JP2001147279A - Lighting strike position orientation method - Google Patents
Lighting strike position orientation methodInfo
- Publication number
- JP2001147279A JP2001147279A JP2000020175A JP2000020175A JP2001147279A JP 2001147279 A JP2001147279 A JP 2001147279A JP 2000020175 A JP2000020175 A JP 2000020175A JP 2000020175 A JP2000020175 A JP 2000020175A JP 2001147279 A JP2001147279 A JP 2001147279A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- lightning strike
- transmission line
- strike position
- polarization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Locating Faults (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電力線、OPGW
で構成される送電線へ落雷があった場合の雷撃位置の標
定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power line, an OPGW,
The present invention relates to a method for locating a lightning strike position when a lightning strike occurs on a transmission line composed of:
【0002】[0002]
【従来の技術】複数の鉄塔と電力線、OPGWで構成さ
れる送電線への雷撃位置を標定するために、OPGW内
の光の偏波変動を利用した方法が知られている(例えば
特許第2818674号参照)。OPGW(Optical Gr
ound Wire :光複合架空地線)とは架空地線の一種で送
電線鉄塔の頂上間に張られ、避雷の役目も持っている。
その構造は図5に示すように、外側は、螺旋状に撚られ
たアルミ被覆鋼線で、中心部は光ファイバが入ったアル
ミ管である。雷撃位置標定の動作には図5に示す構造が
非常に重要であり、落雷時の非常に大きな雷撃電流の一
部が、中心部の光ファイバを包むコイルのように流れ
る。そしてファラデー効果により図5に示すようにOP
GW内部に磁界が生じ、OPGWを進む光波はこの磁界
の影響によって大きな偏波変動が発生する。なお、架空
地線の外周に光ファイバを巻き付ける巻き付け型の光複
合架空地線においても、雷撃電流により上記と同様に磁
界が発生し同様の現象が生ずる。2. Description of the Related Art A method using polarization fluctuation of light in an OPGW to locate a lightning strike position on a transmission line composed of a plurality of towers, power lines, and an OPGW is known (for example, Japanese Patent No. 2818674). No.). OPGW (Optical Gr
Sound wire (optical composite ground wire) is a type of overhead ground wire that spans the tops of power transmission towers and also serves as a lightning arrester.
As shown in FIG. 5, the outer side of the structure is a spirally twisted aluminum-coated steel wire, and the center is an aluminum tube containing an optical fiber. The structure shown in FIG. 5 is very important for the operation of lightning location, and a part of a very large lightning current at the time of lightning strike flows like a coil surrounding an optical fiber in the center. Then, as shown in FIG.
A magnetic field is generated inside the GW, and a light wave traveling through the OPGW undergoes a large polarization fluctuation due to the influence of the magnetic field. It should be noted that also in a wound optical composite ground wire in which an optical fiber is wound around the outer circumference of the ground wire, a magnetic field is generated by the lightning current in the same manner as described above, and the same phenomenon occurs.
【0003】したがって、図6に示すように、雷撃監視
したい送電線のOPGW1の片側にレーザ光源2を設
け、OPGW1に片側からレーザ光を入射し、もう−方
で折り返し戻ってきた光を偏波変動解析部3で偏波変動
解析すれば、雷撃位置を標定することが可能である。す
なわち、図6において、OPGWに雷撃があった場合、
前記の効果で雷撃位置付近の行きの光と折り返された光
がそれぞれ偏波変動を受けるため、図7に示すように、
偏波変動の観測波形である偏波移動速度の時間変化には
2つの山が生じる。この2度の偏波変動の時間差から雷
撃位置が標定可能となる。Accordingly, as shown in FIG. 6, a laser light source 2 is provided on one side of an OPGW 1 of a transmission line to be monitored for lightning strike, a laser beam is incident on the OPGW 1 from one side, and the light returned and returned on the other side is polarized. If the polarization analysis is performed by the fluctuation analysis unit 3, the lightning strike position can be located. That is, in FIG. 6, when there is a lightning strike on the OPGW,
Because the above-mentioned effect causes the light going near the lightning strike position and the folded light to undergo polarization fluctuations, respectively, as shown in FIG.
There are two peaks in the time change of the polarization moving speed, which is the observation waveform of the polarization fluctuation. The lightning strike position can be located from the time difference between the two polarization fluctuations.
【0004】[0004]
【発明が解決しようとする課題】上記方法によれば、O
PGWの光ファイバ上での雷撃位置を特定できるもの
の、そこが実際の送電線上ではどの位置に相当するかは
わからない。なぜなら雷撃による偏波変動はOPGW内
の光ファイバを通る光に生じるので、解析結果は光ファ
イバ上での位置になる。このため、実際にどこで雷撃が
あったかを知るためには、送電線長と敷設されている光
ファイバの実長を関係付ける必要がある。ここで、OP
GWの敷設状態について説明すると、鉄塔数基に一カ所
のOPGWの接続箇所があり、この箇所では図8に示す
ようにOPGWを鉄塔下部まで引き下げ、OPGW内の
光ファイバ融着している。さらに、同図に示すように鉄
塔間には弛みがあり、加えて構造的には図9に示すよう
に複数の光ファイバが集合された光ファイバユニットの
撚りがある。According to the above method, O
Although the position of the lightning strike on the optical fiber of the PGW can be specified, it is not known which position it corresponds on the actual transmission line. Because the polarization fluctuation due to the lightning strike occurs in the light passing through the optical fiber in the OPGW, the analysis result is the position on the optical fiber. Therefore, in order to know where the lightning strike actually occurred, it is necessary to relate the length of the transmission line to the actual length of the optical fiber laid. Where OP
Explaining the laying state of the GW, there is one connection point of the OPGW in several towers, and at this point, the OPGW is pulled down to the lower part of the tower as shown in FIG. 8, and the optical fiber in the OPGW is fused. Further, there is a slack between the steel towers as shown in the figure, and in addition, as shown in FIG. 9, there is a twist of an optical fiber unit in which a plurality of optical fibers are assembled.
【0005】これらを考慮して、図8に示す鉄塔高・径
間長・撚込み率・弛度・設置位置の標高といった敷設デ
ータから鉄塔1基毎に隣の鉄塔との間の光ファイバ実長
を計算する。このようにして光ファイバ実長の累積和と
鉄塔番号を結びつけることによって、どの鉄塔付近で雷
撃があったかが特定可能になる。しかし、弛度や引き下
げ長のデータを正確に得るのは難しいため、ある鉄塔と
鉄塔までの光ファイバ累積実長の関係には誤差が生じ、
遠方の鉄塔になるほど誤差は拡大する。更に雷撃電流パ
ルスの時間幅は距離に換算すると鉄塔数十基に亘るほど
の幅である場合もあり、標定精度を上げるには限界があ
る。以上のように従来方法では、光ファイバ累積実長の
誤差等により精度よく雷撃位置を標定することが困難で
あった。本発明は上記した従来技術の問題点を解決する
ためになされたものであって、敷設データから求めた光
ファイバ累積実長に誤差等があっても、雷撃位置を高精
度に標定することができる雷撃位置標定方法を提供する
ことを目的とする。[0005] In consideration of these, from the installation data such as the tower height, span length, twisting rate, sag, and elevation of the installation position shown in FIG. Calculate the length. In this way, by linking the cumulative sum of the actual lengths of the optical fibers and the tower number, it becomes possible to specify the location near the tower where the lightning strike occurred. However, since it is difficult to accurately obtain the data of the sag and the reduction length, an error occurs in the relationship between a certain tower and the actual accumulated optical fiber length to the tower,
The error increases as the distance from the tower increases. Furthermore, the time width of the lightning current pulse may be as long as several tens of towers in terms of distance, and there is a limit to improving the positioning accuracy. As described above, in the conventional method, it was difficult to accurately locate the lightning strike position due to an error in the accumulated actual length of the optical fiber. The present invention has been made in order to solve the above-described problems of the related art, and even if there is an error in the accumulated actual length of the optical fiber obtained from the laying data, it is possible to accurately locate the lightning strike position. It is an object of the present invention to provide a method for locating a lightning strike that can be performed.
【0006】[0006]
【課題を解決するための手段】図2(a)は雷撃時の偏
波移動角の時間変化であり、前記図7に示した偏波移動
速度の時間変化と同様、磁気光学効果の一種であるファ
ラデー効果により、雷撃時に同図に示すように偏波面が
回転する。本発明では図2に示す偏波移動角の時間変化
を利用して雷撃位置を標定する。雷撃電流のパルス幅は
数十μsの幅であるため、偏波変動の変化も同等の時間
幅である。この時間幅は距離に換算すると鉄塔10数基
に相当する。図2(a)に示す波形を拡大すると、図2
(b)に示すように微妙な傾きの変化があり、変化点の
間隔は鉄塔間のファイバ長とよく−致していることがわ
かった。この現象のはっきりとした原因は不明だが、O
PGWが鉄塔毎に接地されているため雷撃電流の−部が
地表に流れ、電流量が変化する事に起因するのではない
かと考えられる。FIG. 2 (a) shows a time change of the polarization moving angle at the time of a lightning strike, and is a kind of magneto-optical effect like the time change of the polarization moving speed shown in FIG. Due to a certain Faraday effect, the plane of polarization rotates as shown in FIG. In the present invention, the lightning strike position is located using the time change of the polarization movement angle shown in FIG. Since the pulse width of the lightning current is several tens of μs, the change of the polarization fluctuation has the same time width. This time width is equivalent to several pylons in terms of distance. When the waveform shown in FIG. 2A is enlarged, FIG.
As shown in (b), there was a slight change in the inclination, and it was found that the interval between the change points was in good agreement with the fiber length between the towers. The exact cause of this phenomenon is unknown, but O
Since the PGW is grounded for each of the towers, it is considered that the minus part of the lightning current flows to the surface of the ground and the amount of current changes.
【0007】本発明はこの現象を利用して、次のように
して雷撃位置を標定する。 (1)まず雷撃波形が得られたとき、前記した従来の方
法によりおおよその雷撃位置を特定する。次に、上記従
来方法で得た雷撃位置付近の鉄塔十数基について、上記
図2(b)で説明した偏光面回転角度の時間変化に対す
る傾きの変化点間隔を求め、求めた変化点間隔から鉄塔
間ファイバ長を得る。そして、この鉄塔間ファイバ長の
並びと、敷設データから計算した鉄塔間ファイバ長の並
びのパターンがほぼ一致するポイントを探す。一方、雷
撃位置は、図2(a)の矢印で示す偏波移動角の変化が
最も急峻となる時点Fに対応しており、この点Fと鉄塔
間位置を対応づけることができれば雷撃位置を標定する
ことができる。そこで、上記のようにして得た鉄塔間フ
ァイバ長の並びと、敷設データから計算した鉄塔間ファ
イバ長の並びのパターンの対応関係から、上記点Fに対
応した鉄塔間位置を求める。 (2)光ファイバの一方端から光信号を入射し、落雷時
に、上記光ファイバの他方端に現れる偏波面回転角度の
時間変化を観測する。そして、上記した偏光面回転角度
の時間変化に対する傾きの変化点間隔のパターンに基づ
き、図2(a)に示した偏波移動角の変化が最も急峻と
なる時点F付近の鉄塔間ファイバ長を得る。そして、偏
光面回転角度の時間変化に対する傾きの変化点間隔のパ
ターンから得た鉄塔間ファイバ長の並びと、敷設データ
から計算した鉄塔間ファイバ長の並びのパターンがほぼ
一致するポイントを探す。次に、上記のようにして得た
鉄塔間ファイバ長の並びと、敷設データから計算した鉄
塔間ファイバ長の並びのパターンの対応関係から、上記
点Fに対応した鉄塔間位置を求める。上記(1)(2)
のようにすれば、本当はどの鉄塔付近で雷撃があったか
を特定することができ、高精度な雷撃位置の標定が可能
となる。なお、光ファイバはユニット内(例えば前記し
たOPGW)に収納するのが望ましい。特に、光ファイ
バを送電線路の端部で折り返して配設し、2つの偏波変
動の時間差から雷撃位置を大まかに標定する場合には、
光ファイバを同一ユニット内(OPGWであれば同一O
PGWに)収容すれば、敷設を容易にすることができ
る。The present invention uses this phenomenon to locate a lightning strike position as follows. (1) First, when a lightning strike waveform is obtained, an approximate lightning strike position is specified by the above-described conventional method. Next, for the dozens of towers near the lightning strike position obtained by the above-mentioned conventional method, the change point interval of the slope with respect to the time change of the polarization plane rotation angle described in FIG. Obtain the fiber length between towers. Then, a point where the pattern of the fiber length between towers and the pattern of the fiber length between towers calculated from the laying data substantially match is searched. On the other hand, the lightning strike position corresponds to the time point F at which the change in the polarization movement angle indicated by the arrow in FIG. 2A is the steepest. If this point F can be associated with the position between the towers, the lightning strike position is changed. Can be oriented. Therefore, the position between the towers corresponding to the point F is obtained from the correspondence between the arrangement of the fiber lengths between the towers obtained as described above and the pattern of the arrangement of the fiber lengths between the towers calculated from the laying data. (2) An optical signal is input from one end of the optical fiber, and the time change of the rotation angle of the polarization plane appearing at the other end of the optical fiber during a lightning strike is observed. Then, based on the above-described pattern of the change point interval of the inclination with respect to the time change of the polarization plane rotation angle, the inter-pylon fiber length near the time point F at which the change of the polarization moving angle becomes the steepest shown in FIG. obtain. Then, a point where the pattern of the fiber length between the towers obtained from the pattern of the change point intervals of the inclination with respect to the time change of the rotation angle of the polarization plane and the pattern of the fiber length between the towers calculated from the laying data substantially match is searched. Next, the position between the towers corresponding to the point F is obtained from the correspondence between the arrangement of the fiber lengths between the towers obtained as described above and the pattern of the arrangement of the fiber lengths between the towers calculated from the laying data. The above (1) and (2)
In this way, it is possible to specify the location of the lightning tower where the lightning strike occurred, and it is possible to accurately locate the lightning strike position. The optical fiber is desirably housed in a unit (for example, the above-mentioned OPGW). In particular, when an optical fiber is folded back at the end of the transmission line, and the lightning strike position is roughly located based on the time difference between two polarization fluctuations,
Optical fiber in the same unit (same O for OPGW)
(PGW) can facilitate installation.
【0008】[0008]
【発明の実施の形態】図1は本発明の第1の実施例の雷
撃位置標定システムの構成例を示す図である。同図にお
いて、10は送電線鉄塔であり、送電線鉄塔10の上部
には送電線に併設してOPGW1が架設されている。O
PGW1内には送電線路の端部で折り返されて往復する
一連続の光ファイバ10が収容されており、その折り返
し部には伝播距離をかせぐための遅延用光ファイバ4が
接続されている。また、発電所側には、レーザ光源2と
偏波変動解析部3が設けられ、レーザ光源2から放出さ
れるレーザ光を上記OPGW1の往路側光ファイバ10
aに入射する。上記レーザ光はOPGW1の往路側光フ
ァイバ10aを介して変電所側に設置された遅延用光フ
ァイバ4に入射し、遅延用光ファイバ4で遅延され、O
PGW1の復路側光ファイバ10bを介して発電所側に
折り返され、発電所側に設けられた偏波変動解析部3の
偏波変動解析装置に入射する。FIG. 1 is a diagram showing a configuration example of a lightning strike position locating system according to a first embodiment of the present invention. In the figure, reference numeral 10 denotes a transmission line tower, and an OPGW 1 is installed above the transmission line tower 10 in parallel with the transmission line. O
The PGW 1 accommodates a continuous optical fiber 10 that is turned back and forth at the end of the transmission line, and the turned-back portion is connected to a delay optical fiber 4 for increasing the propagation distance. Further, a laser light source 2 and a polarization fluctuation analysis unit 3 are provided on the power plant side, and the laser light emitted from the laser light source 2 is transmitted to the optical fiber 10
a. The laser light enters the delay optical fiber 4 installed on the substation side via the outward optical fiber 10a of the OPGW 1, is delayed by the delay optical fiber 4, and
It is turned back to the power station side via the return optical fiber 10b of the PGW 1, and enters the polarization fluctuation analyzer of the polarization fluctuation analyzer 3 provided on the power station side.
【0009】上記構成において、送電線の途中で雷撃が
あると、前記したように雷撃点付近の往路側光ファイバ
10aおよび復路側光ファイバ10bを経由する行きの
光と折り返された光がそれぞれ偏波変動を受ける。偏波
変動解析部3は上記偏波変動を解析し、解析結果を電話
回線6を介してデータ収集解析部5に送信する。データ
収集解析部5は上記解析結果に基づき雷撃位置を標定す
る。送電線に雷撃があると、偏波変動解析部3により観
測される偏波変動移動速度の時間変化には、前記図7に
示したように2つの山が生ずる。この2度の偏波変動の
時間差から前記したようにOPGWの光ファイバ上にお
ける雷撃位置を標定することができる。なお、前述のよ
うに偏波変動波形の時間幅は広いため、変電所近傍の雷
撃では2つの波形が重なってしまい雷撃位置標定が出来
ない。これを防ぐために変電所内には上記したように遅
延用光ファイバ4を設置している。In the above configuration, if a lightning strike occurs in the middle of the transmission line, as described above, the light going back and forth through the forward optical fiber 10a and the return optical fiber 10b near the lightning point is deflected. Subject to wave fluctuations. The polarization fluctuation analysis unit 3 analyzes the above-mentioned polarization fluctuation, and transmits the analysis result to the data collection / analysis unit 5 via the telephone line 6. The data collection / analysis unit 5 locates a lightning strike position based on the analysis result. When a lightning strike occurs on the transmission line, two peaks occur in the time variation of the polarization fluctuation moving speed observed by the polarization fluctuation analysis unit 3 as shown in FIG. As described above, the lightning strike position on the optical fiber of the OPGW can be located from the time difference between the two polarization fluctuations. As described above, since the time width of the polarization fluctuation waveform is wide, in the case of a lightning strike near a substation, two waveforms overlap, and it is impossible to locate the lightning strike position. In order to prevent this, the optical fiber 4 for delay is installed in the substation as described above.
【0010】以上の方法によれば、前記したように光フ
ァイバ上での雷撃位置を標定することができる。しか
し、上記した従来の方法では、前記したようにファイバ
長は鉄塔毎の鉄塔データから計算した径間長の和として
求められ、弛度や引き下げ長のデータを正確に得るのは
難しい。このため、ある鉄塔と鉄塔までの光ファイバ実
長の関係には誤差が生じ、遠方の鉄塔になるほどズレが
大きくなる。更に雷撃電流のパルスは距離に換算すると
鉄塔十数基に亘るほど程の幅である事もあり誤差は大き
い。[0010] According to the above method, the lightning strike position on the optical fiber can be located as described above. However, in the above-described conventional method, as described above, the fiber length is obtained as the sum of the span lengths calculated from the tower data for each tower, and it is difficult to accurately obtain the data of the sag and the lowered length. For this reason, an error occurs in the relationship between a certain tower and the actual optical fiber length to the tower, and the deviation increases as the distance from the tower increases. Furthermore, the pulse of the lightning current may be as wide as more than a dozen towers in terms of distance, and the error is large.
【0011】そこで、データ収集解析部5において、2
度の偏波変動の時間差から得た雷撃位置付近の鉄塔十数
基について、偏波変動角波形の時間変化の傾きの変化点
の間隔を解析し、以下のようにして雷撃位置を標定す
る。図3は偏波変動角度の時間変化に基づく雷撃位置標
定方法を説明する図であり、同図のAは前記図2(b)
と同様、偏波変動角波形の時間変化に対する傾きを示し
ている。同図のAに示すように偏波変動角波形には微妙
な傾きの変化があり、この変化点の間隔は前記したよう
に鉄塔間のファイバ長とよく一致している。この例の場
合、その変化点の間隔から求めた径間長のパターンは、
同図に示すように102m,87m,108m,…,1
34m,159mである。Therefore, in the data collection / analysis section 5, 2
For dozens of towers near the lightning strike position obtained from the time difference of the degree of polarization change, the interval of the change point of the slope of the time change of the polarization change angular waveform is analyzed, and the lightning strike position is located as follows. FIG. 3 is a view for explaining a method for locating a lightning strike based on a change over time in the angle of polarization fluctuation, wherein A in FIG.
Similarly to FIG. 7, the slope of the polarization fluctuation angle waveform with respect to time change is shown. As shown in A of the figure, the polarization fluctuation angle waveform has a slight change in inclination, and the interval between the change points matches the fiber length between the towers well as described above. In the case of this example, the pattern of the span length obtained from the interval of the change point is
As shown in the figure, 102m, 87m, 108m, ..., 1
34m and 159m.
【0012】一方、従来の方法により雷撃位置が鉄塔6
9と鉄塔70の間であると標定され、該雷撃位置の近傍
で鉄塔の敷設データから計算した鉄塔間ファイバ長の並
びのパターンが、上記パターンに一致するポイントを探
したところ、同図に示すように鉄塔64〜鉄塔72間の
100m,90m,110m,…,130m,160m
であったとする。ここで、前記図2(a)のF点に相当
する位置が図3においてf点であったとすると、この点
は鉄塔間のファイバ長が123mの位置であり、これと
上記敷設データから計算した鉄塔間ファイバ長の並びの
パターンとを対応付けると、鉄塔68と鉄塔67の間に
相当する(図3のf点は図2(a)のF点(雷撃位置)
に対応する点であり、f点が図3で最も傾きが急峻とな
る点であるとは限らない)。したがって、雷撃位置は鉄
塔68と鉄塔67の間であると標定される。On the other hand, the lightning strike position is
9 is located between the tower 9 and the tower, and a pattern in which the length of the fiber length between the towers calculated from the laying data of the tower near the lightning strike position matches the above pattern is searched. 100m, 90m, 110m, ..., 130m, 160m between the tower 64 and the tower 72
Assume that Here, assuming that the position corresponding to the point F in FIG. 2A is the point f in FIG. 3, this point is a position where the fiber length between the towers is 123 m, and this point is calculated from the laying data. Corresponding to the pattern of the fiber length between the towers corresponds to between the tower 68 and the tower 67 (point f in FIG. 3 is point F (lightning strike position) in FIG. 2A).
, And the point f is not always the point having the steepest slope in FIG. 3). Therefore, the lightning strike position is determined to be between the tower 68 and the tower 67.
【0013】以上の方法によれば、既存のOPGW内に
収容されている空き心線を検出媒体且つ伝送媒体とする
ため、従来の故障区間標定システムのように送電線鉄塔
への追加設備が必ずしも必要ではなく、精度よく雷撃位
置を標定することができる。特に、鉄塔と鉄塔までの光
ファイバ累積実長の関係に誤差があっても、これを補正
して雷撃位置を精度よく標定することが可能である。更
にこの方法では、雷撃の度に計算で得られたファイバ長
のプロファイルに補正を加え続ければ、より正確な送電
線全体の鉄塔間ファイバ長のプロファイルが完成し、雷
撃時の標定精度向上に貢献することができる。なお、上
記実施例では、雷撃監視用に光ファイバを往復分、計2
本を占有しているが、波長多重技術を用いれば光ファイ
バの光通信回線との共用も可能である。[0013] According to the above method, since the empty core wire housed in the existing OPGW is used as a detection medium and a transmission medium, additional equipment to the transmission line tower as in the conventional fault section location system is not necessarily provided. It is not necessary, and the position of the lightning strike can be accurately located. In particular, even if there is an error in the relationship between the tower and the accumulated actual optical fiber length between the tower, it is possible to correct this and accurately locate the lightning strike position. Furthermore, in this method, by continuing to correct the calculated fiber length profile at each lightning strike, a more accurate fiber length profile between the towers of the entire transmission line is completed, contributing to improved positioning accuracy during lightning strikes. can do. In the above embodiment, two round trips of the optical fiber were used for lightning monitoring for a total of 2 strokes.
Although the book is occupied, it is possible to share an optical fiber with an optical communication line by using the wavelength multiplexing technology.
【0014】図4は本発明の第2の実施例を示す図であ
り、本実施例は、1本の光ファイバにより雷撃位置を標
定するようにしたものである。図4において、11は送
電線鉄塔であり、送電線鉄塔11の上部には送電線に併
設してOPGW1が架設されている。また、変電所側に
はレーザ光源2が設けられ、発電所側には偏波変動解析
部3が設けられており、レーザ光源2から放出されるレ
ーザ光は上記OPGW1の空き心線に入射する。上記レ
ーザ光はOPGW1内の光ファイバ10を介して発電所
側に送られ、発電所側に設けられた偏波変動解析部3に
入射する。FIG. 4 is a view showing a second embodiment of the present invention. In this embodiment, a lightning strike position is located by one optical fiber. In FIG. 4, reference numeral 11 denotes a transmission line tower, and an OPGW 1 is installed above the transmission line tower 11 in parallel with the transmission line. Further, a laser light source 2 is provided on the substation side, and a polarization fluctuation analysis unit 3 is provided on the power plant side. Laser light emitted from the laser light source 2 is incident on the above-mentioned OPGW1 free core wire. . The laser light is sent to the power station via the optical fiber 10 in the OPGW 1 and enters the polarization fluctuation analysis unit 3 provided on the power station.
【0015】上記構成において、送電線の途中で雷撃が
あると、レーザ光源2から放出され、OPGW1内の光
ファイバ10を介して送られる光が偏波変動を受ける。
偏波変動解析部3は上記偏波変動を解析し、解析結果を
電話回線6を介してデータ収集解析部5に送信する。デ
ータ収集解析部5は上記解析結果に基づき以下のように
して雷撃位置を標定する。送電線に雷撃があると、前記
したように偏波変動解析部3で受信される光の偏波面回
転角度が時間変化する。この偏波面回転角度の時間変化
から、図2(a)の矢印で示した雷撃位置である点Fを
求めることができる。また、偏波面回転角度の時間変化
は、図3で説明したように微妙な傾きの変化があり、こ
の変化点の間隔は前記したように鉄塔間のファイバ長と
よく一致している。そこで、前記図3で説明したように
上記のようにして得た鉄塔間ファイバ長の並びと、敷設
データから計算した鉄塔間ファイバ長の並びのパターン
の対応関係から、上記点Fに対応した鉄塔間位置を求め
る。前記図3の場合には、第1の実施例と同様に、雷撃
位置は鉄塔68と鉄塔67の間であると標定される。な
お、本発明において用いられる光ファイバは、以上説明
してきたようなOPGW内に収容されて配設されている
形態に限定されず、雷撃位置標定を行おうとする送電線
路に沿って配設されていれば足りる。また、光ファイバ
を送電線路の端部で折り返して配設し、雷撃地点で観測
される2つの偏波変動の時間差から雷撃位置を大まかに
標定する場合には、光ファイバを同一ユニット内(OP
GWであれば同一OPGWに)収容するようにするのが
よい。In the above configuration, if there is a lightning strike in the middle of the transmission line, the light emitted from the laser light source 2 and transmitted through the optical fiber 10 in the OPGW 1 undergoes polarization fluctuation.
The polarization fluctuation analysis unit 3 analyzes the above-mentioned polarization fluctuation, and transmits the analysis result to the data collection / analysis unit 5 via the telephone line 6. The data collection / analysis unit 5 locates the lightning strike position based on the analysis result as follows. When lightning strikes the transmission line, the polarization plane rotation angle of the light received by the polarization fluctuation analysis unit 3 changes with time as described above. From the time change of the polarization plane rotation angle, a point F which is a lightning strike position indicated by an arrow in FIG. 2A can be obtained. Further, the time change of the polarization plane rotation angle has a slight change in inclination as described with reference to FIG. 3, and the interval between the change points is in good agreement with the fiber length between the towers as described above. Therefore, as described with reference to FIG. 3, from the correspondence between the arrangement of the fiber lengths between the towers obtained as described above and the pattern of the arrangement of the fiber lengths between the towers calculated from the laying data, the tower corresponding to the point F is determined. Find the intermediate position. In the case of FIG. 3, the lightning strike position is specified to be between the tower 68 and the tower 67, as in the first embodiment. The optical fiber used in the present invention is not limited to the form housed in the OPGW as described above, and is arranged along the transmission line on which the lightning position is to be located. Is enough. When the optical fiber is folded back at the end of the transmission line and the lightning position is roughly determined from the time difference between the two polarization fluctuations observed at the lightning point, the optical fiber must be placed in the same unit (OP
It is preferable to accommodate the GW in the same OPGW.
【0016】[0016]
【発明の効果】以上説明したように、本発明において
は、偏光面回転角度の時間変化に対する傾きの変化点間
隔を求め、求めた変化点間隔から鉄塔間ファイバ長を得
て、この鉄塔間ファイバ長の並びと、敷設データから計
算した鉄塔間ファイバ長の並びのパターンがほぼ一致す
るポイントを探すことにより、雷撃位置を標定するよう
にしたので、敷設データから求めた光ファイバ累積実長
に誤差等があっても、精度よく雷撃位置を標定すること
ができる。As described above, in the present invention, the interval between the change points of the inclination with respect to the time change of the polarization plane rotation angle is obtained, and the inter-tower fiber length is obtained from the obtained change point interval. The lightning strike position was located by searching for a point where the arrangement of the length and the pattern of the fiber length between the towers calculated from the laying data almost matched.Therefore, there was an error in the accumulated actual optical fiber length obtained from the laying data. Even if there is, etc., the lightning strike position can be accurately located.
【図1】本発明の第1の実施例の雷撃位置標定システム
の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a lightning strike position locating system according to a first embodiment of the present invention.
【図2】雷撃時の偏波移動角の時間変化を示す図であ
る。FIG. 2 is a diagram showing a time change of a polarization movement angle at the time of lightning strike.
【図3】偏波変動角度の時間変化に基づく雷撃位置標定
方法を説明する図である。FIG. 3 is a diagram illustrating a method for locating a lightning strike based on a time change of a polarization fluctuation angle.
【図4】本発明の第2の実施例の雷撃位置標定システム
の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a lightning strike position locating system according to a second embodiment of the present invention.
【図5】OPGW表面を流れる雷電流と発生する磁界を
説明する図である。FIG. 5 is a diagram illustrating a lightning current flowing on an OPGW surface and a generated magnetic field.
【図6】従来方法を説明する図である。FIG. 6 is a diagram illustrating a conventional method.
【図7】偏波変動波形を示す図である。FIG. 7 is a diagram showing a polarization fluctuation waveform.
【図8】送電線におけるOPGWの敷設状態を説明する
図である。FIG. 8 is a diagram illustrating a laying state of an OPGW in a transmission line.
【図9】OPGW内の光ファイバの撚りを説明する図で
ある。FIG. 9 is a diagram illustrating twisting of an optical fiber in an OPGW.
1 OPGW 2 レーザ光源 3 偏波変動解析部 4 遅延用光ファイバ 5 データ収集解析部 6 電話回線 10 光ファイバ 11 送電線鉄塔 DESCRIPTION OF SYMBOLS 1 OPGW 2 Laser light source 3 Polarization fluctuation analysis part 4 Delay optical fiber 5 Data collection and analysis part 6 Telephone line 10 Optical fiber 11 Transmission line tower
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾高 邦雄 東京都千代田区丸の内二丁目6番1号 古 河電気工業株式会社内 (72)発明者 住谷 博之 広島県広島市中区小町4番33号 中国電力 株式会社内 (72)発明者 ▲かげ▼山 浩志 広島県広島市中区小町4番33号 中国電力 株式会社内 Fターム(参考) 2G033 AA01 AB01 AC06 AD00 AG13 AG14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kunio Odaka 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Hiroyuki Sumitani 4-33 Komachi, Naka-ku, Hiroshima-shi, Hiroshima Prefecture Chugoku Electric Power Co., Inc. (72) Inventor ▲ Kage ▼ Hiroshi Yama 4-3-33 Komachi, Naka-ku, Hiroshima-shi, Hiroshima Chugoku Electric Power Co., Inc. F-term (reference) 2G033 AA01 AB01 AC06 AD00 AG13 AG14
Claims (4)
電線路の端部で折り返されて往復する一連続の光ファイ
バを配設し、上記光ファイバの一方端から光信号を入射
し、落雷時に、上記光ファイバ介して受信される偏波変
動を観測することにより、雷撃位置を標定する雷撃位置
標定方法であって、 観測される2つの偏波変動の時間差により雷撃位置を大
まかに標定し、 上記電撃位置近傍における偏光面回転角度の時間変化に
対する傾きの変化点間隔のパターンと鉄塔の径間距離パ
ターンとを対応付け、 上記対応付けに基づき、偏光面回転角度の時間変化によ
り求めた光ファイバ上の雷撃位置に対応した鉄塔間電撃
位置を標定することを特徴とする雷撃位置標定方法。1. A continuous optical fiber that is folded back at an end of a transmission line and is reciprocated at an upper portion of a tower of the transmission line in parallel with a transmission line, and an optical signal is input from one end of the optical fiber. A lightning strike location method for locating a lightning strike by observing polarization fluctuations received through the optical fiber during a lightning strike, wherein the lightning strike position is roughly determined by the time difference between the two observed polarization fluctuations. Orienting, associating the pattern of the change point interval of the inclination with respect to the time change of the polarization plane rotation angle in the vicinity of the electric shock position with the span distance pattern of the steel tower, A lightning strike position between towers corresponding to a lightning strike position on an optical fiber.
一連続の光ファイバは、同一ユニット内に収納されてい
ることを特徴とする請求項1の雷撃位置標定方法。2. The lightning strike position locating method according to claim 1, wherein a continuous optical fiber that is turned back and forth at the end of the transmission line is housed in the same unit.
ファイバを配設し、 上記光ファイバの一方端から光信号を入射し、落雷時
に、上記光ファイバの他方端に現れる偏波変動を観測す
ることにより、雷撃位置を標定する雷撃位置標定方法で
あって、 偏光面回転角度の時間変化に対する傾きの変化点間隔の
パターンと鉄塔の径間距離パターンとを対応付け、 上記対応付けに基づき、偏光面回転角度の時間変化によ
り求めた光ファイバ上の雷撃位置に対応した鉄塔間雷撃
位置を標定することを特徴とする雷撃位置標定方法。3. An optical fiber is provided above a steel tower of a transmission line in parallel with a transmission line, and an optical signal is input from one end of the optical fiber, and a polarization appears at the other end of the optical fiber when lightning strikes. A method of locating a lightning strike position by observing a variation, wherein a pattern of a change point interval of a slope with respect to a time change of a polarization plane rotation angle and a distance pattern of a steel tower are associated with each other. A method for locating a lightning strike between towers corresponding to a lightning strike position on an optical fiber obtained by a time change of a polarization plane rotation angle based on the above method.
いることを特徴とする請求項3の雷撃位置標定方法。4. The lightning strike location method according to claim 3, wherein the optical fiber is housed in a unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000020175A JP4302273B2 (en) | 1999-09-09 | 2000-01-28 | Lightning strike location method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25582199 | 1999-09-09 | ||
JP11-255821 | 1999-09-09 | ||
JP2000020175A JP4302273B2 (en) | 1999-09-09 | 2000-01-28 | Lightning strike location method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001147279A true JP2001147279A (en) | 2001-05-29 |
JP4302273B2 JP4302273B2 (en) | 2009-07-22 |
Family
ID=26542424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000020175A Expired - Fee Related JP4302273B2 (en) | 1999-09-09 | 2000-01-28 | Lightning strike location method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4302273B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111337796A (en) * | 2018-12-19 | 2020-06-26 | 武汉大学 | Power transmission line lightning shielding failure model test platform and method considering mountain terrain |
JP7474937B1 (en) | 2023-10-31 | 2024-04-26 | 中国電力株式会社 | Lightning monitoring system and lightning monitoring method |
CN118171116A (en) * | 2024-05-09 | 2024-06-11 | 国网江苏省电力有限公司南京供电分公司 | Lightning stroke point positioning method and system based on power transmission and transformation comprehensive information matching |
WO2025001167A1 (en) * | 2023-06-29 | 2025-01-02 | 中兴通讯股份有限公司 | Lightning stroke current value determination method and system, storage medium and electronic apparatus |
-
2000
- 2000-01-28 JP JP2000020175A patent/JP4302273B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111337796A (en) * | 2018-12-19 | 2020-06-26 | 武汉大学 | Power transmission line lightning shielding failure model test platform and method considering mountain terrain |
WO2025001167A1 (en) * | 2023-06-29 | 2025-01-02 | 中兴通讯股份有限公司 | Lightning stroke current value determination method and system, storage medium and electronic apparatus |
JP7474937B1 (en) | 2023-10-31 | 2024-04-26 | 中国電力株式会社 | Lightning monitoring system and lightning monitoring method |
CN118171116A (en) * | 2024-05-09 | 2024-06-11 | 国网江苏省电力有限公司南京供电分公司 | Lightning stroke point positioning method and system based on power transmission and transformation comprehensive information matching |
Also Published As
Publication number | Publication date |
---|---|
JP4302273B2 (en) | 2009-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101895339B (en) | Method for realizing early warning and positioning of malfunctions for power cable network | |
CN103048588B (en) | Method and system for on-line locating power cable fault | |
US8588571B1 (en) | Installation of fiber-to-the-premise using optical demarcation devices | |
CN103051377A (en) | Method for precisely positioning fault of optical cable by utilizing rayleigh scattering and coherent optical time domain reflection technology | |
CN103048592B (en) | Method and system for off-line locating power cable fault | |
CN110018399A (en) | A kind of lightning fault localization method based on optical signal polarization state in transmission line of electricity OPGW | |
JP2001147279A (en) | Lighting strike position orientation method | |
CN105652152B (en) | A kind of Fault Locating Method and system of multiple line direct supply system contact net | |
US20230029221A1 (en) | Galloping monitoring of overhead transmission lines using distributed fiber optic sensing | |
CN107949792A (en) | Optical fiber type acceleration transducer | |
CN104535895A (en) | Cable-and-overhead-line hybrid line fault section method based on synchronous sampling technology | |
JP2016102689A (en) | Optical fiber bent shape measurement device and bent shape measurement method therefor | |
CN103439630A (en) | Power cable fault point positioning method and system | |
AU595997B2 (en) | Method of coated fiber identification in optical transmission network | |
CN110470945A (en) | A kind of power transmission and transformation line fault detecting and positioning method | |
Li et al. | A novel partial discharge locating system for 10-kV covered conductor lines in distribution network | |
CN111572589A (en) | Urban rail transit fault distance measuring system and method | |
CN109239532A (en) | A kind of line fault positioner based on the sampling of FPGA traveling wave | |
CN113556171A (en) | Line fault position determination method based on optical cable path | |
JP4786036B2 (en) | Lightning strike location method | |
Zhang et al. | Field Test of Communication Cable for Environmental Monitoring | |
CN201918213U (en) | Cross-linked polyethylene insulated power cable allowing fault points to be easily positioned | |
CN116773958A (en) | Power transmission line fault monitoring method and system based on distributed traveling wave positioning | |
CN110954781A (en) | Double-end traveling wave fault positioning method and system based on transient current of ground potential end | |
CN212364468U (en) | Underground cable time synchronization device and fault positioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090422 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4302273 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140501 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |