust collector or a cyclone. Existing incinerators can be modified at low cost. Since the ceramic filter has heat resistance, it can be operated in a high temperature range, and as a result, exhaust gas can be introduced into the catalyst layer at a high temperature, so that the decomposition efficiency of the catalyst is increased and the amount of the catalyst can be reduced. Since the dust removal efficiency is improved, the durability of the catalyst is improved, and the dioxin removal efficiency is also improved, so that both particulate and gaseous dioxins can be efficiently removed. .1ng
It is possible to reduce the concentration to a low concentration of −TEQ / m 3 or less. Dioxins in exhaust gas can be stably removed over a long period of time. Decomposition of dioxins by catalyst at 200 ° C or higher 45
Since it can be performed at a temperature lower than 0 ° C., the catalyst performance is sufficiently exhibited, and the dioxin removal rate is improved. In particular, the use of the catalysts (1) and (2) further improves the dioxin removal rate.

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。 触媒調製例1 市販の酸化チタン粉体(DT−51(商品名)、ミレニ
アム社製)18kgに、メタバナジン酸アンモニウム
1.29kgおよびシュウ酸1.68kgを水5リット
ルに溶解させた溶液と、パラモリブデン酸アンモニウム
1.23kgおよびモノエタノールアミン0.43kg
を水3リットルに溶解させた溶液とを加え、さらにフェ
ノール樹脂(ベルパール(商品名)、カネボウ(株)
製)0.9kgと成形助剤としてのデンプン0.45k
gとを加えて混合し、ニーダーで混練りした後、押出成
形機で外径80mm角、目開き4.0mm、肉厚1.0
mm、長さ500mmのハニカム状に成形した。次い
で、80℃で乾燥した後、450℃で5時間空気雰囲気
下で焼成して触媒(1)を得た。この触媒(1)の組成
は、V25:MoO3:TiO2=5:5:90(重量
%)であった。また、この触媒(1)の細孔径分布を水
銀圧入式ポロシメータにより測定した結果、全細孔容積
は0.41cc/gであり、第一細孔群(0.01〜
0.05μmの範囲に細孔径分布のピークを有する細孔
群)の細孔容積および第二細孔群(0.1〜0.8μm
の範囲に細孔径分布のピークを有する細孔群)の細孔容
積は、それぞれ、全細孔容積の35%および57%であ
った。また、BET比表面積は75m2/gであった。 触媒調製例2 10質量%アンモニア水700リットルにスノーテック
ス−20(日産化学(株)製シリカゲル、約20質量%
のSiO2含有)21.3kgを加え、攪拌、混合した
後、硫酸チタニルの硫酸溶液(TiO2として125g
/リットル、硫酸濃度0.55g/リットル)340リ
ットルを攪拌しながら滴下した。得られたゲルを3時間
放置した後、ろ過、水洗し、次いで150℃で10時間
乾燥した。これを500℃で焼成し、さらにハンマーミ
ルを用いて粉砕し、分級機で分級して平均粒子径10μ
mの粉体を得た。得られた粉体の組成は、TiO2:S
iO2=8.5:1.5(モル比)であり、粉体のX線
回折チャートではTiO2やSiO2の明らかな固有のピ
ークは認められず、ブロードな回折ピークによって非晶
質な微細構造を有するチタンとケイ素との複合酸化物
(Ti−Si複合酸化物)であることが確認された。上
記Ti−Si複合酸化物9kgと市販の酸化チタン粉体
(DT−51(商品名)、ミレニアム社製)9kgに、
メタバナジン酸アンモニウム1.29kgおよびシュウ
酸1.68kgを水5リットルに溶解させた溶液と、パ
ラモリブデン酸アンモニウム1.23kgおよびモノエ
タノールアミン0.43kgを水3リットルに溶解させ
た溶液とを加え、さらにフェノール樹脂(ベルパール
(商品名)、カネボウ(株)製)0.9kgと成形助剤
としてのデンプン0.45kgとを加えて混合し、ニー
ダーで混練りした後、押出成形機で外径80mm角、目
開き4.0mm、肉厚1.0mm、長さ500mmのハ
ニカム状の成形した。次いで、80℃で乾燥した後、4
50℃で5時間空気雰囲気下で焼成して触媒(2)を得
た。この触媒(2)の組成は、V25:MoO3:Ti
2:Ti−Si複合酸化物=5:5:45:45(重
量%)であった。また、この触媒(2)の細孔径分布を
水銀圧入式ポロシメータにより測定した結果、全細孔容
積は0.38cc/gであり、第一細孔群(0.01〜
0.05μmの範囲に細孔径分布のピークを有する細孔
群)の細孔容積および第二細孔群(0.8〜4μmの範
囲に細孔径分布のピークを有する細孔群)の細孔容積
は、それぞれ、全細孔容積の57%および21%であっ
た。また、BET比表面積は85m2/gであった。 実施例1 図1に示すように、電気集塵器の出口側(ダイオキシン
類濃度:1ng−TEQ/m3)にハニカム状のセラミ
ックフィルター、またその後流側に触媒反応器を設置し
排ガスの処理を行った。初期性能、2,000時間、
5,000時間、10,000時間後のダイオキシン類
除去率および出口ダイオキシン類濃度を表1に示す。 <セラミックフィルター> 種類:コージェライト製ハニカム型セラミックフィルタ
ー(目開き9mm、肉厚1mm、集塵効率99%) 空間速度:30,000h-1 温度:250〜350℃ <触媒層> 触媒(1) 空間速度:4,000h-1 温度:250〜350℃ なお、ダイオキシン類除去率は次の式にしたがって求め
た。 ダイオキシン類除去率(%)=[(セラミックフィルタ
ー入口ダイオキシン類濃度−触媒反応器出口ダイオキシ
ン類濃度)/(セラミックフィルター入口ダイオキシン
類濃度)]×100 実施例2 実施例1において、触媒(1)の代わりに触媒(2)を
用いた以外は、実施例1と同様にして排ガスの処理を行
った。初期性能、2,000時間、5,000時間、1
0,000時間後のダイオキシン類除去率および出口ダ
イオキシン類濃度を表1に示す。 比較例1 実施例1において、セラミックフィルターを設けること
なく、排ガスを直接触媒反応器に導入し、また触媒反応
器温度を250℃にした以外は実施例1と同様にして排
ガスの処理を行った。ダイオキシン類除去率および出口
ダイオキシン類濃度を表1に示す。なお、ダイオキシン
類の除去率は次の式にしたがって求めた。 ダイオキシン類除去率(%)=[(触媒反応器入口ダイ
オキシン類濃度−触媒反応器出口ダイオキシン類濃度)
/(触媒反応器入口ダイオキシン類濃度)]×100
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. Catalyst Preparation Example 1 A solution prepared by dissolving 1.29 kg of ammonium metavanadate and 1.68 kg of oxalic acid in 5 liters of water was added to 18 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium). 1.23 kg of ammonium molybdate and 0.43 kg of monoethanolamine
Was dissolved in 3 liters of water, and phenol resin (Bellpearl (trade name), Kanebo Co., Ltd.) was added.
0.9 kg and starch 0.45 k as molding aid
g, kneaded with a kneader, and then extruded with an extruder to an outer diameter of 80 mm square, an aperture of 4.0 mm, and a wall thickness of 1.0 mm.
mm and a length of 500 mm. Next, after drying at 80 ° C., it was calcined at 450 ° C. for 5 hours in an air atmosphere to obtain a catalyst (1). The composition of the catalyst (1) was V 2 O 5 : MoO 3 : TiO 2 = 5: 5: 90 (% by weight). Further, as a result of measuring the pore diameter distribution of the catalyst (1) using a mercury intrusion porosimeter, the total pore volume was 0.41 cc / g, and the first pore group (0.01 to
The pore volume of the pore group having a peak of the pore diameter distribution in the range of 0.05 μm and the second pore group (0.1 to 0.8 μm)
The pore volume of the pore group having a pore size distribution peak in the range of was 35% and 57% of the total pore volume, respectively. Further, the BET specific surface area was 75 m 2 / g. Catalyst Preparation Example 2 Snowtex-20 (silica gel manufactured by Nissan Chemical Industries, Ltd., about 20% by mass) was added to 700 liters of 10% by mass ammonia water.
SiO 2 containing) 21.3 kg were added, stirred and mixed, as a sulfuric acid solution (TiO 2 titanyl sulfate 125g
340 liters / liter, sulfuric acid concentration 0.55 g / liter) were added dropwise with stirring. After leaving the obtained gel for 3 hours, it was filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was fired at 500 ° C., further pulverized using a hammer mill, and classified by a classifier to obtain an average particle diameter of 10 μm.
m were obtained. The composition of the obtained powder is TiO 2 : S
iO 2 = 8.5: 1.5 (molar ratio), and no distinctive peak of TiO 2 or SiO 2 was observed in the X-ray diffraction chart of the powder. It was confirmed that the composite oxide was a composite oxide of titanium and silicon (Ti-Si composite oxide) having a fine structure. 9 kg of the above Ti-Si composite oxide and 9 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium Co.)
A solution of 1.29 kg of ammonium metavanadate and 1.68 kg of oxalic acid dissolved in 5 liters of water and a solution of 1.23 kg of ammonium paramolybdate and 0.43 kg of monoethanolamine in 3 liters of water were added. Further, 0.9 kg of a phenolic resin (Bellpearl (trade name), manufactured by Kanebo Co., Ltd.) and 0.45 kg of starch as a molding aid are added and mixed, kneaded with a kneader, and then extruded with an extruder to an outer diameter of 80 mm. It was formed into a honeycomb shape having corners, openings of 4.0 mm, wall thickness of 1.0 mm, and length of 500 mm. Then, after drying at 80 ° C., 4
It was calcined at 50 ° C. for 5 hours in an air atmosphere to obtain a catalyst (2). The composition of the catalyst (2) is V 2 O 5 : MoO 3 : Ti
O 2 : Ti—Si composite oxide = 5: 5: 45: 45 (% by weight). The pore size distribution of the catalyst (2) was measured by a mercury intrusion porosimeter. As a result, the total pore volume was 0.38 cc / g, and the first pore group (0.01 to
The pore volume of the pore group having a pore diameter distribution peak in the range of 0.05 μm and the pores of the second pore group (pore group having a pore diameter distribution peak in the range of 0.8 to 4 μm) The volumes were 57% and 21% of the total pore volume, respectively. Further, the BET specific surface area was 85 m 2 / g. Example 1 As shown in FIG. 1, a honeycomb-shaped ceramic filter was installed on the outlet side (dioxins concentration: 1 ng-TEQ / m 3 ) of the electrostatic precipitator, and a catalytic reactor was installed on the downstream side to treat exhaust gas. Was done. Initial performance, 2,000 hours,
Table 1 shows the dioxin removal rates and outlet dioxin concentrations after 5,000 hours and 10,000 hours. <Ceramic filter> Type: Cordierite honeycomb type ceramic filter (9 mm mesh, 1 mm thick, 99% dust collection efficiency) Space velocity: 30,000 h -1 Temperature: 250 to 350 ° C <Catalyst layer> Catalyst (1) Space velocity: 4,000 h -1 Temperature: 250 to 350 ° C. The dioxin removal rate was determined according to the following equation. Dioxin removal rate (%) = [(dioxin concentration at ceramic filter inlet-dioxin concentration at catalyst reactor outlet) / (dioxin concentration at ceramic filter inlet)] × 100 Example 2 In Example 1, the catalyst (1) Exhaust gas treatment was carried out in the same manner as in Example 1 except that the catalyst (2) was used instead. Initial performance, 2,000 hours, 5,000 hours, 1
Table 1 shows the dioxin removal rate and the concentration of dioxins at the outlet after 000 hours. Comparative Example 1 Exhaust gas was treated in the same manner as in Example 1 except that the exhaust gas was directly introduced into the catalytic reactor without providing a ceramic filter, and the temperature of the catalytic reactor was set to 250 ° C. . Table 1 shows the dioxin removal rate and outlet dioxin concentration. The removal rate of dioxins was determined according to the following equation. Dioxin removal rate (%) = [(catalyst reactor inlet dioxin concentration-catalyst reactor outlet dioxin concentration)
/ (Concentration of dioxins at the inlet of the catalyst reactor)] × 100

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法の系統図である。FIG. 1 is a system diagram of the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23J 15/00 F23J 15/00 H Fターム(参考) 3K070 DA05 DA25 DA29 DA30 DA32 4D048 AA11 AB03 BA07X BA08Y BA16Y BA18Y BA19Y BA21Y BA23X BA26X BA26Y BA28Y BA37Y BA38Y BA41X BA42X BB02 CA01 CC39 CD03 CD05 CD08 4G069 AA03 BA04A BA04B BB04A BB04B BB06A BB06B BC22A BC35A BC42A BC43A BC50A BC50B BC51A BC54A BC54B BC55A BC56A BC59A BC59B BC62A BC67A BC68A BD05A BD05B CA19 DA06 EA19 EB14Y EB15Y EB17Y EC02Y EC06Y EC07Y EC15X EC15Y EC16X EC16Y EC17Y EC26──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F23J 15/00 F23J 15/00 HF Term (Reference) 3K070 DA05 DA25 DA29 DA30 DA32 4D048 AA11 AB03 BA07X BA08Y BA16Y BA18Y BA19Y BA21Y BA23X BA26X BA26Y BA28Y BA37Y BA38Y BA41X BA42X BB02 CA01 CC39 CD03 CD05 CD08 4G069 AA03 BA04A BA04B BB04A BB04B BB06A BB06B BC22A BC35A BC42A BC43A BC50A BC50B BC51A BC54A BC54B BC55A BC56A BC59A BC59B BC62A BC67A BC68A BD05A BD05B CA19 DA06 EA19 EB14Y EB15Y EB17Y EC02Y EC06Y EC07Y EC15X EC15Y EC16X EC16Y EC17Y EC26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焼却炉の排ガスを、電気集塵器またはサ
イクロンで除塵処理した後、さらにセラミックフィルタ
ーで処理し、次いで触媒層と接触させることを特徴とす
る排ガスの処理方法。
1. A method for treating exhaust gas, wherein the exhaust gas from the incinerator is subjected to dust removal treatment using an electric dust collector or a cyclone, further treated with a ceramic filter, and then brought into contact with a catalyst layer.
【請求項2】 触媒が、(a)チタン酸化物、(b)バ
ナジウム酸化物および(c)マンガン、コバルト、ニッ
ケル、亜鉛、ジルコニウム、ニオブ、モリブデン、ス
ズ、タンタル、ランタンおよびセリウムから選ばれる少
なくとも1種の元素の酸化物を含有し、0.01〜0.
05μmおよび0.1〜0.8μmの範囲にピークを有
する細孔径分布を示す触媒である請求項1記載の方法。
2. The catalyst according to claim 1, wherein the catalyst is selected from (a) titanium oxide, (b) vanadium oxide and (c) manganese, cobalt, nickel, zinc, zirconium, niobium, molybdenum, tin, tantalum, lanthanum and cerium. It contains an oxide of one element and has a content of 0.01 to 0.1.
The method according to claim 1, wherein the catalyst has a pore size distribution having peaks in the range of 05 µm and 0.1 to 0.8 µm.
【請求項3】 触媒が、(a)チタン酸化物、(b)バ
ナジウム酸化物、(c)マンガン、コバルト、ニッケ
ル、亜鉛、ジルコニウム、ニオブ、モリブデン、スズ、
タンタル、ランタンおよびセリウムから選ばれる少なく
とも1種の元素の酸化物および(d)チタン−ケイ素複
合酸化物を含有し、0.01〜0.05μmおよび0.
8〜4μmの範囲にピークを有する細孔径分布を示す触
媒である請求項1記載の方法。
3. The catalyst comprises (a) titanium oxide, (b) vanadium oxide, (c) manganese, cobalt, nickel, zinc, zirconium, niobium, molybdenum, tin,
It contains an oxide of at least one element selected from tantalum, lanthanum and cerium, and (d) a titanium-silicon composite oxide, and has a particle size of 0.01 to 0.05 μm and 0.1 to 0.05 μm.
The method according to claim 1, wherein the catalyst has a pore size distribution having a peak in the range of 8 to 4 µm.
【請求項4】 成分(c)がモリブデンである請求項2
または3記載の方法。
4. The composition of claim 2, wherein component (c) is molybdenum.
Or the method of 3.
JP37412099A 1999-12-28 1999-12-28 Exhaust gas treatment method Expired - Fee Related JP3795720B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP37412099A JP3795720B2 (en) 1999-12-28 1999-12-28 Exhaust gas treatment method
TW089127567A TW565470B (en) 1999-12-28 2000-12-21 Process for disposing of exhaust gases
US09/740,971 US6716404B2 (en) 1999-12-28 2000-12-21 Process for the purification of exhaust gases
DE60034207T DE60034207T2 (en) 1999-12-28 2000-12-22 Process for the removal of exhaust gases
EP00128287A EP1112772B1 (en) 1999-12-28 2000-12-22 Process for disposing of exhaust gases
KR10-2000-0081736A KR100518957B1 (en) 1999-12-28 2000-12-26 Process for purification of exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37412099A JP3795720B2 (en) 1999-12-28 1999-12-28 Exhaust gas treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005287924A Division JP2006116537A (en) 2005-09-30 2005-09-30 Method for treating waste gas

Publications (2)

Publication Number Publication Date
JP2001187320A true JP2001187320A (en) 2001-07-10
JP3795720B2 JP3795720B2 (en) 2006-07-12

Family

ID=18503299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37412099A Expired - Fee Related JP3795720B2 (en) 1999-12-28 1999-12-28 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3795720B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340764A (en) * 2000-06-02 2001-12-11 Nippon Shokubai Co Ltd Method of producing catalyst for treating exhaust gas
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
KR100752791B1 (en) 2007-02-08 2007-08-29 (주)대성그린테크 Ds-vt-2
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340764A (en) * 2000-06-02 2001-12-11 Nippon Shokubai Co Ltd Method of producing catalyst for treating exhaust gas
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
US8192517B2 (en) 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
KR100752791B1 (en) 2007-02-08 2007-08-29 (주)대성그린테크 Ds-vt-2

Also Published As

Publication number Publication date
JP3795720B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP3648125B2 (en) Catalyst for removing organic halogen compound and method for removing organic halogen compound
JP4113090B2 (en) Exhaust gas treatment method
EP1112772B1 (en) Process for disposing of exhaust gases
JP2004000943A (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
EP1293250B1 (en) Process for removing organohalogen compounds using a titanium, molybdenum and vanadium containing catalyst and process for producing the catalyst
JP3312870B2 (en) Catalyst for removing organic halogen compound, method for preparing the same, and method for removing organic halogen compound
JP2001187320A (en) Waste gas treating method
JP2006116537A (en) Method for treating waste gas
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP3825216B2 (en) Exhaust gas treatment method and catalyst-carrying ceramic filter
JP2006075834A (en) Exhaust gas treatment method and catalyst carrying ceramic filter
JP2004290754A (en) Method for denitrificating exhaust gas of diesel engine
JP4177661B2 (en) Method for producing exhaust gas treatment catalyst
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3920612B2 (en) Exhaust gas treatment method
JP3639790B2 (en) Catalyst filter
JP2002066336A (en) Organic halogen compound decomposition catalyst and its preparation process and application
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4084658B2 (en) Method for producing exhaust gas treatment catalyst
JP3868246B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound
JP4098697B2 (en) Exhaust gas treatment method
JP2003200046A (en) Catalyst for waste gas treatment and method for treating waste gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees