JP2001172003A - Reforming apparatus - Google Patents
Reforming apparatusInfo
- Publication number
- JP2001172003A JP2001172003A JP35739099A JP35739099A JP2001172003A JP 2001172003 A JP2001172003 A JP 2001172003A JP 35739099 A JP35739099 A JP 35739099A JP 35739099 A JP35739099 A JP 35739099A JP 2001172003 A JP2001172003 A JP 2001172003A
- Authority
- JP
- Japan
- Prior art keywords
- heat recovery
- section
- reaction section
- heat
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化水素系の原料
ガスを改質して燃料電池等に供給するための水素を生成
する改質装置に関する技術分野に属する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a reformer for reforming a hydrocarbon-based source gas to generate hydrogen for supplying to a fuel cell or the like.
【0002】[0002]
【従来の技術】一般に、炭化水素やメタノールを改質し
て水素を生成することができ、このように改質によって
水素を生成する燃料改質装置は、燃料電池や水素エンジ
ン等に使用することができる。2. Description of the Related Art Generally, a fuel reformer which can generate hydrogen by reforming a hydrocarbon or methanol can be used for a fuel cell, a hydrogen engine or the like. Can be.
【0003】このような改質装置として、従来、例えば
特開平11―67256号公報に示されるように、燃料
電池システムに組み込まれたものが知られている。この
燃料改質装置は、部分酸化反応に対して活性を呈する触
媒が充填された燃料改質器を備えており、この燃料改質
器に原料ガスを導入して、その部分酸化反応によって水
素を発生させるようにしている。[0003] As such a reforming apparatus, a reforming apparatus incorporated in a fuel cell system has been known as disclosed in, for example, JP-A-11-67256. This fuel reformer is provided with a fuel reformer filled with a catalyst exhibiting activity with respect to a partial oxidation reaction. A raw material gas is introduced into the fuel reformer, and hydrogen is generated by the partial oxidation reaction. To be generated.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記原料ガ
スを改質して水素を生成するには、通常、上記改質反応
部の他、改質反応部で生成された改質ガス中のCO濃度
を水性ガスシフト反応により低減させるシフト反応部
や、このシフト反応部で変成された改質ガス中のCO濃
度をCO選択酸化反応によってさらに低減するCO選択
酸化反応部が備えられ、さらには、上記各反応部で発生
した反応熱、或いは反応部で生成された改質ガスの排熱
を回収する熱回収部が設けられる。However, in order to reform the raw material gas to generate hydrogen, usually, in addition to the reforming reaction section, CO in the reformed gas generated in the reforming reaction section is used. A shift reaction section for reducing the concentration by a water gas shift reaction, and a CO selective oxidation reaction section for further reducing the CO concentration in the reformed gas converted in the shift reaction section by a CO selective oxidation reaction. A heat recovery unit is provided for recovering the reaction heat generated in each reaction unit or the exhaust heat of the reformed gas generated in the reaction unit.
【0005】しかし、このような複数の反応部及び熱回
収部を順に配管内のガス流路で接続する必要があり、そ
の構造が複雑でなるばかりでなく、熱損失も大きくなる
のは避けられない。However, it is necessary to connect such a plurality of reaction sections and heat recovery sections in order through a gas flow path in a pipe, which not only complicates the structure but also increases heat loss. Absent.
【0006】本発明は斯かる点に鑑みてなされたもの
で、その目的は、改質装置における複数の反応部や熱回
収部に工夫を凝らすことで、改質装置をシンプルでコン
パクトな構造とするとともに、その熱損失を小さくする
ことにある。[0006] The present invention has been made in view of such a point, and an object of the present invention is to provide a reformer with a simple and compact structure by devising a plurality of reaction sections and heat recovery sections in the reformer. As well as to reduce the heat loss.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成すべ
く、この発明では、複数の反応部及び熱回収部を一体化
し、又は1つの容器内に設けるようにした。In order to achieve the above object, in the present invention, a plurality of reaction sections and a heat recovery section are integrated or provided in one vessel.
【0008】具体的には、請求項1の発明では、原料ガ
スから部分酸化を含む反応により水素リッチな改質ガス
を生成する改質反応部(6)と、この改質反応部(6)
にて発生した反応熱を回収する第1熱回収部(11)
と、上記改質反応部(6)で生成された改質ガスを冷却
してその排熱を回収する第2熱回収部(12)と、上記
改質反応部(6)で生成された改質ガス中のCO濃度を
水性ガスシフト反応により低減させるシフト反応部
(7)と、このシフト反応部(7)で発生した反応熱を
回収する第3熱回収部(13)と、上記シフト反応部
(7)で生成された改質ガスを冷却してその排熱を回収
する第4熱回収部(14)と、上記シフト反応部(7)
で変成された改質ガス中のCO濃度をCO選択酸化反応
によってさらに低減するCO選択酸化反応部(8)と、
このCO選択酸化反応部(8)にて発生した反応熱を回
収する第5熱回収部(15)と、上記CO選択酸化反応
部(8)で生成された改質ガスを冷却してその排熱を回
収する第6熱回収部(16)とを備えている。そして、
上記改質ガスが改質反応部(6)から第2熱回収部(1
2)、シフト反応部(7)、第4熱回収部(14)及び
CO選択酸化反応部(8)を経て第6熱回収部(16)
へそれぞれ直接流入するように上記改質反応部(6)、
シフト反応部(7)及びCO選択酸化反応部(8)、並
びに第2、第4及び第6熱回収部(12),(14),
(16)を一体的に設ける。Specifically, in the first aspect of the present invention, a reforming reaction section (6) for producing a hydrogen-rich reformed gas from a raw material gas by a reaction including partial oxidation, and the reforming reaction section (6)
First heat recovery unit (11) for recovering reaction heat generated in
A second heat recovery section (12) for cooling the reformed gas generated in the reforming reaction section (6) and recovering exhaust heat thereof, and a reforming section generated in the reforming reaction section (6). A shift reaction section (7) for reducing the CO concentration in the raw gas by a water gas shift reaction, a third heat recovery section (13) for recovering reaction heat generated in the shift reaction section (7), and the shift reaction section A fourth heat recovery unit (14) for cooling the reformed gas generated in (7) and recovering waste heat thereof, and the shift reaction unit (7)
A CO selective oxidation reaction section (8) for further reducing the CO concentration in the reformed gas converted in the above by a CO selective oxidation reaction;
A fifth heat recovery section (15) for recovering reaction heat generated in the CO selective oxidation reaction section (8), and a reformed gas generated in the CO selective oxidation reaction section (8) for cooling and discharging the reformed gas; A sixth heat recovery section (16) for recovering heat. And
The reformed gas is supplied from the reforming reaction section (6) to the second heat recovery section (1).
2), a sixth heat recovery unit (16) via a shift reaction unit (7), a fourth heat recovery unit (14), and a CO selective oxidation reaction unit (8).
The reforming reaction section (6) so as to flow directly into
Shift reaction section (7) and CO selective oxidation reaction section (8), and second, fourth and sixth heat recovery sections (12), (14),
(16) is provided integrally.
【0009】また、請求項2の発明では、上記請求項1
の発明と同様に、改質反応部(6)、シフト反応部
(7)及びCO選択酸化反応部(8)と、各反応部
(6)〜(8)にて発生した反応熱を回収する第1、第
3及び第5熱回収部(11),(13),(15)と、
各反応部(6)〜(8)で生成された改質ガスを冷却し
てその排熱を回収する第2、第4及び第6熱回収部(1
2),(14),(16)とを備えている。そして、上
記改質反応部(6)、シフト反応部(7)及びCO選択
酸化反応部(8)、並びに第1〜第6熱回収部(11)
〜(16)を1つの容器(30)内に設ける。According to the second aspect of the present invention, the first aspect is provided.
In the same manner as in the invention, the reaction heat generated in the reforming reaction section (6), the shift reaction section (7), the CO selective oxidation reaction section (8), and the reaction sections (6) to (8) is recovered. First, third and fifth heat recovery units (11), (13) and (15);
The second, fourth and sixth heat recovery units (1) for cooling the reformed gas generated in each of the reaction units (6) to (8) and recovering the exhaust heat thereof
2), (14), and (16). Then, the reforming reaction section (6), the shift reaction section (7), the CO selective oxidation reaction section (8), and the first to sixth heat recovery sections (11).
(16) are provided in one container (30).
【0010】これらの発明の構成によれば、改質反応部
(6)、シフト反応部(7)及びCO選択酸化反応部
(8)と、第2、第4及び第6熱回収部(12),(1
4),(16)とが一体的に設けられて、改質ガスが改
質反応部(6)から第2熱回収部(12)、シフト反応
部(7)、第4熱回収部(14)及びCO選択酸化反応
部(8)を経て第6熱回収部(16)へそれぞれ直接流
入し、或いは、改質反応部(6)、シフト反応部(7)
及びCO選択酸化反応部(8)と、第1〜第6熱回収部
(11)〜(16)とが1つの容器(30)内に設けら
れているので、反応部(6)〜(8)と熱回収部(1
1)〜(16)とを配管で接続せずとも済み、改質装置
の構造を簡単でコンパクトにすることができ、しかも、
改質装置からの放熱を抑えることができる。According to the constitutions of these inventions, the reforming reaction section (6), the shift reaction section (7) and the CO selective oxidation reaction section (8), and the second, fourth and sixth heat recovery sections (12) ), (1
4) and (16) are provided integrally, and the reformed gas flows from the reforming reaction section (6) to the second heat recovery section (12), the shift reaction section (7), and the fourth heat recovery section (14). ) And the CO selective oxidation reaction section (8), directly flow into the sixth heat recovery section (16), or the reforming reaction section (6) and the shift reaction section (7).
Since the CO selective oxidation reaction section (8) and the first to sixth heat recovery sections (11) to (16) are provided in one container (30), the reaction sections (6) to (8) ) And heat recovery unit (1
It is not necessary to connect 1) to (16) with piping, and the structure of the reformer can be made simple and compact.
Heat radiation from the reformer can be suppressed.
【0011】さらに、原料ガスを改質反応部(6)で部
分酸化させて改質ガスを生成するので、その改質反応の
発熱反応を利用でき、その発熱によって反応部(6)が
所定温度(活性温度)以上に昇温すると、その後の定常
運転時には外部からの熱供給が不要となる。Further, since the reformed gas is generated by partially oxidizing the raw material gas in the reforming reaction section (6), the exothermic reaction of the reforming reaction can be utilized, and the generated heat causes the reaction section (6) to reach a predetermined temperature. If the temperature rises to (active temperature) or higher, external heat supply is not required during the subsequent steady operation.
【0012】請求項3の発明では、上記シフト反応部
(7)には、CO変成に活性を呈する触媒としてPt、
Rh、Ruの少なくともいずれか1つからなる貴金属系
触媒を用いるものとする。すなわち、改質ガスの水性ガ
スシフト反応を生じさせる触媒として鉄−クロム系、銅
−亜鉛系等の卑金属触媒を用いると、前処理での還元時
及び空気雰囲気下の酸化時に大きな発熱が生じ、しかも
銅−亜鉛系等の触媒はシンタリングや硫黄被毒の影響を
受け易くなるが、この発明のように貴金属系触媒を用い
ることで、上記卑金属のような還元処理時及び酸化処理
時の大きな発熱が生じずに発熱は小さくなり、シンタリ
ングの度合いも少なくて済む。According to the third aspect of the present invention, the shift reaction section (7) is provided with Pt as a catalyst exhibiting activity for CO conversion.
A noble metal catalyst composed of at least one of Rh and Ru is used. That is, when a base metal catalyst such as an iron-chromium-based or copper-zinc-based catalyst is used as a catalyst for causing a water gas shift reaction of a reformed gas, a large amount of heat is generated during reduction in pretreatment and oxidation in an air atmosphere, and Copper-zinc catalysts and the like are susceptible to sintering and sulfur poisoning, but by using a noble metal catalyst as in the present invention, large heat generation during the reduction treatment and oxidation treatment of the above-mentioned base metal can be achieved. Without heat generation, heat generation is reduced, and the degree of sintering is reduced.
【0013】請求項4の発明では、上記シフト反応部
(7)には、CO変成に活性を呈する触媒としてPt/
ZrO2を用いるものとする。このPt/ZrO2触媒
は、低温ないし中温域(250〜450℃)で上記鉄−
クロム系触媒よりも高い活性度及び選択性を示し、特に
中温域(350〜450℃)での活性は銅−亜鉛系触媒
と同等であり、シフト反応部(7)の触媒として望まし
い。[0013] In the invention of claim 4, the shift reaction section (7) includes Pt / Pt as a catalyst exhibiting activity for CO conversion.
It is assumed that ZrO 2 is used. This Pt / ZrO 2 catalyst can be used in a low to medium temperature range (250 to 450 ° C.).
It shows higher activity and selectivity than the chromium-based catalyst, and particularly has the same activity in the medium temperature range (350 to 450 ° C.) as the copper-zinc-based catalyst, and is desirable as the catalyst for the shift reaction section (7).
【0014】請求項5の発明では、上記改質反応部
(6)、シフト反応部(7)及びCO選択酸化反応部
(8)の少なくとも1つを、各反応に活性を呈する触媒
を含むハニカム体(44)で構成する。According to a fifth aspect of the present invention, at least one of the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) includes a honeycomb containing a catalyst exhibiting an activity in each reaction. Consists of body (44).
【0015】また、請求項6の発明では、上記改質反応
部(6)、シフト反応部(7)及びCO選択酸化反応部
(8)をいずれもPt、Rh、Ruの少なくともいずれ
か1つからなる貴金属系触媒を含むハニカム体(44)
で構成する。In the invention of claim 6, the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) are each provided with at least one of Pt, Rh, and Ru. (44) Honeycomb body containing a noble metal catalyst consisting of
It consists of.
【0016】さらに、請求項7の発明では、原料ガスの
圧力を常圧とする。Further, in the invention of claim 7, the pressure of the raw material gas is set to normal pressure.
【0017】これら発明の構成によると、上記各反応部
(6)〜(8)が触媒を担持したハニカム体(44)で
構成されているので、触媒を充填する構造のものに比べ
て、原料ガス又は改質ガスの圧力損失を低減でき、それ
らガスを搬送する手段が不要となり、システムの効率が
向上して、特に都市ガスを原料ガスとする場合等で効果
的である。また、反応部(6)〜(8)全体の熱容量が
小さくなるので、改質装置等の起動時間を短縮すること
ができる。特に、請求項6の発明によると、各反応部
(6)〜(8)で使用する触媒が貴金属系のもので統一
されるので、還元処理時及び酸化処理時の発熱を小さく
抑えることができる。According to the structure of the present invention, since each of the reaction sections (6) to (8) is constituted by the honeycomb body (44) supporting the catalyst, the raw material is compared with that of the structure filled with the catalyst. The pressure loss of the gas or the reformed gas can be reduced, and a means for transporting the gas is not required, and the efficiency of the system is improved, which is particularly effective when city gas is used as a raw material gas. Further, since the heat capacity of the whole of the reaction sections (6) to (8) is reduced, the startup time of the reformer or the like can be reduced. In particular, according to the invention of claim 6, since the catalyst used in each of the reaction sections (6) to (8) is unified with a noble metal catalyst, heat generation during reduction treatment and oxidation treatment can be suppressed to a small level. .
【0018】請求項8の発明では、上記第2、第4及び
第6熱回収部(12),(14),(16)での熱回収
は、原料ガス又は熱回収流体と、各熱回収部(12),
(14),(16)を通過する改質ガスとの熱交換によ
って行われるように構成する。According to the present invention, the heat recovery in the second, fourth and sixth heat recovery units (12), (14) and (16) is performed by using a raw material gas or a heat recovery fluid and each heat recovery fluid. Part (12),
(14) and (16) are configured to be performed by heat exchange with the reformed gas passing therethrough.
【0019】請求項9の発明では、上記請求項8の発明
において、第2、第4及び第6熱回収部(12),(1
4),(16)は、反応部(6)〜(8)間の改質ガス
流路(45)に設けられた伝熱フィン(46),(4
6),…と、上記改質ガス流路(45)に対し隣り合っ
た流体流路(42)とを備えているものとする。According to a ninth aspect of the present invention, in the above-mentioned eighth aspect, the second, fourth, and sixth heat recovery sections (12), (1)
4) and (16) are heat transfer fins (46) and (4) provided in the reformed gas flow path (45) between the reaction sections (6) to (8).
6), ..., and a fluid channel (42) adjacent to the reformed gas channel (45).
【0020】請求項10の発明では、上記請求項9の発
明において、流体は気体とし、流体流路(42)側に伝
熱フィン(52),(52),…を設ける。According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the fluid is a gas, and heat transfer fins (52) are provided on the fluid flow path (42) side.
【0021】請求項11の発明では、上記請求項1又は
2の発明において、第1、第3及び第5熱回収部(1
1),(13),(15)での熱回収は、原料ガス又は
熱回収流体と、改質反応部(6)、シフト反応部(7)
及びCO選択酸化反応部(8)との熱交換によって行わ
れるように構成する。According to an eleventh aspect of the present invention, in the first or the second aspect of the present invention, the first, third and fifth heat recovery units (1
The heat recovery in 1), (13) and (15) is performed by using a raw material gas or a heat recovery fluid, a reforming reaction section (6), and a shift reaction section (7).
And heat exchange with the CO selective oxidation reaction section (8).
【0022】請求項12の発明では、上記請求項11の
発明において、第1、第3及び第5熱回収部(11),
(13),(15)は、反応部(6)〜(8)外周から
の輻射及び対流による熱を流体側が受け取るように構成
する。According to a twelfth aspect of the present invention, in the eleventh aspect, the first, third, and fifth heat recovery units (11),
(13) and (15) are configured such that the fluid side receives heat from radiation and convection from the outer periphery of the reaction sections (6) to (8).
【0023】また、請求項13の発明では、上記請求項
11の発明において、改質反応部(6)、シフト反応部
(7)及びCO選択酸化反応部(8)を複数の区画部
(44a),(44a),…に分け、第1、第3及び第
5熱回収部(11),(13),(15)は、上記区画
部(44a),(44a),…間に配置された伝熱フィ
ン(50),(50),…を備えているものとする。According to a thirteenth aspect of the present invention, in the eleventh aspect, the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) are divided into a plurality of partition sections (44a). ), (44a),..., And the first, third, and fifth heat recovery sections (11), (13), (15) are arranged between the partition sections (44a), (44a),. The heat transfer fins (50), (50), ... are provided.
【0024】請求項14の発明では、上記請求項8又は
11の発明において、熱回収流体は水とし、この水の漏
れを検知する漏洩検知部(51)を設ける。According to a fourteenth aspect of the present invention, in the eighth or eleventh aspect of the present invention, the heat recovery fluid is water, and a leak detector (51) for detecting the leak of the water is provided.
【0025】以上の請求項8〜14の発明の構成によれ
ば、システムの効率をさらに向上させることができる。According to the configurations of the above-described inventions, the efficiency of the system can be further improved.
【0026】請求項15の発明では、上記請求項1又は
2の発明において、CO選択酸化反応部(8)の直上流
側で改質ガスに対しCO選択酸化反応に必要な酸素を混
合するための空気導入部(48)を設ける。According to a fifteenth aspect of the present invention, in the first or the second aspect of the present invention, the oxygen required for the CO selective oxidation reaction is mixed with the reformed gas immediately upstream of the CO selective oxidation reaction section (8). The air introduction part (48) is provided.
【0027】また、請求項16の発明では、請求項1又
は2の発明において、補助燃焼部又は電気ヒータからな
る起動用の加熱源(55)を設ける。According to a sixteenth aspect of the present invention, in the first or second aspect of the present invention, a starting heating source (55) comprising an auxiliary combustion section or an electric heater is provided.
【0028】これら発明の構成によれば、本発明の効果
が有効に発揮される好適な具体的構成が得られる。According to the configurations of the present invention, a preferred specific configuration in which the effects of the present invention are effectively exhibited can be obtained.
【0029】[0029]
【発明の実施の形態】(実施形態1)図1は本発明の改
質装置を燃料電池システムに適用した実施形態1の全体
構成を示し、(1)は燃料電池本体で、この燃料電池本
体(1)は、改質ガスと、ブロア(2)から空気供給管
(2a)を介して送給された空気とにより電極反応を行
わせるものである。(3)は上記燃料電池本体(1)か
ら排出された改質ガスを上記ブロア(2)からの空気の
もとで燃焼させる燃焼バーナ、(4)は燃料電池本体
(1)の出力部に接続されたインバータ、(5)は都市
ガスと加湿空気とを含む原料ガスを改質して水素リッチ
な改質ガスを生成し上記燃料電池本体(1)に供給する
改質装置である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 shows an overall configuration of an embodiment 1 in which a reformer of the present invention is applied to a fuel cell system, wherein (1) shows a fuel cell main body, and this fuel cell main body. (1) causes an electrode reaction to take place between the reformed gas and air supplied from the blower (2) via the air supply pipe (2a). (3) is a combustion burner for burning the reformed gas discharged from the fuel cell body (1) under the air from the blower (2), and (4) is an output part of the fuel cell body (1). The connected inverter (5) is a reformer that reforms a raw material gas containing city gas and humidified air to generate a hydrogen-rich reformed gas and supplies it to the fuel cell main body (1).
【0030】上記燃料電池本体(1)は、図示しない
が、触媒電極である酸素極(カソード)及び水素極(アノ
ード)を有する固体高分子電解質型のもので、この燃料
電池本体(1)の酸素極にブロア(2)からの空気供給
管(2a)が、また水素極に改質装置(5)からの改質
ガス供給管(20)がそれぞれ接続されている。Although not shown, the fuel cell body (1) is a solid polymer electrolyte type having an oxygen electrode (cathode) and a hydrogen electrode (anode) as catalyst electrodes. An air supply pipe (2a) from the blower (2) is connected to the oxygen electrode, and a reformed gas supply pipe (20) from the reformer (5) is connected to the hydrogen electrode.
【0031】上記改質装置(5)は、改質反応部
(6)、シフト反応部(7)及びCO選択酸化反応部
(8)の3つの反応部と、第1〜第6の6つの熱回収部
(11)〜(16)とを備えている。上記改質反応部
(6)は、原料ガス供給管(19)を介して改質装置
(5)に供給された常圧の原料ガス(都市ガス及び加湿
空気を含む)を第2熱回収部(12)の燃料ガス側部
(12a)及び第1熱回収部(11)を通過させた後に
導入して、その原料ガスから部分酸化を含む反応により
水素リッチな改質ガスを生成するものである。The reformer (5) includes three reaction units, a reforming reaction unit (6), a shift reaction unit (7), and a CO selective oxidation reaction unit (8), and first to sixth six reaction units. Heat recovery units (11) to (16) are provided. The reforming reaction section (6) is a second heat recovery section for converting a normal pressure source gas (including city gas and humidified air) supplied to the reformer (5) through a source gas supply pipe (19). It is introduced after passing through the fuel gas side part (12a) and the first heat recovery part (11) of (12), and generates a hydrogen-rich reformed gas from the raw material gas by a reaction including partial oxidation. is there.
【0032】また、上記シフト反応部(7)は、上記改
質反応部(6)に接続されていて、該改質反応部(6)
で生成された改質ガス中のCO濃度を水性ガスシフト反
応により低減させる。さらに、このシフト反応部(7)
に上記CO選択酸化反応部(8)が接続され、このCO
選択酸化反応部(8)はシフト反応部(7)で変成され
た改質ガス中のCO濃度をCO選択酸化反応によってさ
らに低減するものである。そして、このCO選択酸化反
応部(9)が上記燃料電池本体(1)に上記改質ガス供
給管(20)を介して接続されている。The shift reaction section (7) is connected to the reforming reaction section (6), and is connected to the reforming reaction section (6).
Reduce the CO concentration in the reformed gas generated by the water gas shift reaction. Furthermore, this shift reaction section (7)
Is connected to the CO selective oxidation reaction section (8).
The selective oxidation reaction section (8) further reduces the CO concentration in the reformed gas converted in the shift reaction section (7) by the CO selective oxidation reaction. The CO selective oxidation reaction section (9) is connected to the fuel cell main body (1) via the reformed gas supply pipe (20).
【0033】上記第1熱回収部(11)と第2熱回収部
(12)の燃料ガス側部(12a)には上記の如く原料
ガスが流れるもので、これらは原料ガス供給管(19)
から改質反応部(6)に向かって順に直列に接続されて
おり、第1熱回収部(11)は、上記改質反応部(6)
にて発生した反応熱を回収する一方、第2熱回収部(1
2)の燃料ガス側部(12a)は、改質反応部(6)で
生成された改質ガスをシフト反応部(7)でのCO変成
のために冷却してその排熱を回収するものである。The raw material gas flows through the fuel gas side (12a) of the first heat recovery section (11) and the second heat recovery section (12) as described above, and these flow through the raw gas supply pipe (19).
To the reforming reaction section (6), and the first heat recovery section (11) is connected in series to the reforming reaction section (6).
While recovering the reaction heat generated in the second heat recovery section (1).
The fuel gas side part (12a) of 2) cools the reformed gas generated in the reforming reaction section (6) for CO conversion in the shift reaction section (7) and recovers the exhaust heat thereof. It is.
【0034】上記第2熱回収部(12)の回収流体側部
(12b)及び第3〜第6熱回収部(13)〜(16)
はそれぞれ順に直列に接続されていて、その内部を熱回
収流体としての水が第6熱回収部(16)から第2熱回
収部(12)の回収流体側部(12b)に向かって流れ
る。尚、上記熱回収流体としては水の他、不凍液や空気
等を用いることもできる。The recovered fluid side (12b) of the second heat recovery unit (12) and the third to sixth heat recovery units (13) to (16).
Are sequentially connected in series, and water as a heat recovery fluid flows in the inside from the sixth heat recovery unit (16) toward the recovery fluid side (12b) of the second heat recovery unit (12). In addition, as the heat recovery fluid, an antifreeze, air, or the like can be used in addition to water.
【0035】上記第6熱回収部(16)の上流端は水供
給管(21)を介して水タンク(22)の供給部に接続
され、この水供給管(21)の途中には、水タンク(2
2)内の水を吸い込んで吐出する水ポンプ(23)と、
この水ポンプ(23)から吐出された水により燃料電池
本体(1)を冷却してその排熱を回収する電池熱回収部
(24)とが順に配置されている。一方、第2熱回収部
(12)の回収流体側部(12b)の下流端は水戻し管
(25)を介して上記水タンク(22)の回収部に接続
され、その水戻し管(25)の途中には水を上記燃焼バ
ーナ(3)と熱交換してその排熱を回収するバーナ熱回
収部(26)が配置されている。(27)は水タンク
(22)に水を補給するための補給管である。The upstream end of the sixth heat recovery section (16) is connected to a supply section of a water tank (22) via a water supply pipe (21). Tank (2
2) a water pump (23) that sucks and discharges the water inside,
A battery heat recovery section (24) for cooling the fuel cell main body (1) with water discharged from the water pump (23) and recovering exhaust heat thereof is arranged in order. On the other hand, the downstream end of the recovery fluid side portion (12b) of the second heat recovery portion (12) is connected to the recovery portion of the water tank (22) via a water return pipe (25), and the water return pipe (25) A burner heat recovery section (26) for exchanging water with the combustion burner (3) and recovering waste heat thereof is disposed in the middle of the step (2). (27) is a supply pipe for supplying water to the water tank (22).
【0036】そして、上記第2熱回収部(12)の回収
流体側部(12b)は、その燃料ガス側部(12a)と
同様に、改質反応部(6)で生成された改質ガスをシフ
ト反応部(7)でのCO変成のために冷却してその排熱
を回収する。また、第3熱回収部(13)は、上記シフ
ト反応部(7)で発生した反応熱を回収し、第4熱回収
部(14)は、上記シフト反応部(7)で生成された改
質ガスを冷却してその排熱を回収する。また、第5熱回
収部(15)は、上記CO選択酸化反応部(8)にて発
生した反応熱を回収し、第6熱回収部(16)は、上記
CO選択酸化反応部(8)で生成された改質ガスを冷却
してその排熱を回収するようになっている。The recovered fluid side portion (12b) of the second heat recovery portion (12) is, like the fuel gas side portion (12a), the reformed gas generated in the reforming reaction portion (6). Is cooled for CO conversion in the shift reaction section (7), and its exhaust heat is recovered. The third heat recovery section (13) recovers the reaction heat generated in the shift reaction section (7), and the fourth heat recovery section (14) recovers the heat generated in the shift reaction section (7). The waste gas is cooled to recover the waste heat. The fifth heat recovery section (15) recovers the heat of reaction generated in the CO selective oxidation reaction section (8), and the sixth heat recovery section (16) recovers the CO selective oxidation reaction section (8). Is cooled to recover the exhaust heat thereof.
【0037】そして、上記改質反応部(6)、シフト反
応部(7)及びCO選択酸化反応部(8)、並びに第1
〜第6熱回収部(11)〜(16)は、改質ガスが改質
反応部(6)から第2熱回収部(12)、シフト反応部
(7)、第4熱回収部(14)及びCO選択酸化反応部
(8)を経て第6熱回収部(16)へそれぞれ直接流入
するように一体的に設けられている。すなわち、図2及
び図3に示すように、改質装置(5)は有底円筒状の容
器(30)を有し、この容器(30)は中心線方向に第
1〜第6の6つの分割部(31)〜(36)に分割され
ていて、これら分割部(31)〜(36)はロウ付けや
溶接等により気密状に互いに接合一体化されている(或
いは各分割部(31)〜(36)の接合端部にフランジ
部を形成して、そのフランジ部同士をOリングを介在し
て締結するようにしてもよい)。Then, the reforming reaction section (6), the shift reaction section (7), the CO selective oxidation reaction section (8), and the first
The sixth to sixth heat recovery units (11) to (16) are configured to convert the reformed gas from the reforming reaction unit (6) to the second heat recovery unit (12), the shift reaction unit (7), and the fourth heat recovery unit (14). ) And the CO selective oxidation reaction section (8), and are integrally provided so as to directly flow into the sixth heat recovery section (16). That is, as shown in FIGS. 2 and 3, the reformer (5) has a cylindrical container (30) with a bottom, and the container (30) has six first to sixth containers in the center line direction. It is divided into divided parts (31) to (36), and these divided parts (31) to (36) are integrally joined together in an airtight manner by brazing, welding, or the like (or each divided part (31)). (36) A flange portion may be formed at the joint end portion, and the flange portions may be fastened to each other with an O-ring interposed therebetween.
【0038】上記第1分割部(31)は有底円筒状のも
ので、この第1分割部(31)の内部にはその底側(図
3で左側)に円筒状の熱移動量制御用の耐火性断熱材か
らなる壁部(38)が、また開口側に第2熱回収部(1
2)の燃料ガス側部(12a)がそれぞれ同心にかつ分
割部(31)内面と間隔をあけて収容されている。ま
た、上記壁部(38)の内部に改質反応部(6)が設け
られ、壁部(38)及び第2熱回収部(12)の燃料ガ
ス側部(12a)と、分割部(31)との間に原料ガス
流路(39)が形成されている。上記改質反応部(6)
は、後述するシフト反応部(7)やCO選択酸化反応部
(8)の構造と同様に、セラミックやアルミニウム等の
担体にPt、Rh、Ruの少なくともいずれか1つから
なる貴金属系の触媒を担持してなるハニカム体(44)
で構成されている(図4参照)。一方、第2熱回収部
(12)の燃料ガス側部(12a)は、後述する第2熱
回収部(12)の回収流体側部(12b)等と同様に、
リング状の壁部(41)に多数の伝熱フィン(46),
(46),…を架設した構造のもので(図5参照)、そ
の熱回収は、原料ガス流路(39)の原料ガスと、第2
熱回収部(12)の燃料ガス側部(12a)内の改質ガ
ス通路(45)を通過する改質ガスとの熱交換によって
行われる。そして、第2熱回収部(12)の燃料ガス側
部(12a)に対応する第1分割部(31)には上記原
料ガス供給管(19)が接続される原料ガス供給口(4
0)が開口されており、この原料ガス供給口(40)か
ら第1分割部(31)内の原料ガス流路(39)に供給
された原料ガスと、改質反応部(6)で生成された改質
ガスとを第2熱回収部(12)の燃料ガス側部(12
a)で熱交換させることで、原料ガスを冷却してその排
熱を回収する。The first divided portion (31) is a cylindrical member having a bottom and has a cylindrical heat transfer control portion on the bottom side (the left side in FIG. 3) inside the first divided portion (31). A wall (38) made of a refractory heat insulating material, and a second heat recovery unit (1) is provided on the opening side.
The fuel gas side portions (12a) of (2) are accommodated concentrically and spaced from the inner surface of the divided portion (31). A reforming reaction section (6) is provided inside the wall section (38). The fuel gas side section (12a) of the wall section (38) and the second heat recovery section (12) and a split section (31) are provided. ) Is formed with a source gas flow path (39). The reforming reaction section (6)
In the same manner as the structures of the shift reaction section (7) and the CO selective oxidation reaction section (8) described later, a noble metal-based catalyst composed of at least one of Pt, Rh, and Ru is supported on a carrier such as ceramic or aluminum. Honeycomb body carried (44)
(See FIG. 4). On the other hand, the fuel gas side portion (12a) of the second heat recovery portion (12) is similar to the recovered fluid side portion (12b) of the second heat recovery portion (12) described later.
A number of heat transfer fins (46) are provided on the ring-shaped wall (41),
(46),... (See FIG. 5). The heat recovery is performed by using the raw material gas in the raw material gas flow path (39) and the second gas.
This is performed by heat exchange with the reformed gas passing through the reformed gas passage (45) in the fuel gas side portion (12a) of the heat recovery section (12). Then, a raw material gas supply port (4) to which the raw material gas supply pipe (19) is connected is provided in a first divided part (31) corresponding to the fuel gas side part (12a) of the second heat recovery part (12).
0) is opened, and the raw material gas supplied from the raw material gas supply port (40) to the raw material gas flow path (39) in the first divided portion (31) is generated in the reforming reaction section (6). The reformed gas and the fuel gas side portion (12) of the second heat recovery section (12)
By performing the heat exchange in a), the source gas is cooled and the exhaust heat is recovered.
【0039】また、第1熱回収部(11)は、上記改質
反応部(6)のハニカム体(44)外周からの輻射及び
対流による熱を原料ガス流路(39)の原料ガス側が受
け取ることで、その第1熱回収部(11)での熱回収が
原料ガスと改質反応部(6)との熱交換によって行われ
るように構成されている。Further, the first heat recovery section (11) receives the radiation and convection heat from the outer periphery of the honeycomb body (44) of the reforming reaction section (6) on the source gas side of the source gas flow path (39). Thus, the heat recovery in the first heat recovery section (11) is performed by heat exchange between the raw material gas and the reforming reaction section (6).
【0040】上記第2〜第6分割部(32)〜(36)
の内部にはそれぞれ上記第2熱回収部(12)の燃料ガ
ス側部(12a)の外径と略同径の内径を有するリング
状の壁部(41)が装填され、この壁部(41)は容器
(30)における第2〜第6分割部(32)〜(36)
毎に分割され、それらは気密状に接合一体化されてい
る。また、壁部(41)には、容器(30)の中心軸線
方向に沿って平行に延びる複数(図示例では6つ)の流
体流路(42),(42),…が略等間隔をあけて貫通
形成され、これら複数の流体流路(42),(42),
…の上流端はそれぞれ容器(30)の端面を貫通して上
記水供給管(21)に接続されている。一方、流体流路
(42)の下流端は第2分割部(32)の壁部(41)
内において1つに集合され、この集合の流体流路(4
2)は第2分割部(32)に開口した流体戻し口(4
3)に連通され、この流体戻し口(43)に上記水戻し
管(25)が接続されている。The second to sixth divisions (32) to (36)
Are fitted with ring-shaped walls (41) each having an inner diameter substantially the same as the outer diameter of the fuel gas side portion (12a) of the second heat recovery section (12). ) Are the second to sixth divided portions (32) to (36) in the container (30).
Each is divided, and they are joined and integrated in an airtight manner. Further, a plurality of (six in the illustrated example) fluid flow paths (42), (42),... Extending in parallel along the central axis direction of the container (30) are arranged at substantially equal intervals on the wall (41). The plurality of fluid flow paths (42), (42),
Are respectively connected to the water supply pipe (21) through the end face of the container (30). On the other hand, the downstream end of the fluid flow path (42) is connected to the wall (41) of the second divided portion (32).
And the fluid flow paths (4
2) is a fluid return port (4) opened to the second divided portion (32).
The fluid return port (43) is connected to the water return pipe (25).
【0041】上記第2分割部(32)内には上記第2熱
回収部(12)の回収流体側部(12b)が、また第4
分割部(34)内には第4熱回収部(14)が、さらに
第6分割部(36)内には第6熱回収部(16)がそれ
ぞれ収容されている。また、第3分割部(33)内に上
記シフト反応部(7)が、また第5分割部(35)内に
CO選択酸化反応部(8)がそれぞれ設けられている。
この2つの反応部(7),(8)はいずれも同じ構造の
もので、図4に示すように壁部(41)内に装填された
円柱状のハニカム体(44)を有し、このハニカム体
(44)において容器(30)の軸線方向に貫通する多
数の貫通孔が改質ガス流路(45)とされている。上記
ハニカム体(44)は例えばセラミックやアルミニウム
等からなる担体にPt、Rh、Ruの少なくともいずれ
か1つからなる貴金属系の触媒を担持したものである。
特に、上記シフト反応部(7)では、CO変成に活性を
呈する触媒として、上記の如きPt、Rh、Ru等の貴
金属系触媒が用いるのがよく、その中でもPt/ZrO
2を用いるのが望ましい。The recovered fluid side (12b) of the second heat recovery unit (12) is provided in the second division (32),
A fourth heat recovery section (14) is accommodated in the division section (34), and a sixth heat recovery section (16) is accommodated in the sixth division section (36). The shift reaction section (7) is provided in the third division section (33), and the CO selective oxidation reaction section (8) is provided in the fifth division section (35).
The two reaction sections (7) and (8) have the same structure, and each have a columnar honeycomb body (44) loaded in a wall section (41) as shown in FIG. In the honeycomb body (44), a large number of through holes penetrating in the axial direction of the container (30) serve as reformed gas flow paths (45). The honeycomb body (44) is formed by supporting a noble metal-based catalyst made of at least one of Pt, Rh, and Ru on a carrier made of, for example, ceramic or aluminum.
In particular, in the shift reaction section (7), a noble metal catalyst such as Pt, Rh, or Ru as described above is preferably used as a catalyst exhibiting activity for CO conversion, and among them, Pt / ZrO
It is desirable to use 2 .
【0042】そして、上記第3及び第5熱回収部(1
3),(15)は、それぞれシフト反応部(7)及びC
O選択酸化反応部(8)の各ハニカム体(44)外周か
らの輻射及び対流による熱を壁部(41)の各流体流路
(42)内の熱回収流体(水)側が受け取るようになっ
ており、このことで、その第3及び第5熱回収部(1
3),(15)での熱回収は熱回収流体(水)と、シフ
ト反応部(7)及びCO選択酸化反応部(8)との熱交
換によって行われる。Then, the third and fifth heat recovery sections (1)
3) and (15) are the shift reaction section (7) and C
The heat recovery fluid (water) side in each fluid flow path (42) of the wall (41) receives heat from radiation and convection from the outer periphery of each honeycomb body (44) of the O selective oxidation reaction section (8). As a result, the third and fifth heat recovery units (1
The heat recovery in 3) and (15) is performed by heat exchange between the heat recovery fluid (water) and the shift reaction section (7) and the CO selective oxidation reaction section (8).
【0043】一方、上記第2熱回収部(12)の回収流
体側部(12b)、第4及び第6熱回収部(14),
(16)の3つの熱回収部はいずれも同じ構造のもの
で、図5に示すように、各々の壁部(41)内には例え
ばアルミニウムやステンレス等からなる複数の金属製の
伝熱フィン(46),(46),…が平行に配置され、
この各伝熱フィン(46)は壁部(41)の内周面に伝
熱可能に接合され、壁部(41)内の伝熱フィン(4
6),(46),…間が改質ガス流路(45)とされて
いる。すなわち、この第2熱回収部(12)の回収流体
側部(12b)、第4及び第6熱回収部(14),(1
6)は、隣接する反応部(6)〜(8)間の改質ガス流
路(45)に設けられた伝熱フィン(46),(4
6),…と、壁部(41)内に設けられていて上記改質
ガス流路(45)に対し隣り合った流体流路(42)
(水流路)とを備えてなり、これら第2熱回収部(1
2)の回収流体側部(12b)、第4及び第6熱回収部
(14),(16)での熱回収は、熱回収流体(水)
と、各々の熱回収部(12b),(14),(16)の
伝熱フィン(46),(46),…間の改質ガス流路
(45)を通過する改質ガスとの熱交換によって行われ
るように構成されている。On the other hand, the recovered fluid side (12b) of the second heat recovery unit (12), the fourth and sixth heat recovery units (14),
Each of the three heat recovery sections (16) has the same structure, and as shown in FIG. 5, a plurality of metal heat transfer fins made of, for example, aluminum or stainless steel are provided in each wall (41). (46), (46), ... are arranged in parallel,
Each of the heat transfer fins (46) is joined to the inner peripheral surface of the wall (41) so as to be able to transfer heat, and the heat transfer fins (4) in the wall (41) are connected.
6), (46),... Constitute a reformed gas flow path (45). That is, the recovered fluid side portion (12b) of the second heat recovery portion (12), the fourth and sixth heat recovery portions (14), (1)
6) are heat transfer fins (46), (4) provided in the reformed gas flow path (45) between the adjacent reaction sections (6) to (8).
6), ..., a fluid channel (42) provided in the wall portion (41) and adjacent to the reformed gas channel (45).
(A water flow path).
The heat recovery in the recovery fluid side portion (12b) and the fourth and sixth heat recovery portions (14) and (16) in 2) is performed using a heat recovery fluid (water).
And the heat of the reformed gas passing through the reformed gas flow path (45) between the heat transfer fins (46), (46),... Of the heat recovery sections (12b), (14), (16). It is configured to be performed by exchange.
【0044】上記第6分割部(36)は改質ガス供給口
(47)が開口された有底円筒状のもので、その改質ガ
ス供給口(47)は上記燃料電池本体(1)に接続され
ている。The sixth divided portion (36) is a bottomed cylindrical member having a reformed gas supply port (47) opened, and the reformed gas supply port (47) is connected to the fuel cell body (1). It is connected.
【0045】また、上記第4分割部(34)にはその第
4熱回収部(14)内の改質ガス流路(45)に連通す
る空気導入口(48)が開口され、この空気導入口(4
8)は上記空気供給管(2a)に分岐接続されており、
上記ブロア(2)から供給された空気の一部を第4熱回
収部(14)内の改質ガス流路(45)、つまりCO選
択酸化反応部(8)の直上流側で改質ガスに供給して、
その空気によりCO選択酸化反応に必要な酸素を混合す
るようにしている。尚、図中、塗り潰しの矢符は熱の移
動状態を示している。Further, an air inlet (48) communicating with the reformed gas passage (45) in the fourth heat recovery section (14) is opened in the fourth divided section (34). Mouth (4
8) is branched and connected to the air supply pipe (2a);
A part of the air supplied from the blower (2) is supplied to the reformed gas flow path (45) in the fourth heat recovery section (14), that is, the reformed gas flow path immediately upstream of the CO selective oxidation reaction section (8). To supply
The air mixes oxygen necessary for the CO selective oxidation reaction. Note that, in the drawing, solid arrows indicate heat transfer states.
【0046】したがって、この実施形態においては、燃
料電池システムの定常運転時、水タンク(22)内の熱
回収流体としての水が水ポンプ(23)により圧送さ
れ、この水は電池熱回収部(24)で加熱された後に改
質装置(5)の容器(30)内に供給され、その後に容
器(30)の複数の流体流路(42),(42),…を
経て流体戻し口(43)から排出された後に水タンク
(22)に戻る。Therefore, in this embodiment, during the steady operation of the fuel cell system, water as the heat recovery fluid in the water tank (22) is pumped by the water pump (23), and this water is supplied to the battery heat recovery section ( After being heated in 24), it is supplied into the container (30) of the reformer (5), and then passes through a plurality of fluid flow paths (42), (42),. After being discharged from 43), it returns to the water tank (22).
【0047】また、常圧の原料ガスが改質装置(5)の
容器(30)の原料ガス供給口(40)に入り、その第
2熱回収部(12)の燃料ガス側部(12a)及び第1
熱回収部(11)で加熱された後に改質反応部(6)に
流入し、この改質反応部(6)において原料ガスから部
分酸化を含む反応により水素リッチな改質ガスが生成さ
れ、この改質ガスは第2熱回収部(12)を経てシフト
反応部(7)に送られる。そして、上記改質反応部
(6)にて発生した反応熱が上記第1熱回収部(11)
により、また改質反応部(6)からシフト反応部(7)
に送られる改質ガスの熱が第2熱回収部(12)により
それぞれ回収され、第1熱回収部(11)及び第2熱回
収部(12)の燃料ガス側部(12a)により回収され
た熱は後から供給される原料ガスの加熱に供される。ま
た、第2熱回収部(12)の回収流体側部(12b)に
より回収された熱は上記流体流路(42)の水を加熱し
て、その水に回収される。Further, the source gas at normal pressure enters the source gas supply port (40) of the container (30) of the reformer (5), and the fuel gas side portion (12a) of the second heat recovery section (12). And the first
After being heated in the heat recovery section (11), it flows into the reforming reaction section (6), and in this reforming reaction section (6), a hydrogen-rich reformed gas is generated by a reaction including partial oxidation from the raw material gas, This reformed gas is sent to the shift reaction section (7) via the second heat recovery section (12). Then, the reaction heat generated in the reforming reaction section (6) is converted into the first heat recovery section (11).
And from the reforming reaction section (6) to the shift reaction section (7)
The heat of the reformed gas sent to the first heat recovery unit (12) is recovered by the second heat recovery unit (12), and recovered by the fuel gas side part (12a) of the first heat recovery unit (11) and the second heat recovery unit (12). The generated heat is used for heating a source gas supplied later. The heat recovered by the recovered fluid side (12b) of the second heat recovery unit (12) heats the water in the fluid flow path (42) and is recovered by the water.
【0048】また、上記シフト反応部(7)に供給され
た改質ガスは、そのシフト反応部(7)を通る間に改質
ガス中のCO濃度が水性ガスシフト反応により低減さ
れ、この改質ガスは第4熱回収部(14)を経てCO選
択酸化反応部(8)に供給され、この第4熱回収部(1
4)において空気導入口(48)から供給された空気
(酸素)が改質ガスに混合される。そして、上記シフト
反応部(7)にて水性ガスシフト反応により発生した反
応熱が上記第3熱回収部(13)により、またシフト反
応部(7)からCO選択酸化反応部(8)に送られる改
質ガスの熱が第4熱回収部(14)によりそれぞれ回収
され、これらの回収熱は上記流体流路(42)の水を加
熱して、その水に回収される。In the reformed gas supplied to the shift reaction section (7), the CO concentration in the reformed gas is reduced by the water gas shift reaction while passing through the shift reaction section (7). The gas is supplied to the CO selective oxidation reaction section (8) via the fourth heat recovery section (14), and the fourth heat recovery section (1)
In 4), the air (oxygen) supplied from the air inlet (48) is mixed with the reformed gas. Then, the heat of reaction generated by the water gas shift reaction in the shift reaction section (7) is sent by the third heat recovery section (13) and from the shift reaction section (7) to the CO selective oxidation reaction section (8). The heat of the reformed gas is recovered by the fourth heat recovery unit (14), and the recovered heat heats the water in the fluid flow path (42) and is recovered by the water.
【0049】さらに、上記CO選択酸化反応部(8)に
供給された改質ガスは、そのCO選択酸化反応部(8)
を通る間に改質ガス中のCO濃度がCO選択酸化反応に
よってさらに低減され、この改質ガスは第6熱回収部
(16)を経て改質ガス供給口(47)から容器(3
0)外に送出され、燃料電池本体(1)に供給される。
上記CO選択酸化反応部(8)にてCO選択酸化反応に
より発生した反応熱は上記第5熱回収部(15)によ
り、またCO選択酸化反応部(8)から燃料電池本体
(1)にに送られる改質ガスの熱が第6熱回収部(1
6)によりそれぞれ回収され、これらの回収熱は上記流
体流路(42)の水を加熱して、その水に回収される。Further, the reformed gas supplied to the CO selective oxidation reaction section (8) is supplied to the CO selective oxidation reaction section (8).
The CO concentration in the reformed gas is further reduced by the CO selective oxidation reaction while passing through the reforming gas, and the reformed gas passes through the sixth heat recovery section (16) from the reformed gas supply port (47) to the container (3).
0) It is sent out and supplied to the fuel cell body (1).
The reaction heat generated by the CO selective oxidation reaction in the CO selective oxidation reaction section (8) is transferred to the fuel cell body (1) by the fifth heat recovery section (15) and from the CO selective oxidation reaction section (8). The heat of the reformed gas sent is transferred to the sixth heat recovery section (1).
6), and these recovered heats heat the water in the fluid flow path (42) and are recovered by the water.
【0050】このとき、上記改質装置(5)の改質反応
部(6)、シフト反応部(7)及びCO選択酸化反応部
(8)と、第1〜第6熱回収部(11)〜(16)とが
一体的に設けられて、改質ガスが改質反応部(6)から
第2熱回収部(12)、シフト反応部(7)、第4熱回
収部(14)及びCO選択酸化反応部(8)を経て第6
熱回収部(16)へそれぞれ直接流入するので、各反応
部(6)〜(8)と各熱回収部(11)〜(16)とを
配管で接続せずとも済み、改質装置(5)の構造を簡単
でコンパクトにすることができる。また、改質装置
(5)からの放熱を抑えることができる。At this time, the reforming reaction section (6), shift reaction section (7) and CO selective oxidation reaction section (8) of the reformer (5), and the first to sixth heat recovery sections (11) And (16) are provided integrally, and the reformed gas is supplied from the reforming reaction section (6) to the second heat recovery section (12), the shift reaction section (7), the fourth heat recovery section (14), and Sixth through the CO selective oxidation reaction section (8)
Since it flows directly into the heat recovery section (16), it is not necessary to connect each of the reaction sections (6) to (8) and each of the heat recovery sections (11) to (16) with piping, and the reformer (5) ) Can be simple and compact. Further, heat radiation from the reformer (5) can be suppressed.
【0051】また、原料ガスを改質反応部(6)で部分
酸化させて改質ガスを生成するので、その改質反応の発
熱反応を利用でき、その発熱によって反応部が所定温度
(活性温度)以上に昇温すると、その後の定常運転時に
は外部からの熱供給が不要となる。Further, since the reformed gas is generated by partially oxidizing the raw material gas in the reforming reaction section (6), the exothermic reaction of the reforming reaction can be used, and the generated heat causes the reaction section to reach a predetermined temperature (active temperature). If the temperature rises above, external heat supply becomes unnecessary during the subsequent steady operation.
【0052】また、上記各反応部(6)〜(8)が触媒
を担持したハニカム体(44)で構成されているので、
触媒を充填する構造に比べて、原料ガス又は改質ガスの
圧力損失を低減でき、それら原料ガス又は改質ガスを搬
送する手段が不要となり、燃料電池システムの効率が向
上し、特に都市ガスを原料ガスとする場合等で効果的で
ある。また、反応部(6)〜(8)全体の熱容量が小さ
くなるので、改質装置(5)延いては燃料電池システム
の起動時間を短縮することができる。特に、各反応部
(6)〜(8)で使用する触媒が貴金属系のもので統一
されるので、還元処理時及び酸化処理時の発熱を小さく
抑えることができる。Since each of the reaction sections (6) to (8) is formed of a honeycomb body (44) supporting a catalyst,
The pressure loss of the raw material gas or the reformed gas can be reduced as compared with the structure in which the catalyst is filled, and a means for transporting the raw material gas or the reformed gas becomes unnecessary, and the efficiency of the fuel cell system is improved. It is effective in the case of using as a source gas. Further, since the heat capacity of the whole of the reaction sections (6) to (8) is reduced, the startup time of the reformer (5) and thus the fuel cell system can be shortened. In particular, since the catalyst used in each of the reaction sections (6) to (8) is a unified noble metal catalyst, heat generation during reduction and oxidation can be suppressed to a small level.
【0053】さらに、シフト反応部(7)において改質
ガスの水性ガスシフト反応を生じさせる触媒として貴金
属系触媒が用いられているので、鉄−クロム系や銅−亜
鉛系等の卑金属触媒を用いる場合のように前処理での還
元時及び空気雰囲気下の酸化時に大きな発熱が生じた
り、銅−亜鉛系等の触媒の如きシンタリングや硫黄被毒
の影響を受けたりすることはなくなり、還元処理時及び
酸化処理時の発熱を小さくし、シンタリングの度合いも
抑制できる。Further, since a noble metal catalyst is used as a catalyst for causing a water gas shift reaction of the reformed gas in the shift reaction section (7), when a base metal catalyst such as iron-chromium or copper-zinc is used. No large heat is generated during the reduction in the pre-treatment and during the oxidation in the air atmosphere as in the above, and there is no influence from sintering or sulfur poisoning such as a copper-zinc catalyst or the like. In addition, heat generated during the oxidation treatment can be reduced, and the degree of sintering can be suppressed.
【0054】特に、上記シフト反応部(7)の触媒とし
てPt/ZrO2を用いると、低温ないし中温域(25
0〜450℃)で鉄−クロム系触媒よりも高い活性度及
び選択性が得られ、中温域(350〜450℃)での活
性が銅−亜鉛系触媒と同等となって、シフト反応部
(7)の触媒として望ましい。In particular, when Pt / ZrO 2 is used as a catalyst in the shift reaction section (7), when Pt / ZrO 2 is used,
0-450 ° C) and higher activity and selectivity than the iron-chromium catalyst, and the activity in the middle temperature range (350-450 ° C) is equivalent to that of the copper-zinc catalyst, and the shift reaction section ( It is desirable as the catalyst of 7).
【0055】(変形例)上記各反応部(6)〜(8)や
熱回収部(11)〜(16)の構造を図6〜図9に示す
ように変更することもできる。すなわち、図6及び図7
は反応部(6)〜(8)の変形例を示し、図6に示す例
では、改質反応部(6)、シフト反応部(7)及びCO
選択酸化反応部(8)のハニカム体(44)が容器(3
0)の軸心方向から見て断面矩形状の複数の区画部(4
4a),(44a),…に分けられている。そして、こ
の複数の区画部(44a),(44a),…間に縦横に
交差して容器(30)の軸心方向に延びるアルミニウム
やステンレス等の金属からなる伝熱フィン(50),
(50),…が挿通され、この伝熱フィン(50)の端
部は壁部(41)(又は(38))に伝熱可能に接合さ
れている。つまり、第1、第3及び第5熱回収部(1
1),(13),(15)は、それぞれ対応する改質反
応部(6)、シフト反応部(7)CO選択酸化反応部
(8)の各ハニカム体(44)の区画部(44a),
(44a),…間に配置された伝熱フィン(50),
(50),…を備えている。こうすると、第1、第3及
び第5熱回収部(11),(13),(15)での熱回
収効率を高めることができる。(Modification) The structures of the reaction sections (6) to (8) and the heat recovery sections (11) to (16) can be changed as shown in FIGS. 6 and 7
6 shows a modification of the reaction units (6) to (8). In the example shown in FIG. 6, the reforming reaction unit (6), the shift reaction unit (7), and the CO
The honeycomb body (44) of the selective oxidation reaction section (8) is a container (3)
0), a plurality of partitions (4) having a rectangular cross section when viewed from the axial center direction.
4a), (44a),... A heat transfer fin (50) made of a metal such as aluminum or stainless steel extends in the axial direction of the container (30) so as to intersect vertically and horizontally between the plurality of compartments (44a), (44a),.
Are inserted, and the end of the heat transfer fin (50) is joined to the wall (41) (or (38)) so as to be able to transfer heat. That is, the first, third and fifth heat recovery units (1
1), (13), and (15) are the corresponding reforming reaction section (6), shift reaction section (7), CO selective oxidation reaction section (8), and partition section (44a) of each honeycomb body (44). ,
(44a), ... heat transfer fins (50) arranged between them,
(50),... This makes it possible to increase the heat recovery efficiency in the first, third, and fifth heat recovery units (11), (13), and (15).
【0056】一方、図7に示す例では、反応部(7),
(8)の壁部(41)(改質反応部(6)の壁部(3
8)でもよい)において各流体流路(42)の半径方向
内側に空洞からなる漏洩検知部(51),(51),…
が流体流路(42)と平行に貫通形成されており、この
各漏洩検知部(51)により、流体流路(42)を流れ
る水がハニカム体(44)側に漏洩するのを検知するよ
うにしている。つまり、漏洩検知部(51)への水の有
無を検知することで、水の漏洩を検知できる。On the other hand, in the example shown in FIG. 7, the reaction section (7),
(8) Wall (41) (Reforming Reactor (6) Wall (3)
8)), the leak detection units (51), (51),.
Are formed in parallel with the fluid flow path (42), and each of the leak detection sections (51) detects that water flowing through the fluid flow path (42) leaks to the honeycomb body (44) side. I have to. That is, water leakage can be detected by detecting the presence or absence of water to the leakage detection unit (51).
【0057】図8及び図9は上記第2、第4及び第6熱
回収部(12),(14),(16)の変形例を示す。
図8に示す例では、壁部(41)間に架設する伝熱フィ
ン(46),(46),…を図5に示すように平行に配
置するのではなく、縦横格子状に配置したものである。
この場合も第2、第4及び第6熱回収部(12),(1
4),(16)での熱回収効率を高めることができる。FIGS. 8 and 9 show modified examples of the second, fourth and sixth heat recovery sections (12), (14) and (16).
In the example shown in FIG. 8, the heat transfer fins (46), (46),... Erected between the wall portions (41) are not arranged in parallel as shown in FIG. It is.
Also in this case, the second, fourth, and sixth heat recovery sections (12), (1)
4) and (16) can improve the heat recovery efficiency.
【0058】図9に示す例では、改質装置(5)の容器
(30)内に供給する熱回収流体を水から空気(気体)
に変え、壁部(41)における各流体流路(42)の周
囲内壁面に多数の伝熱フィン(52),(52),…を
突設したものである。この場合、流体流路(42)内の
空気と壁部(41)との熱交換性を高めて、第2、第4
及び第6熱回収部(12),(14),(16)での熱
回収効率を高めることができる。In the example shown in FIG. 9, the heat recovery fluid supplied into the container (30) of the reformer (5) is converted from water to air (gas).
, A large number of heat transfer fins (52), (52),... Protruding from the inner wall around each fluid flow path (42) in the wall (41). In this case, the heat exchange property between the air in the fluid flow path (42) and the wall (41) is increased, and the second and fourth air flow rates are increased.
In addition, the heat recovery efficiency in the sixth heat recovery units (12), (14), and (16) can be improved.
【0059】(実施形態2)図10は実施形態2を示
し、改質装置(5)の容器(30)全体を断熱材(5
4)で覆ったものである。こうすると、容器(30)が
断熱されるので、改質装置(5)からの放熱をさらに抑
制して小さくすることができる。(Embodiment 2) FIG. 10 shows Embodiment 2 in which the entire vessel (30) of the reformer (5) is made of a heat insulating material (5).
It was covered in 4). In this case, since the container (30) is insulated, heat radiation from the reformer (5) can be further suppressed and reduced.
【0060】また、この実施形態では、上記断熱材(5
4)において容器(30)の第1分割部(31)の底壁
部に対向して電気ヒータからなる起動用ヒータ(55)
を起動用の加熱源として埋め込んだものである(図1に
仮想線にて示す)。このことで、改質装置(5)(燃料
電池システム)の起動時にヒータ(55)への通電によ
って原料ガスを加熱することができ、改質装置(5)な
いしは燃料電池システムの起動時間をさらに短縮するこ
とができる。尚、電気ヒータ(55)に代えて補助燃焼
部を設けてもよい。In this embodiment, the heat insulating material (5
In 4), the starting heater (55) composed of an electric heater is opposed to the bottom wall of the first divided portion (31) of the container (30).
Is embedded as a heating source for activation (indicated by a virtual line in FIG. 1). Thus, when the reformer (5) (fuel cell system) is started, the raw material gas can be heated by energizing the heater (55), and the starting time of the reformer (5) or the fuel cell system can be further reduced. Can be shortened. Incidentally, an auxiliary combustion section may be provided in place of the electric heater (55).
【0061】(実施形態3)図11〜図13は実施形態
3を示し、改質装置(5)の容器(30)を2重壁構造
としたものである。すなわち、この実施形態では、図1
1及び図12に示すように、容器(30)の第2〜第6
分割部(32)〜(36)に相当する部分は一体のもの
とされ、その部分は円筒状の外壁部(57)と、この外
壁部(57)内に同心に配置された同形状の内壁部(5
8)との2重壁構造とされ、両壁部(57),(58)
間の空間が流体流路(42)とされている。その他の構
成は上記実施形態1と同様である。この実施形態でも実
施形態1と同様の作用効果が得られる。(Embodiment 3) FIGS. 11 to 13 show Embodiment 3 in which the container (30) of the reformer (5) has a double wall structure. That is, in this embodiment, FIG.
As shown in FIG. 1 and FIG. 12, the second to sixth containers (30)
The portions corresponding to the divided portions (32) to (36) are integrated, and the portion is a cylindrical outer wall portion (57) and an inner wall of the same shape arranged concentrically inside the outer wall portion (57). Department (5
8) and a double wall structure, and both wall portions (57), (58)
The space between them is a fluid flow path (42). Other configurations are the same as those in the first embodiment. In this embodiment, the same operation and effect as those of the first embodiment can be obtained.
【0062】尚、この実施形態3において、図13に示
すように、容器(30)の外壁部(57)及び内壁部
(58)間の流体流路(42)に伝熱フィン(59)を
配置し、この伝熱フィン(59)を外壁部(57)及び
内壁部(58)に伝熱可能に接合してもよい。In the third embodiment, as shown in FIG. 13, heat transfer fins (59) are provided in the fluid flow path (42) between the outer wall (57) and the inner wall (58) of the container (30). The heat transfer fins (59) may be arranged and joined to the outer wall (57) and the inner wall (58) so as to be able to transfer heat.
【0063】また、本発明は、上記各実施形態の如き燃
料電池システム以外に用いられる改質装置にも適用でき
るのはいうまでもない。Further, it goes without saying that the present invention can be applied to a reforming apparatus used other than the fuel cell system as in each of the above embodiments.
【0064】[0064]
【発明の効果】以上説明したように、請求項1の発明で
は、原料ガスから部分酸化を含む反応により水素リッチ
な改質ガスを生成する改質反応部と、この改質反応部で
生成された改質ガス中のCO濃度を水性ガスシフト反応
により低減させるシフト反応部と、このシフト反応部で
変成された改質ガス中のCO濃度をCO選択酸化反応に
よってさらに低減するCO選択酸化反応部と、これら各
反応部にて発生した反応熱を回収する第1、第3及び第
5熱回収部と、各反応部で生成された改質ガスを冷却し
て排熱を回収する第2、第4及び第6熱回収部とを備え
た改質装置に対し、改質ガスが改質反応部から第2熱回
収部、シフト反応部、第4熱回収部及びCO選択酸化反
応部を経て第6熱回収部へそれぞれ直接流入するように
各反応部と、第2、第4及び第6熱回収部とを一体的に
設けた。また、請求項2の発明では、上記各反応部と第
1〜第6熱回収部とを1つの容器内に設けた。従って、
これら発明によれば、各反応部と熱回収部とが配管で接
続されず、改質装置の構造の簡単化及びコンパクト化を
図るとともに、改質装置からの放熱の低減を図ることが
できる。また、改質反応部において発熱反応する部分酸
化により改質ガスを生成するので、定常運転時の外部か
らの熱供給の不要化を図ることができる。As described above, according to the first aspect of the present invention, a reforming reaction section that generates a hydrogen-rich reformed gas by a reaction including partial oxidation from a raw material gas, and a reforming reaction section generated by the reforming reaction section. A shift reaction section for reducing the CO concentration in the reformed gas by a water gas shift reaction, and a CO selective oxidation reaction section for further reducing the CO concentration in the reformed gas converted in the shift reaction section by a CO selective oxidation reaction. A first, a third, and a fifth heat recovery section for recovering the reaction heat generated in each of these reaction sections; and a second, second, and third heat recovery section for cooling the reformed gas generated in each of the reaction sections to recover the exhaust heat. In the reformer having the fourth and sixth heat recovery units, the reformed gas passes through the second heat recovery unit, the shift reaction unit, the fourth heat recovery unit, and the CO selective oxidation reaction unit from the reforming reaction unit. 6 Each reaction section and the second And a fourth and sixth heat recovery unit provided integrally. In the invention according to claim 2, each of the reaction sections and the first to sixth heat recovery sections are provided in one container. Therefore,
According to these inventions, each reaction section and the heat recovery section are not connected by a pipe, so that the structure of the reformer can be simplified and made compact, and the heat radiation from the reformer can be reduced. In addition, since the reformed gas is generated by the partial oxidation that causes an exothermic reaction in the reforming reaction section, it is possible to eliminate the need for external heat supply during the steady operation.
【0065】請求項3の発明によると、上記シフト反応
部での触媒を貴金属系触媒としたことにより、還元処理
時及び酸化処理時の発熱を小さくし、シンタリングを抑
えることができる。According to the third aspect of the present invention, since the noble metal catalyst is used as the catalyst in the shift reaction section, heat generation during reduction and oxidation can be reduced, and sintering can be suppressed.
【0066】請求項4の発明によると、シフト反応部の
触媒として、低温ないし中温域で高い活性度及び選択性
を示すPt/ZrO2を用いたことにより、シフト反応
部での望ましい触媒が得られる。According to the fourth aspect of the present invention, the use of Pt / ZrO 2 having high activity and selectivity in a low to medium temperature range as a catalyst in the shift reaction section enables a desired catalyst in the shift reaction section to be obtained. Can be
【0067】請求項5の発明では、上記3つの反応部の
少なくとも1つを、触媒を含むハニカム体で構成した。
また、請求項6の発明では、3つの反応部をいずれもP
t、Rh、Ruの少なくともいずれか1つからなる貴金
属系触媒を含むハニカム体で構成した。さらに、請求項
7の発明では、原料ガスの圧力を常圧とした。これら発
明によると、ガスの圧力損失を低減でき、原料ガス又は
改質ガスを搬送する手段が不要となり、システムの効率
が向上して、特に都市ガスを原料ガスとする場合等に有
効となるとともに、反応部全体の熱容量が小さくなっ
て、改質装置等の起動時間の短縮化を図ることができ
る。特に、請求項6の発明によると、各反応部の触媒が
貴金属系のものであるので、還元処理時及び酸化処理時
の発熱を小さく抑えることができる。In the invention according to claim 5, at least one of the three reaction sections is formed of a honeycomb body containing a catalyst.
Further, in the invention of claim 6, all of the three reaction portions are P
The honeycomb structure includes a noble metal-based catalyst composed of at least one of t, Rh, and Ru. Further, in the invention of claim 7, the pressure of the raw material gas is set to normal pressure. According to these inventions, the gas pressure loss can be reduced, the means for transporting the raw material gas or the reformed gas becomes unnecessary, the efficiency of the system is improved, and it is particularly effective when city gas is used as the raw material gas. In addition, the heat capacity of the entire reaction section is reduced, and the start-up time of the reformer or the like can be reduced. In particular, according to the invention of claim 6, since the catalyst in each reaction section is of a noble metal type, heat generation during reduction treatment and oxidation treatment can be reduced.
【0068】請求項8の発明では、上記第2、第4及び
第6熱回収部での熱回収を、原料ガス又は熱回収流体
と、各熱回収部を通過する改質ガスとの熱交換によって
行うようにした。また、請求項9の発明では、請求項8
の発明において、第2、第4及び第6熱回収部は、反応
部間のガス流路に設けられた伝熱フィンと、上記ガス流
路に対し隣り合った流体流路とを備えているものとし
た。請求項10の発明では、請求項9の発明において、
流体は気体とし、流体流路側に伝熱フィンを設けた。請
求項11の発明では、請求項1又は2の発明において、
第1、第3及び第5熱回収部での熱回収は、原料ガス又
は熱回収流体と各反応部との熱交換によって行うように
した。請求項12の発明では、請求項11の発明におい
て、第1、第3及び第5熱回収部は、反応部外周からの
輻射及び対流による熱を流体側が受け取るものとした。
請求項13の発明では、請求項11の発明において、各
反応部を複数の区画部に分け、第1、第3及び第5熱回
収部は、区画部間に配置された伝熱フィンを備えている
ものとした。請求項14の発明では、請求項8又は11
の発明において、熱回収流体は水とし、この水の漏れを
検知する漏洩検知部を設けた。これら請求項8〜14の
発明によれば、システムの効率をさらに向上させること
ができる。According to the eighth aspect of the present invention, the heat recovery in the second, fourth and sixth heat recovery sections is performed by heat exchange between the raw material gas or the heat recovery fluid and the reformed gas passing through each heat recovery section. To do it. According to the ninth aspect, in the eighth aspect,
In the invention, the second, fourth, and sixth heat recovery sections include heat transfer fins provided in the gas flow path between the reaction sections, and a fluid flow path adjacent to the gas flow path. It was taken. In the invention of claim 10, in the invention of claim 9,
The fluid was gas, and heat transfer fins were provided on the fluid flow path side. In the invention of claim 11, in the invention of claim 1 or 2,
The heat recovery in the first, third and fifth heat recovery units was performed by heat exchange between the raw material gas or heat recovery fluid and each reaction unit. According to a twelfth aspect of the present invention, in the eleventh aspect, the first, third, and fifth heat recovery units receive heat by radiation and convection from the outer periphery of the reaction unit on the fluid side.
According to a thirteenth aspect of the present invention, in the eleventh aspect, each reaction section is divided into a plurality of compartments, and the first, third, and fifth heat recovery sections include heat transfer fins arranged between the compartments. It was assumed. According to the fourteenth aspect, in the eighth aspect or the eleventh aspect,
In the present invention, the heat recovery fluid is water, and a leak detection unit for detecting the leak of the water is provided. According to the inventions of claims 8 to 14, the efficiency of the system can be further improved.
【0069】請求項15の発明では、請求項1又は2の
発明において、CO選択酸化反応部の直上流側で改質ガ
スに対しCO選択酸化反応に必要な酸素を混合するため
の空気導入部を設けた。また、請求項16の発明では、
請求項1又は2の発明において、起動時の加熱源として
補助燃焼部又は電気ヒータを設けた。これら発明の構成
によれば、本発明の効果が有効に発揮される好適な具体
的構成が得られる。According to a fifteenth aspect of the present invention, in the first or the second aspect of the present invention, an air introduction section for mixing oxygen required for the CO selective oxidation reaction with the reformed gas immediately upstream of the CO selective oxidation reaction section. Was provided. In the invention of claim 16,
In the invention according to claim 1 or 2, an auxiliary combustion unit or an electric heater is provided as a heating source at the time of starting. According to the configurations of the present invention, a suitable specific configuration in which the effects of the present invention are effectively exerted can be obtained.
【図1】本発明の実施形態1に係る改質装置を備えた燃
料電池システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a fuel cell system including a reformer according to Embodiment 1 of the present invention.
【図2】実施形態1に係る改質装置の全体構成を示す斜
視図である。FIG. 2 is a perspective view showing the overall configuration of the reforming apparatus according to the first embodiment.
【図3】改質装置の全体構成を示す断面図である。FIG. 3 is a cross-sectional view showing the overall configuration of the reforming apparatus.
【図4】反応部の断面図である。FIG. 4 is a sectional view of a reaction section.
【図5】熱回収部の断面図である。FIG. 5 is a sectional view of a heat recovery unit.
【図6】反応部の変形例1を示す図4相当図である。FIG. 6 is a diagram corresponding to FIG. 4 showing a first modification of the reaction unit.
【図7】反応部の変形例2を示す図4相当図である。FIG. 7 is a diagram corresponding to FIG. 4, showing a second modification of the reaction unit.
【図8】熱回収部の変形例1を示す図5相当図である。FIG. 8 is a diagram corresponding to FIG. 5, illustrating a first modification of the heat recovery unit.
【図9】熱回収部の変形例2を示す図5相当図である。FIG. 9 is a diagram corresponding to FIG. 5, illustrating a second modification of the heat recovery unit.
【図10】実施形態2を示す図3相当図である。FIG. 10 is a diagram corresponding to FIG. 3, showing the second embodiment.
【図11】実施形態3を示す図3相当図である。FIG. 11 is a view corresponding to FIG. 3, showing a third embodiment.
【図12】実施形態3の熱回収部を示す図5相当図であ
る。FIG. 12 is a diagram corresponding to FIG. 5, illustrating a heat recovery unit according to a third embodiment.
【図13】熱回収部の変形例を示す図5相当図である。FIG. 13 is a diagram corresponding to FIG. 5, showing a modification of the heat recovery unit.
(5) 改質装置 (6) 改質反応部 (7) シフト反応部 (8) CO選択酸化反応部 (11) 第1熱回収部 (12) 第2熱回収部 (13) 第3熱回収部 (14) 第4熱回収部 (15) 第5熱回収部 (16) 第6熱回収部 (30) 容器 (39) 原料ガス流路 (42) 流体流路 (44) ハニカム体 (44a) 区画部 (45) 改質ガス流路 (46),(50),(52) 伝熱フィン (48) 空気導入口(空気導入部) (51) 漏洩検知部 (5) Reforming device (6) Reforming reaction section (7) Shift reaction section (8) CO selective oxidation reaction section (11) First heat recovery section (12) Second heat recovery section (13) Third heat recovery Part (14) Fourth heat recovery part (15) Fifth heat recovery part (16) Sixth heat recovery part (30) Container (39) Source gas flow path (42) Fluid flow path (44) Honeycomb body (44a) Partition (45) Reformed gas flow path (46), (50), (52) Heat transfer fin (48) Air inlet (air inlet) (51) Leak detector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 康令 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 米本 和生 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasunori Okamoto 1304 Kanaokacho, Sakai City, Osaka Daikin Industries Inside Kanaoka Plant of Sakai Seisakusho Co., Ltd. (72) Inventor Kazuo Yonemoto 1304 Kanaokacho, Sakai City, Osaka Daikin Industry Sakai Works Kanaoka Factory
Claims (16)
水素リッチな改質ガスを生成する改質反応部(6)と、 上記改質反応部(6)にて発生した反応熱を回収する第
1熱回収部(11)と、 上記改質反応部(6)で生成された改質ガスを冷却して
その排熱を回収する第2熱回収部(12)と、 上記改質反応部(6)で生成された改質ガス中のCO濃
度を水性ガスシフト反応により低減させるシフト反応部
(7)と、 上記シフト反応部(7)で発生した反応熱を回収する第
3熱回収部(13)と、 上記シフト反応部(7)で生成された改質ガスを冷却し
てその排熱を回収する第4熱回収部(14)と、 上記シフト反応部(7)で変成された改質ガス中のCO
濃度をCO選択酸化反応によってさらに低減するCO選
択酸化反応部(8)と、 上記CO選択酸化反応部(8)にて発生した反応熱を回
収する第5熱回収部(15)と、 上記CO選択酸化反応部(8)で生成された改質ガスを
冷却してその排熱を回収する第6熱回収部(16)とを
備え、 上記改質ガスが改質反応部(6)から第2熱回収部(1
2)、シフト反応部(7)、第4熱回収部(14)及び
CO選択酸化反応部(8)を経て第6熱回収部(16)
へそれぞれ直接流入するように上記改質反応部(6)、
シフト反応部(7)及びCO選択酸化反応部(8)、並
びに第2、第4及び第6熱回収部(12),(14),
(16)が一体的に設けられていることを特徴とする改
質装置。1. A reforming reaction section (6) for generating a hydrogen-rich reformed gas from a raw material gas by a reaction including partial oxidation, and a second step for recovering reaction heat generated in the reforming reaction section (6). (1) a heat recovery unit (11); a second heat recovery unit (12) that cools the reformed gas generated in the reforming reaction unit (6) and recovers waste heat thereof; A shift reaction section (7) for reducing the CO concentration in the reformed gas generated in 6) by a water gas shift reaction, and a third heat recovery section (13) for recovering reaction heat generated in the shift reaction section (7). ), A fourth heat recovery section (14) for cooling the reformed gas generated in the shift reaction section (7) and recovering the exhaust heat thereof, and a reformer transformed in the shift reaction section (7). CO in gas
A CO selective oxidation reaction section (8) for further reducing the concentration by a CO selective oxidation reaction; a fifth heat recovery section (15) for recovering reaction heat generated in the CO selective oxidation reaction section (8); A sixth heat recovery section (16) for cooling the reformed gas generated in the selective oxidation reaction section (8) and recovering the exhaust heat thereof, wherein the reformed gas is discharged from the reforming reaction section (6) 2 Heat recovery unit (1
2), a sixth heat recovery unit (16) via a shift reaction unit (7), a fourth heat recovery unit (14), and a CO selective oxidation reaction unit (8).
The reforming reaction section (6) so as to flow directly into
Shift reaction section (7) and CO selective oxidation reaction section (8), and second, fourth and sixth heat recovery sections (12), (14),
(16) A reformer characterized by being provided integrally.
水素リッチな改質ガスを生成する改質反応部(6)と、 上記改質反応部(6)にて発生した反応熱を回収する第
1熱回収部(11)と、 上記改質反応部(6)で生成された改質ガスを冷却して
その排熱を回収する第2熱回収部(12)と、 上記改質反応部(6)で生成された改質ガス中のCO濃
度を水性ガスシフト反応により低減させるシフト反応部
(7)と、 上記シフト反応部(7)で発生した反応熱を回収する第
3熱回収部(13)と、 上記シフト反応部(7)で生成された改質ガスを冷却し
てその排熱を回収する第4熱回収部(14)と、 上記シフト反応部(7)で変成された改質ガス中のCO
濃度をCO選択酸化反応によってさらに低減するCO選
択酸化反応部(8)と、 上記CO選択酸化反応部(8)にて発生した反応熱を回
収する第5熱回収部(15)と、 上記CO選択酸化反応部(8)で生成された改質ガスを
冷却してその排熱を回収する第6熱回収部(16)とを
備え、 上記改質反応部(6)、シフト反応部(7)及びCO選
択酸化反応部(8)、並びに第1〜第6熱回収部(1
1)〜(16)が1つの容器(30)内に設けられてい
ることを特徴とする改質装置。2. A reforming reaction section (6) for generating a hydrogen-rich reformed gas from a raw material gas by a reaction including partial oxidation, and a second step for recovering reaction heat generated in the reforming reaction section (6). (1) a heat recovery unit (11); a second heat recovery unit (12) that cools the reformed gas generated in the reforming reaction unit (6) and recovers waste heat thereof; A shift reaction section (7) for reducing the CO concentration in the reformed gas generated in 6) by a water gas shift reaction, and a third heat recovery section (13) for recovering reaction heat generated in the shift reaction section (7). ), A fourth heat recovery section (14) for cooling the reformed gas generated in the shift reaction section (7) and recovering the exhaust heat thereof, and a reformer transformed in the shift reaction section (7). CO in gas
A CO selective oxidation reaction section (8) for further reducing the concentration by a CO selective oxidation reaction; a fifth heat recovery section (15) for recovering reaction heat generated in the CO selective oxidation reaction section (8); A sixth heat recovery section (16) for cooling the reformed gas generated in the selective oxidation reaction section (8) and recovering waste heat thereof, wherein the reforming reaction section (6) and the shift reaction section (7) are provided. ) And CO selective oxidation reaction section (8), and first to sixth heat recovery sections (1)
A reformer characterized in that 1) to (16) are provided in one container (30).
としてPt、Rh、Ruの少なくともいずれか1つから
なる貴金属系触媒が用いられていることを特徴とする改
質装置。3. The reformer according to claim 1 or 2, wherein the shift reaction section (7) includes a noble metal-based catalyst comprising at least one of Pt, Rh, and Ru as a catalyst exhibiting activity for CO conversion. A reformer characterized by being used.
としてPt/ZrO2が用いられていることを特徴とす
る改質装置。4. The reformer according to claim 1, wherein Pt / ZrO 2 is used as a catalyst exhibiting activity for CO conversion in the shift reaction section (7). .
化反応部(8)の少なくとも1つが各反応に活性を呈す
る触媒を含むハニカム体(44)で構成されていること
を特徴とする改質装置。5. The reformer according to claim 1, wherein at least one of the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) exhibits activity in each reaction. A reformer characterized by comprising a honeycomb body (44) containing:
化反応部(8)がいずれもPt、Rh、Ruの少なくと
もいずれか1つからなる貴金属系触媒を含むハニカム体
(44)で構成されていることを特徴とする改質装置。6. The reforming apparatus according to claim 1, wherein the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) are at least any of Pt, Rh, and Ru. A reformer characterized by comprising a honeycomb body (44) containing a noble metal-based catalyst comprising at least one.
質装置。7. The reformer according to claim 1, wherein the pressure of the raw material gas is normal pressure.
6)での熱回収は、原料ガス又は熱回収流体と、各熱回
収部(12),(14),(16)を通過する改質ガス
との熱交換によって行われるように構成されていること
を特徴とする改質装置。8. The reformer according to claim 1, wherein the second, fourth and sixth heat recovery units (12), (14), (1)
The heat recovery in 6) is configured to be performed by heat exchange between the raw material gas or the heat recovery fluid and the reformed gas passing through each of the heat recovery units (12), (14), and (16). A reformer characterized by the above-mentioned.
6)は、反応部(6)〜(8)間の改質ガス流路(4
5)に設けられた伝熱フィン(46),(46),…
と、 上記改質ガス流路(45)に対し隣り合った流体流路
(42)とを備えていることを特徴とする改質装置。9. The reformer according to claim 8, wherein the second, fourth and sixth heat recovery sections (12), (14), (1)
6) is a reformed gas flow path (4) between the reaction sections (6) to (8).
Heat transfer fins (46), (46), ... provided in 5)
And a fluid channel (42) adjacent to the reformed gas channel (45).
…が設けられていることを特徴とする改質装置。10. The reformer according to claim 9, wherein the fluid is a gas, and the heat transfer fins (52), (52),
... is provided, The reformer characterized by being provided.
5)での熱回収は、原料ガス又は熱回収流体と、改質反
応部(6)、シフト反応部(7)及びCO選択酸化反応
部(8)との熱交換によって行われるように構成されて
いることを特徴とする改質装置。11. The reformer according to claim 1, wherein the first, third, and fifth heat recovery units (11), (13), (1).
The heat recovery in 5) is configured to be performed by heat exchange between the raw material gas or the heat recovery fluid, the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8). A reforming apparatus characterized in that:
5)は、反応部(6)〜(8)外周からの輻射及び対流
による熱を流体側が受け取るように構成されていること
を特徴とする改質装置。12. The reformer according to claim 11, wherein the first, third, and fifth heat recovery units (11), (13), (1)
5) The reformer characterized in that the fluid side receives heat from radiation and convection from the outer periphery of the reaction sections (6) to (8).
化反応部(8)は複数の区画部(44a),(44
a),…に分けられており、 第1、第3及び第5熱回収部(11),(13),(1
5)は、上記区画部(44a),(44a),…間に配
置された伝熱フィン(50),(50),…を備えてい
ることを特徴とする改質装置。13. The reforming apparatus according to claim 11, wherein the reforming reaction section (6), the shift reaction section (7), and the CO selective oxidation reaction section (8) include a plurality of partition sections (44a), (44).
a), ..., the first, third and fifth heat recovery sections (11), (13), (1)
5) is a reformer characterized by comprising heat transfer fins (50), (50),... Disposed between the compartments (44a), (44a),.
て、 熱回収流体は水であり、 上記水の漏れを検知する漏洩検知部(51)を備えてい
ることを特徴とする改質装置。14. The reforming apparatus according to claim 8, wherein the heat recovery fluid is water, and the apparatus further comprises a leak detection section (51) for detecting the water leak.
CO選択酸化反応に必要な酸素を混合するための空気導
入部(48)が設けられていることを特徴とする改質装
置。15. The reformer according to claim 1, wherein an air introduction unit for mixing oxygen required for the CO selective oxidation reaction with the reformed gas immediately upstream of the CO selective oxidation reaction unit (8). (48) A reformer characterized by being provided.
5)を備えていることを特徴とする改質装置。16. The reforming apparatus according to claim 1, wherein a starting heating source (5) comprising an auxiliary combustion unit or an electric heater.
(5) A reformer characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35739099A JP4644892B2 (en) | 1999-12-16 | 1999-12-16 | Reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35739099A JP4644892B2 (en) | 1999-12-16 | 1999-12-16 | Reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001172003A true JP2001172003A (en) | 2001-06-26 |
JP4644892B2 JP4644892B2 (en) | 2011-03-09 |
Family
ID=18453888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35739099A Expired - Fee Related JP4644892B2 (en) | 1999-12-16 | 1999-12-16 | Reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644892B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025762A1 (en) * | 2000-09-20 | 2002-03-28 | Kabushiki Kaisha Toshiba | Fuel reforming device for solid high polymer fuel cell |
JP2002208427A (en) * | 2001-01-12 | 2002-07-26 | Sanyo Electric Co Ltd | Reforming device for fuel cell |
JP2003081609A (en) * | 2001-09-10 | 2003-03-19 | Nippon Soken Inc | Reforming apparatus |
US6972119B2 (en) | 1999-12-28 | 2005-12-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for forming hydrogen |
JP2007519205A (en) * | 2004-01-26 | 2007-07-12 | モーディーン・マニュファクチャリング・カンパニー | Coolant conditioning system and method for a fuel processing subsystem |
JP2007523042A (en) * | 2004-02-17 | 2007-08-16 | モーディーン・マニュファクチャリング・カンパニー | Integrated fuel processor for distributed hydrogen production |
KR100821037B1 (en) * | 2006-11-03 | 2008-04-08 | 삼성에스디아이 주식회사 | Reformer for fuel cell and fuel cell using the same |
WO2008140116A1 (en) * | 2007-05-16 | 2008-11-20 | Nippon Oil Corporation | Reformer and indirect internal reforming-type high-temperature fuel cell |
JP2009023873A (en) * | 2007-07-19 | 2009-02-05 | Hitachi Zosen Corp | Method for increasing temperature of reforming type hydrogen generation apparatus to startup temperature |
JP2009209011A (en) * | 2008-03-05 | 2009-09-17 | Aisin Seiki Co Ltd | Reformer for fuel cell |
US7635399B2 (en) | 2003-06-27 | 2009-12-22 | Ebara Corporation | Fuel reformer |
US8016900B2 (en) | 2006-07-28 | 2011-09-13 | Samsung Sdi Co., Ltd. | Carbon monoxide remover and reformer for fuel cell |
JP5443173B2 (en) * | 2008-01-08 | 2014-03-19 | 東京瓦斯株式会社 | Cylindrical steam reformer |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140305A (en) * | 1982-02-15 | 1983-08-20 | Matsushita Electric Ind Co Ltd | Hydrocarbon fuel reformer |
JPH02113194A (en) * | 1988-10-21 | 1990-04-25 | Hitachi Ltd | Pipeline structure |
JPH04328264A (en) * | 1991-04-26 | 1992-11-17 | Fuji Electric Co Ltd | Cooling device for fuel battery |
JPH07133101A (en) * | 1993-11-01 | 1995-05-23 | Aqueous Res:Kk | Fuel reformer |
JPH10106606A (en) * | 1996-09-30 | 1998-04-24 | Sanyo Electric Co Ltd | Hydrogen manufacturing device, and manufacture thereof |
JPH10324501A (en) * | 1997-05-23 | 1998-12-08 | Sanyo Electric Co Ltd | Carbon monoxide remover and method for starting carbon monoxide remover |
JPH10334935A (en) * | 1997-06-03 | 1998-12-18 | Daikin Ind Ltd | Fuel cell power generating system |
JPH11130405A (en) * | 1997-10-28 | 1999-05-18 | Ngk Insulators Ltd | Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device |
JPH11204117A (en) * | 1998-01-20 | 1999-07-30 | Toshiba Corp | Fuel cell cooling plate monitoring device |
-
1999
- 1999-12-16 JP JP35739099A patent/JP4644892B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140305A (en) * | 1982-02-15 | 1983-08-20 | Matsushita Electric Ind Co Ltd | Hydrocarbon fuel reformer |
JPH02113194A (en) * | 1988-10-21 | 1990-04-25 | Hitachi Ltd | Pipeline structure |
JPH04328264A (en) * | 1991-04-26 | 1992-11-17 | Fuji Electric Co Ltd | Cooling device for fuel battery |
JPH07133101A (en) * | 1993-11-01 | 1995-05-23 | Aqueous Res:Kk | Fuel reformer |
JPH10106606A (en) * | 1996-09-30 | 1998-04-24 | Sanyo Electric Co Ltd | Hydrogen manufacturing device, and manufacture thereof |
JPH10324501A (en) * | 1997-05-23 | 1998-12-08 | Sanyo Electric Co Ltd | Carbon monoxide remover and method for starting carbon monoxide remover |
JPH10334935A (en) * | 1997-06-03 | 1998-12-18 | Daikin Ind Ltd | Fuel cell power generating system |
JPH11130405A (en) * | 1997-10-28 | 1999-05-18 | Ngk Insulators Ltd | Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device |
JPH11204117A (en) * | 1998-01-20 | 1999-07-30 | Toshiba Corp | Fuel cell cooling plate monitoring device |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6972119B2 (en) | 1999-12-28 | 2005-12-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for forming hydrogen |
WO2002025762A1 (en) * | 2000-09-20 | 2002-03-28 | Kabushiki Kaisha Toshiba | Fuel reforming device for solid high polymer fuel cell |
JP2002208427A (en) * | 2001-01-12 | 2002-07-26 | Sanyo Electric Co Ltd | Reforming device for fuel cell |
JP2003081609A (en) * | 2001-09-10 | 2003-03-19 | Nippon Soken Inc | Reforming apparatus |
US7635399B2 (en) | 2003-06-27 | 2009-12-22 | Ebara Corporation | Fuel reformer |
JP2007519205A (en) * | 2004-01-26 | 2007-07-12 | モーディーン・マニュファクチャリング・カンパニー | Coolant conditioning system and method for a fuel processing subsystem |
JP2007523042A (en) * | 2004-02-17 | 2007-08-16 | モーディーン・マニュファクチャリング・カンパニー | Integrated fuel processor for distributed hydrogen production |
JP2007525398A (en) * | 2004-02-17 | 2007-09-06 | モーディーン・マニュファクチャリング・カンパニー | Integrated fuel processor for distributed hydrogen production |
JP2007526869A (en) * | 2004-02-17 | 2007-09-20 | モーディーン・マニュファクチャリング・カンパニー | Highly integrated fuel processor for distributed hydrogen production |
US8016900B2 (en) | 2006-07-28 | 2011-09-13 | Samsung Sdi Co., Ltd. | Carbon monoxide remover and reformer for fuel cell |
KR100821037B1 (en) * | 2006-11-03 | 2008-04-08 | 삼성에스디아이 주식회사 | Reformer for fuel cell and fuel cell using the same |
US7910253B2 (en) | 2006-11-03 | 2011-03-22 | Samsung Sdi Co., Ltd. | Reformer for fuel cell and fuel cell using the same |
JP2008285355A (en) * | 2007-05-16 | 2008-11-27 | Nippon Oil Corp | Reformer and indirect internal reforming high temperature type fuel cell |
WO2008140116A1 (en) * | 2007-05-16 | 2008-11-20 | Nippon Oil Corporation | Reformer and indirect internal reforming-type high-temperature fuel cell |
US8338041B2 (en) | 2007-05-16 | 2012-12-25 | Nippon Oil Corporation | Reformer and indirect internal reforming high temperature fuel cell |
JP2009023873A (en) * | 2007-07-19 | 2009-02-05 | Hitachi Zosen Corp | Method for increasing temperature of reforming type hydrogen generation apparatus to startup temperature |
JP5443173B2 (en) * | 2008-01-08 | 2014-03-19 | 東京瓦斯株式会社 | Cylindrical steam reformer |
JP2009209011A (en) * | 2008-03-05 | 2009-09-17 | Aisin Seiki Co Ltd | Reformer for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP4644892B2 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736299B2 (en) | Metamorphic equipment | |
CA2473449C (en) | Solid oxide fuel cell system | |
JP2003229164A (en) | Solid oxide fuel cell system | |
JP5227706B2 (en) | Reformer | |
JP4444173B2 (en) | Reforming apparatus and fuel cell system including the same | |
JP4948790B2 (en) | Reforming apparatus and fuel cell system including the same | |
JP2004508670A (en) | Fuel processor with integrated fuel cell utilizing ceramic technology | |
JPH1167256A (en) | Fuel cell system | |
JP4732008B2 (en) | Reforming apparatus and fuel cell system using the same | |
EP2329556A1 (en) | Fuel cell systems including hydrogen-producing assemblies | |
JP2005243649A (en) | Reformer of fuel cell system and fuel cell system | |
JP2006019288A (en) | Reformer for fuel cell system and fuel cell system using it | |
JP2001172003A (en) | Reforming apparatus | |
JP4933818B2 (en) | Operation method of solid oxide fuel cell system | |
US6413491B1 (en) | Reformer, method of reforming, and fuel cell system equipped with the reformer | |
JP2005255896A (en) | Desulfurizer, desulfurization system, hydrogen manufacturing apparatus, and fuel cell system | |
JP4484767B2 (en) | Reforming apparatus and fuel cell system | |
JP2005213133A (en) | Reforming device and fuel cell system | |
JP4990045B2 (en) | Hydrogen production apparatus and fuel cell system | |
JP2003123815A (en) | Fuel cell system | |
JP2004299939A (en) | Fuel reformer, and fuel battery generator | |
JP2000185902A (en) | Fuel-treating device for fuel battery | |
JP3545254B2 (en) | Fuel cell carbon monoxide remover | |
JP2001180910A (en) | Selective oxidation reactor | |
JP2001189162A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |