Nothing Special   »   [go: up one dir, main page]

JP2001038364A - Sterilization method and device for ultrapure water production and feed device - Google Patents

Sterilization method and device for ultrapure water production and feed device

Info

Publication number
JP2001038364A
JP2001038364A JP11219215A JP21921599A JP2001038364A JP 2001038364 A JP2001038364 A JP 2001038364A JP 11219215 A JP11219215 A JP 11219215A JP 21921599 A JP21921599 A JP 21921599A JP 2001038364 A JP2001038364 A JP 2001038364A
Authority
JP
Japan
Prior art keywords
ultrapure water
hydrogen gas
water production
dissolved
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11219215A
Other languages
Japanese (ja)
Other versions
JP4565364B2 (en
Inventor
Kiminobu Osawa
公伸 大澤
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21921599A priority Critical patent/JP4565364B2/en
Publication of JP2001038364A publication Critical patent/JP2001038364A/en
Application granted granted Critical
Publication of JP4565364B2 publication Critical patent/JP4565364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To sterilize a subsystem of an ultrapure water production and feed device and a terminal piping system without stopping the device. SOLUTION: In this sterilizing method of the ultrapure water production and feed device, ultrapure water being <=50 μg/L in dissolved oxygen concentration, dissolving gaseous hydrogen and showing negative value in oxidation reduction potential is conducted into a water passage of the ultrapure water production and feed device, and a gaseous hydrogen feed device 10 is connected with the ultrapure water production and feed device and with water passages at optional positions of an ultrapure feed piping 6A from the ultrapure water production device to a use point and of an ultrapure water return piping 6B from a use point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超純水製造供給装
置の抗菌方法及び抗菌装置に関する。さらに詳しくは、
本発明は、超純水製造供給装置のサブシステムや、端末
配管システムを、装置を停止することなく抗菌処理する
ことができる超純水製造供給装置の抗菌方法及び抗菌装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial method and an antibacterial device for an ultrapure water production and supply device. For more information,
The present invention relates to an antibacterial method and an antibacterial device for an ultrapure water production and supply device capable of performing an antibacterial treatment on a subsystem of the ultrapure water production and supply device and a terminal piping system without stopping the device.

【0002】[0002]

【従来の技術】従来より、半導体、液晶基板などの洗浄
用水などとして用いられる超純水は、前処理システム、
一次純水システム、サブシステム及び端末配管システム
から構成される超純水製造供給装置で、工業用水、市
水、井水などの原水を処理することにより製造され、ユ
ースポイントへ供給されている。このうち、サブシステ
ムAは、図1に示す如く、純水タンク1、ポンプ2、低
圧紫外線(UV)照射装置3、イオン交換装置4及び限
外ろ過(UF)膜分離装置5で構成され、限外ろ過膜分
離装置で得られる超純水は、端末配管システムBの送り
配管6Aから分岐する分岐配管6a、6b、6c・・・
6nを経て、各ユースポイント7A、7B、7C・・・
7Nに供給される。余剰の超純水は、戻り配管6Bによ
りサブシステムAの純水タンク1に戻され再使用され
る。溶存酸素や有機物が極めて少ない超純水において
も、超純水製造供給装置の系内に微生物が存在し、さら
に増殖可能であることは公知である。半導体、液晶分野
向けなどの超純水製造供給装置においては、サブシステ
ム及び端末配管システムは、装置起動時に殺菌され、さ
らに起動後は6〜12ケ月に一度の頻度で、微生物の繁
殖を防止する目的で定期的に殺菌される。従来、超純水
製造供給装置の殺菌方法としては、過酸化水素水による
殺菌方法や、60〜90℃の熱水による殺菌方法が行わ
れていた。従来の殺菌方法のうち、過酸化水素水による
殺菌は、通常1〜5重量%濃度の過酸化水素水を系内に
循環させることにより行われるが、殺菌後の過酸化水素
水の押し出し洗浄に5〜12時間の長時間を要するとい
う問題があった。また、熱水による殺菌では、押し出し
洗浄の問題はないが、配管部材の耐熱性を高める必要が
あり、部材コストが高騰するという問題があった。この
ために、過酸化水素水や熱水を使用しない殺菌方法が検
討されてきた。例えば、特公昭63−24433号公報
には、操作が簡便で廃水も発生しない経済的な殺菌方法
として、高純度水にオゾンを注入して閉水路を還流させ
て殺菌したのち、紫外線照射によりオゾンを分解せしめ
る高純度水供給システムの殺菌方法が提案されている。
しかし、オゾンの注入による殺菌では、オゾンの自己分
解速度が速く、端末配管システムの末端まで殺菌に必要
なオゾン濃度を維持、制御することが困難であった。ま
た、特開平6−71269号公報には、低濃度過酸化水
素水を用いて、短時間で効率的に安価に殺菌するととも
に、殺菌処理後の洗浄処理を容易にする殺菌方法とし
て、0.01〜0.1重量%の過酸化水素溶液を30〜6
0℃に加温して使用する、いわゆる中温過酸化水素水殺
菌法が提案されている。この方法は、1〜5重量%濃度
の過酸化水素水を循環させる方法と同等の殺菌効果を有
するが、殺菌時に超純水製造供給装置を停止することが
必要であり、2〜3時間の押し出し洗浄を必要とする。
現在、半導体、液晶分野では、超純水製造供給装置を1
年以上停止することなく、連続稼働させることが要求さ
れており、超純水製造供給装置を停止することなく系内
の微生物の増殖を抑制する方法が強く望まれている。
2. Description of the Related Art Conventionally, ultrapure water used as cleaning water for semiconductors, liquid crystal substrates, etc. has been used in pretreatment systems,
An ultrapure water production and supply device composed of a primary pure water system, subsystems, and terminal piping systems. It is produced by treating raw water such as industrial water, city water, and well water, and supplied to use points. The subsystem A includes a pure water tank 1, a pump 2, a low-pressure ultraviolet (UV) irradiation device 3, an ion exchange device 4, and an ultrafiltration (UF) membrane separation device 5, as shown in FIG. The ultrapure water obtained by the ultrafiltration membrane separation device is branched pipes 6a, 6b, 6c ... branched from the feed pipe 6A of the terminal piping system B.
After 6n, use points 7A, 7B, 7C ...
7N. The surplus ultrapure water is returned to the pure water tank 1 of the subsystem A by the return pipe 6B and reused. It is known that microorganisms are present in the system of the ultrapure water production and supply apparatus even in ultrapure water containing extremely few dissolved oxygen and organic substances, and can be further proliferated. In an ultrapure water production and supply device for semiconductors, liquid crystal fields, etc., the subsystems and terminal piping systems are sterilized at the time of device startup, and prevent the propagation of microorganisms once every 6 to 12 months after startup. Sterilized regularly for the purpose. Conventionally, as a sterilization method of an ultrapure water production and supply device, a sterilization method using a hydrogen peroxide solution or a sterilization method using hot water at 60 to 90 ° C. has been performed. Of the conventional sterilization methods, sterilization with aqueous hydrogen peroxide is usually performed by circulating 1 to 5% by weight of aqueous hydrogen peroxide in the system. There is a problem that it takes a long time of 5 to 12 hours. In the sterilization with hot water, there is no problem of the extrusion cleaning, but there is a problem that the heat resistance of the piping member needs to be increased, and the cost of the member increases. For this reason, sterilization methods that do not use hydrogen peroxide or hot water have been studied. For example, Japanese Patent Publication No. 63-24433 discloses an economical sterilization method that is simple in operation and does not generate wastewater. Ozone is injected into high-purity water, the closed channel is refluxed, sterilized, and then ozone is irradiated by ultraviolet irradiation. A method of disinfecting a high-purity water supply system for decomposing water has been proposed.
However, in sterilization by injection of ozone, the self-decomposition rate of ozone is high, and it has been difficult to maintain and control the ozone concentration required for sterilization up to the end of the terminal piping system. JP-A-6-71269 discloses a sterilization method that uses low-concentration hydrogen peroxide solution to sterilize efficiently and inexpensively in a short period of time, and also facilitates the cleaning process after the sterilization process. 30 to 6% by weight of a 0.1 to 0.1% by weight hydrogen peroxide solution.
A so-called medium temperature hydrogen peroxide sterilization method which is used by heating to 0 ° C has been proposed. This method has a sterilizing effect equivalent to a method of circulating a hydrogen peroxide solution having a concentration of 1 to 5% by weight, but it is necessary to stop the ultrapure water production and supply apparatus during sterilization, and it takes 2 to 3 hours. Extrusion cleaning is required.
Currently, in the field of semiconductors and liquid crystals,
There is a demand for continuous operation without stopping for more than a year, and there is a strong demand for a method for suppressing the growth of microorganisms in the system without stopping the ultrapure water production and supply device.

【0003】[0003]

【発明が解決しようとする課題】本発明は、超純水製造
供給装置のサブシステムや、端末配管システムを、装置
を停止することなく抗菌処理することができる超純水製
造供給装置の抗菌方法及び抗菌装置を提供することを目
的としてなされたものである。
SUMMARY OF THE INVENTION The present invention provides an antibacterial method for an ultrapure water production and supply apparatus capable of performing an antibacterial treatment of a subsystem of an ultrapure water production and supply apparatus and a terminal piping system without stopping the apparatus. And an antibacterial device.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、超純水中に水素
ガスを添加し、超純水の酸化還元電位を負にすると、水
中に存在していた微生物が徐々に減少するという特異な
現象を見いだし、この知見に基づいて本発明を完成する
に至った。すなわち、本発明は、(1)超純水製造供給
装置における水経路に、溶存酸素濃度が50μg/L以
下であり、水素ガスを溶解した、酸化還元電位が負の値
を示す超純水を通水することを特徴とする超純水製造供
給装置の抗菌方法、(2)水素ガスを、溶存水素濃度が
1〜100μg/Lとなるように溶解する第(1)項記載
の超純水製造供給装置の抗菌方法、(3)超純水製造装
置、超純水製造装置からユースポイントへの超純水送り
配管及びユースポイントからの超純水戻り配管の任意の
位置の水経路に、水素ガス供給装置を接続してなること
を特徴とする超純水製造供給装置の抗菌装置、(4)水
素ガス供給装置の接続位置が、超純水製造装置のサブシ
ステムに設けられた紫外線照射装置の後段である第(3)
項記載の超純水製造供給装置の抗菌装置、及び、(5)
水経路に、酸化還元電位計又は溶存水素計が設けられて
なる第(3)項記載の超純水製造供給装置の抗菌装置、を
提供するものである。さらに、本発明の好ましい態様と
して、(6)溶存酸素濃度が、20μg/L以下である
第(1)項記載の超純水製造供給装置の抗菌方法、(7)
酸化還元電位が、Ag|AgCl|3.33M KClを
比較電極として、−200mV以下である第(1)項記載
の超純水製造供給装置の抗菌方法、(8)一次純水シス
テムの触媒脱気装置に過剰の水素ガスを供給し、触媒脱
気装置より溶存水素ガスを漏出させることにより、水素
ガスを溶解した超純水とする第(1)項記載の超純水製造
供給装置の抗菌方法、(9)酸化還元電位計又は溶存水
素計の測定値により、水素ガス供給装置の水素ガス供給
量を制御する第(5)項記載の超純水製造供給装置の抗菌
装置、(10)水素ガス供給装置の接続位置が、サブシ
ステムの純水タンクである第(3)項記載の超純水製造供
給装置の抗菌装置、及び、(11)水素ガス供給装置
が、純水タンク中において、窒素ガス/水素ガスの体積
比が50以上となるように水素ガスを供給する第(10)
項記載の超純水製造供給装置の抗菌装置、を挙げること
ができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have added hydrogen gas to ultrapure water and made the oxidation-reduction potential of ultrapure water negative. Then, they found a peculiar phenomenon that the microorganisms existing in the water gradually decreased, and completed the present invention based on this finding. That is, the present invention provides (1) ultrapure water having a dissolved oxygen concentration of 50 μg / L or less, a hydrogen gas dissolved therein, and a redox potential having a negative value, in a water path in the ultrapure water production and supply device. (2) The ultrapure water according to (1), wherein the hydrogen gas is dissolved so that the dissolved hydrogen concentration becomes 1 to 100 μg / L. An antibacterial method of a production supply device, (3) an ultrapure water production device, an ultrapure water feed pipe from the ultrapure water production device to a point of use, and an ultrapure water return pipe from the point of use to an arbitrary position in a water path, An antibacterial device for an ultrapure water production and supply device, characterized by being connected to a hydrogen gas supply device; and (4) an ultraviolet irradiation provided at a connection position of the hydrogen gas supply device in a subsystem of the ultrapure water production device. (3) which is the latter stage of the device
The antibacterial device of the ultrapure water production / supply device according to the above paragraph, and
(3) An antibacterial device for an ultrapure water production / supply device according to (3), wherein an oxidation-reduction potential meter or a dissolved hydrogen meter is provided in the water path. Furthermore, as a preferred embodiment of the present invention, (6) the antibacterial method of the apparatus for producing and supplying ultrapure water according to (1), wherein the dissolved oxygen concentration is 20 μg / L or less;
(1) The antibacterial method of the ultrapure water production and supply apparatus according to (1), wherein the oxidation-reduction potential is -200 mV or less, using Ag | AgCl | 3.33M KCl as a reference electrode. (8) Decatalysis of the primary pure water system The antibacterial effect of the ultrapure water production / supply device according to item (1), wherein excess hydrogen gas is supplied to the gasifier and dissolved hydrogen gas is leaked from the catalyst deaerator to convert the hydrogen gas into ultrapure water. The method, (9) the antibacterial device of the ultrapure water production and supply device according to (5), wherein the hydrogen gas supply amount of the hydrogen gas supply device is controlled by the measurement value of the redox potential meter or the dissolved hydrogen meter, (10) The antimicrobial device of the ultrapure water production and supply device according to the above item (3), wherein the connection position of the hydrogen gas supply device is a pure water tank of the subsystem, and (11) the hydrogen gas supply device is installed in the pure water tank. So that the volume ratio of nitrogen gas / hydrogen gas is 50 or more (10) to supply hydrogen gas to
The antibacterial device of the ultrapure water production / supply device described in the above item can be used.

【0005】[0005]

【発明の実施の形態】本発明の超純水製造供給装置の抗
菌方法は、超純水製造供給装置における水経路に、溶存
酸素濃度が50μg/L以下であり、水素ガスを溶解し
た、酸化還元電位が負の値を示す超純水を通水するもの
である。本発明の超純水製造供給装置の抗菌装置は、超
純水製造装置、超純水製造装置からユースポイントへの
超純水送り配管、ユースポイントからの超純水戻り配管
の任意の位置の水経路に、水素ガス供給装置を接続して
なるものである。図2は、本発明方法及び本発明装置の
一態様の工程系統図である。本態様においては、サブシ
ステムAが、純水タンク1、ポンプ2、低圧紫外線(U
V)照射装置3、イオン交換装置4及び限外ろ過(U
F)膜分離装置5で構成され、限外ろ過膜分離装置で得
られる超純水は、端末配管システムBの送り配管6Aか
ら分岐する分岐配管6a、6b、6c・・・6nを経
て、各ユースポイント7A、7B、7C・・・7Nに供
給される。余剰の超純水は、戻り配管6Bによりサブシ
ステムAの純水タンク1に戻され再使用される。また、
超純水の酸化還元電位又は溶存水素濃度を測定する計器
8が水経路に設けられ、計器より信号を受けた制御器9
から水素ガス供給装置10に信号が送られ、超純水への
水素ガスの供給量が、所定の酸化還元電位又は溶存水素
濃度を保つように制御される。本発明方法において、超
純水製造供給装置の水経路に通水される超純水の溶存酸
素濃度は50μg/L以下であり、より好ましくは20
μg/L以下であり、さらに好ましくは5μg/L以下
である。溶存酸素濃度が低いほど、少量の水素ガスの溶
解により超純水の酸化還元電位が低下し、短時間で抗菌
効果が発現して、細菌、真菌類などの微生物が死滅し、
あるいは、増殖が抑制される。超純水は、通常一次純水
システムにおいて脱気されているので、溶存酸素濃度は
低いが、必要に応じて、さらに真空脱気、減圧膜脱気な
どにより溶存酸素濃度を低下させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The antibacterial method for an ultrapure water production and supply apparatus according to the present invention provides an antioxidant method in which a dissolved oxygen concentration is not more than 50 μg / L and hydrogen gas is dissolved in a water path in the ultrapure water production and supply apparatus. Ultrapure water whose reduction potential indicates a negative value is passed. The antibacterial device of the ultrapure water production and supply device of the present invention may be an ultrapure water production device, an ultrapure water supply pipe from the ultrapure water production device to a point of use, and an ultrapure water return pipe from any point of the ultrapure water return pipe. A hydrogen gas supply device is connected to the water path. FIG. 2 is a process flow chart of one embodiment of the method and the apparatus of the present invention. In this embodiment, the subsystem A includes the pure water tank 1, the pump 2, and the low-pressure ultraviolet (U)
V) Irradiation device 3, ion exchange device 4 and ultrafiltration (U
F) Ultrapure water which is constituted by the membrane separation device 5 and obtained by the ultrafiltration membrane separation device passes through branch pipes 6a, 6b, 6c,. It is supplied to use points 7A, 7B, 7C,... 7N. The surplus ultrapure water is returned to the pure water tank 1 of the subsystem A by the return pipe 6B and reused. Also,
A meter 8 for measuring the oxidation-reduction potential or dissolved hydrogen concentration of ultrapure water is provided in the water path, and a controller 9 receives a signal from the meter.
Sends a signal to the hydrogen gas supply device 10 to control the supply amount of hydrogen gas to ultrapure water so as to maintain a predetermined oxidation-reduction potential or dissolved hydrogen concentration. In the method of the present invention, the dissolved oxygen concentration of the ultrapure water passed through the water path of the ultrapure water production and supply device is 50 μg / L or less, and more preferably 20 μg / L or less.
μg / L or less, and more preferably 5 μg / L or less. As the dissolved oxygen concentration is lower, the redox potential of ultrapure water is reduced by dissolving a small amount of hydrogen gas, the antibacterial effect is expressed in a short time, and microorganisms such as bacteria and fungi are killed,
Alternatively, growth is suppressed. Since ultrapure water is usually degassed in the primary pure water system, the dissolved oxygen concentration is low, but if necessary, the dissolved oxygen concentration can be further reduced by vacuum deaeration, decompression membrane deaeration, etc. .

【0006】本発明方法においては、超純水製造供給装
置の水経路に、溶存酸素濃度が50μg/L以下であ
り、水素ガスを溶解した、酸化還元電位が負の値を示す
超純水を通水する。ここにいう酸化還元電位は、3.3
3M KClを内部液とするAg/AgCl電極を比較
電極として用いて測定した値である。基準電極として広
く用いられている標準水素電極を用いて測定した酸化還
元電位をENHE、3.33M KClを内部液とするA
g/AgCl電極を比較電極として用いて測定した酸化
還元電位をEとすると、ENHEとEの間には次式で表
される関係がある。ただし、tは水温(℃)である。 ENHE(mV)= E + 206 −0.7(t−25)
(mV) 超純水製造装置により製造される超純水の酸化還元電位
は、通常300mV程度であり、水中の溶存酸素濃度が
上昇すると、酸化還元電位は400mV程度まで上昇す
る。超純水に水素ガスを溶解すると、酸化還元電位が低
下して負の値を示すようになり、特に溶存酸素が除去さ
れた超純水は、水素ガスの溶解により酸化還元電位が急
激に低下する。超純水中における微生物の増殖は、超純
水の酸化還元電位と密接に関係し、酸化還元電位が負に
なると抗菌効果が発現し、超純水の微生物が減少する。
本発明方法において、超純水の酸化還元電位は、−20
0mV以下であることが好ましく、−300mV以下で
あることがより好ましい。本発明方法において、超純水
への水素ガスの溶解量に特に制限はなく、超純水の溶存
酸素濃度、要求される抗菌性能などに応じて適宜選択す
ることができるが、通常は溶存水素濃度が1〜100μ
g/Lとなるように溶解することが好ましく、10〜5
0μg/Lとなるように溶解することがより好ましい。
超純水の溶存酸素濃度が低い場合は、水素ガスをわずか
に溶解することにより、酸化還元電位が大きく低下し、
抗菌効果が発現する。溶存水素濃度が100μg/Lを
超えると、安全性に対する特別な配慮が必要となり、経
済的にも不利となるおそれがある。超純水の酸化還元電
位は、亜硫酸水素ナトリウムNaHSO3などの還元剤
を添加することによっても低下させることができるが、
このような塩類を添加すると、半導体や液晶基板の洗浄
に対して悪影響がある。本発明方法においては、水素ガ
スの溶解により酸化還元電位を低下させるので、被洗浄
物に対して還元剤による悪影響を与えるおそれがない。
In the method of the present invention, ultrapure water having a dissolved oxygen concentration of 50 μg / L or less and hydrogen gas dissolved therein and having a negative oxidation-reduction potential having a negative value is supplied to the water path of the ultrapure water production and supply device. Pass water. The oxidation-reduction potential here is 3.3
It is a value measured using an Ag / AgCl electrode using 3M KCl as an internal solution as a reference electrode. The oxidation-reduction potential measured using a standard hydrogen electrode, which is widely used as a reference electrode, is measured using ENHE, 3.33M KCl as an internal solution.
Assuming that the oxidation-reduction potential measured using the g / AgCl electrode as a reference electrode is E, there is a relationship expressed by the following equation between ENHE and E. Here, t is the water temperature (° C.). ENHE (mV) = E + 206−0.7 (t−25)
(MV) The oxidation-reduction potential of ultrapure water produced by the ultrapure water production apparatus is usually about 300 mV, and when the concentration of dissolved oxygen in water increases, the oxidation-reduction potential rises to about 400 mV. When hydrogen gas is dissolved in ultrapure water, the oxidation-reduction potential decreases and shows a negative value. Particularly in ultrapure water from which dissolved oxygen has been removed, the oxidation-reduction potential drops sharply due to the dissolution of hydrogen gas. I do. The growth of microorganisms in ultrapure water is closely related to the oxidation-reduction potential of ultrapure water. When the oxidation-reduction potential becomes negative, an antibacterial effect is exhibited and the number of microorganisms in ultrapure water decreases.
In the method of the present invention, the oxidation-reduction potential of ultrapure water is −20.
It is preferably 0 mV or less, more preferably -300 mV or less. In the method of the present invention, the amount of hydrogen gas dissolved in ultrapure water is not particularly limited and can be appropriately selected according to the dissolved oxygen concentration of ultrapure water, required antibacterial performance, and the like. Concentration is 1-100μ
g / L, preferably 10 to 5 g / L.
It is more preferable to dissolve so as to be 0 μg / L.
When the dissolved oxygen concentration of ultrapure water is low, the redox potential is greatly reduced by slightly dissolving hydrogen gas,
An antibacterial effect appears. When the concentration of dissolved hydrogen exceeds 100 μg / L, special consideration for safety is required, which may be economically disadvantageous. The oxidation-reduction potential of ultrapure water can also be reduced by adding a reducing agent such as sodium bisulfite NaHSO 3 ,
The addition of such salts has an adverse effect on the cleaning of semiconductors and liquid crystal substrates. In the method of the present invention, since the oxidation-reduction potential is lowered by dissolving the hydrogen gas, there is no possibility that the object to be cleaned is adversely affected by the reducing agent.

【0007】本発明方法において、水素ガスの溶解は、
水素ガスを連続的に添加して行うことができ、あるい
は、断続的に添加して行うこともできる。また、超純水
製造供給装置の立ち上げ時に、従来より行われていた過
酸化水素水又は熱水による殺菌を行い、その後の定常運
転時に、本発明方法により超純水の酸化還元電位が負に
なるよう水素ガスを溶解することもできる。本発明方法
に用いる水素ガスに特に制限はなく、例えば、炭化水素
ガスの部分酸化分解又は水蒸気改質、深冷精製法、メタ
ノールの分解又は水蒸気改質、水の電気分解又は熱化学
的分解などによる水素ガスのほか、水素ガスボンベを使
用することもできる。本発明方法において、超純水に水
素ガスを溶解させる方法に特に制限はなく、例えば、気
体透過膜モジュールを用いて溶解させることができ、水
素ガスをバブリングすることにより溶解させることもで
き、あるいは、エジェクタを用いて水素ガスを添加する
こともできる。超純水と水素ガスが気液混合状態となる
場合は、水経路にインラインミキサなどを設けて、水素
ガスの溶解を促進することができる。本発明方法におい
て、超純水への水素ガスの供給位置に特に制限はなく、
超純水製造装置、超純水製造装置からユースポイントへ
の超純水送り配管、ユースポイントからの超純水戻り配
管の任意の位置において供給することができる。したが
って、本発明装置においては、超純水製造装置、超純水
製造装置からユースポイントへの超純水送り配管、ユー
スポイントからの超純水戻り配管の任意の位置の水経路
に、水素ガス供給装置を接続することができる。さら
に、水素ガス供給装置を、一次純水システムに設けるこ
ともできる。図3は、本発明装置の一態様の工程系統図
である。この一次純水システムは、被処理水を、活性炭
吸着塔、イオン交換塔、真空脱気又は窒素ガス脱気を行
う脱ガス装置、触媒脱気装置、逆浸透膜装置、非再生型
イオン交換装置を順次経由して処理し、処理水をサブタ
ンクに貯留したのちサブシステムに送給するものであ
る。本態様においては、水中の溶存酸素を除去する目的
で、被処理水に水素ガス供給装置より水素ガスを添加し
て触媒反応槽に通水する、いわゆる触媒脱気装置を配置
し、水素ガスの添加量を過剰にして触媒脱気装置から溶
存水素ガスをサブシステム以降に漏出させることによ
り、一次純水システムの水素ガス供給装置に、本発明装
置の水素ガス供給装置の役割を兼ねさせる。
In the method of the present invention, the dissolution of hydrogen gas is as follows:
Hydrogen gas can be added continuously or can be added intermittently. Further, when starting up the ultrapure water production and supply device, sterilization with hydrogen peroxide or hot water, which has been conventionally performed, is performed, and during the subsequent steady operation, the oxidation-reduction potential of the ultrapure water becomes negative by the method of the present invention. It is also possible to dissolve hydrogen gas so that There is no particular limitation on the hydrogen gas used in the method of the present invention. For example, partial oxidative decomposition or steam reforming of hydrocarbon gas, cryogenic purification, decomposition or steam reforming of methanol, electrolysis or thermochemical decomposition of water, etc. In addition to the hydrogen gas, a hydrogen gas cylinder can also be used. In the method of the present invention, there is no particular limitation on the method of dissolving hydrogen gas in ultrapure water, for example, it can be dissolved using a gas permeable membrane module, can be dissolved by bubbling hydrogen gas, or Alternatively, hydrogen gas can be added using an ejector. When ultrapure water and hydrogen gas are in a gas-liquid mixed state, an inline mixer or the like may be provided in the water path to promote the dissolution of hydrogen gas. In the method of the present invention, the supply position of hydrogen gas to ultrapure water is not particularly limited,
It can be supplied at any position of the ultrapure water production apparatus, the ultrapure water feed pipe from the ultrapure water production apparatus to the point of use, and the ultrapure water return pipe from the point of use. Therefore, in the apparatus of the present invention, the hydrogen gas is supplied to the water path at any position of the ultrapure water production apparatus, the ultrapure water feed pipe from the ultrapure water production apparatus to the use point, and the ultrapure water return pipe from the use point. A feeding device can be connected. Further, the hydrogen gas supply device can be provided in the primary pure water system. FIG. 3 is a process flow diagram of one embodiment of the apparatus of the present invention. This primary pure water system converts the water to be treated into an activated carbon adsorption tower, an ion exchange tower, a degassing device for vacuum degassing or nitrogen gas degassing, a catalyst degassing device, a reverse osmosis membrane device, and a non-regenerative ion exchange device. , And the treated water is stored in a sub-tank and then sent to the subsystem. In this embodiment, for the purpose of removing dissolved oxygen in the water, a so-called catalyst deaerator for adding hydrogen gas from the hydrogen gas supply device to the water to be treated and passing the water through the catalyst reaction tank is arranged. By causing the dissolved hydrogen gas to leak from the catalytic deaerator to the subsystem and beyond by making the addition amount excessive, the hydrogen gas supply device of the primary pure water system also functions as the hydrogen gas supply device of the device of the present invention.

【0008】本発明装置において、水素ガス供給装置の
接続位置は、超純水製造装置のサブシステムの紫外線照
射装置の後段であることが好ましい。水素ガス供給装置
を紫外線照射装置の後段とすることにより、紫外線照射
装置における溶存水素の消費を防止することができる。
本発明装置において、水素ガス供給装置の接続位置をサ
ブシステムの純水タンクとすることもできる。純水タン
クは、通常酸素ガスの溶解を防止するために、窒素ガス
などの不活性ガスでパージされている。このパージガス
中に水素ガスを供給することにより、純水タンクにおい
て水素ガスを溶解させることができる。不活性ガスとし
て窒素ガスを用いる場合、純水タンク内の窒素ガス/水
素ガスの容積比は50以上であることが好ましい。窒素
ガス/水素ガスの体積比が50未満であると危険であ
り、安全性の面から特別な配慮が必要となる。本発明装
置においては、水経路に酸化還元電位計又は溶存水素計
を設けることができる。さらに、酸化還元電位計又は溶
存水素計の測定値により水素ガス供給装置の水素ガス供
給量を制御し、超純水の酸化還元電位又は溶存水素濃度
を所定の値に調整することができる。図2に示す態様に
おいては、サブシステム内の送水ポンプ2の出口側に計
器8を取り付け、酸化還元電位又は溶存水素濃度が所定
の値になるように、送水ポンプ入口側での水素ガス供給
量を制御し、あるいは、水素発生器の印加電圧を制御す
ることができる。本発明方法及び本発明装置により、超
純水に水素ガスを溶解して超純水の酸化還元電位を低下
させることによって、微生物の増殖を抑制し得る機構は
明らかではないが、以下のような機構によるものと推定
される。すなわち、一般に超純水中に存在する微生物
は、主として、Burkholderia picke
ttii、Burkholderia gladiol
i、Pseudomonasfluorescensな
どのグラム陰性菌である。これらの細菌は、栄養源が極
めて少ない超純水中では増殖できないが、配管の液溜ま
り部分で増殖したり、超純水中にわずかに不純物が混入
すると増殖を始める。上記の細菌は好気性菌に属するも
のであり、μg/Lレベルの溶存酸素で生存することが
できる。しかし、超純水に水素ガスを溶解することによ
り、これらの細菌は嫌気下に曝され、次第に死滅してい
くものと考えられる。
[0008] In the apparatus of the present invention, it is preferable that the connection position of the hydrogen gas supply device is located downstream of the ultraviolet irradiation device of the subsystem of the ultrapure water production device. By arranging the hydrogen gas supply device after the ultraviolet irradiation device, consumption of dissolved hydrogen in the ultraviolet irradiation device can be prevented.
In the device of the present invention, the connection position of the hydrogen gas supply device may be a pure water tank of the subsystem. The pure water tank is usually purged with an inert gas such as nitrogen gas in order to prevent dissolution of oxygen gas. By supplying the hydrogen gas into the purge gas, the hydrogen gas can be dissolved in the pure water tank. When nitrogen gas is used as the inert gas, the volume ratio of nitrogen gas / hydrogen gas in the pure water tank is preferably 50 or more. If the volume ratio of nitrogen gas / hydrogen gas is less than 50, it is dangerous, and special consideration is required in terms of safety. In the device of the present invention, an oxidation-reduction potentiometer or a dissolved hydrogen meter can be provided in the water path. Further, the amount of hydrogen gas supplied from the hydrogen gas supply device can be controlled based on the measured value of the oxidation-reduction potential meter or the dissolved hydrogen meter, and the oxidation-reduction potential or dissolved hydrogen concentration of the ultrapure water can be adjusted to a predetermined value. In the embodiment shown in FIG. 2, a meter 8 is attached to the outlet side of the water supply pump 2 in the subsystem, and the amount of hydrogen gas supplied at the water supply pump inlet side is adjusted so that the oxidation-reduction potential or the dissolved hydrogen concentration becomes a predetermined value. Or the voltage applied to the hydrogen generator can be controlled. By the method of the present invention and the apparatus of the present invention, by reducing the oxidation-reduction potential of ultrapure water by dissolving hydrogen gas in ultrapure water, the mechanism capable of suppressing the growth of microorganisms is not clear, but the following: It is presumed to be due to the mechanism. That is, microorganisms generally present in ultrapure water are mainly Burkholderia picke.
ttii, Burkholderia gladiol
i, Gram-negative bacteria such as Pseudomonas fluorescens. These bacteria cannot grow in ultrapure water, which has a very small amount of nutrients, but start growing when they grow in the pool of pipes or when impurities are slightly mixed in the ultrapure water. The above bacteria belong to aerobic bacteria and can survive with dissolved oxygen at the μg / L level. However, by dissolving hydrogen gas in ultrapure water, it is considered that these bacteria are exposed to anaerobic conditions and gradually die.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例において、溶存酸
素濃度は、溶存酸素計[東亜電波工業(株)、DO20
A]を用い、溶存水素濃度は、溶存水素計[電気化学計
器(株)、CLC−171D型]を用い、酸化還元電位
は、酸化還元電位計[(株)堀場製作所、D−22]を用
いて測定した。また、細菌数は、JIS K 0550に
準じて、ろ過試料量1Lとして測定した。 実施例1 超純水で十分に洗浄したテトラフルオロエチレン−パー
フルオロアルキルビニルエーテル共重合体(PFA)製
の三角フラスコ4個に、それぞれ溶存酸素濃度が5μg
/Lであり、細菌が1,000個/L存在する超純水1
Lずつを入れた。これらの超純水に、水素ガスを吹き込
んで溶存水素濃度10μg/Lとした。酸化還元電位
は、−300mVであった。三角フラスコをゴム栓で密
栓し、室温でそれぞれ1日、3日、7日及び15日間保
存した。所定日数保存したのち、細菌数を測定した。細
菌数は、1日後102個/L、3日後10個/L、7日
後と15日後はいずれも0個/Lであった。 実施例2 溶存水素濃度を20μg/Lとした以外は、実施例1と
同じ操作を行った。酸化還元電位は−350mVであ
り、細菌数は、1日後80個/L、3日後3個/L、7
日後と15日後はいずれも0個/Lであった。 実施例3 溶存水素濃度を100μg/Lとした以外は、実施例1
と同じ操作を行った。酸化還元電位は−400mVであ
り、細菌数は、1日後76個/L、3日後以降はすべて
0個/Lであった。 実施例4 実施例1と同様にして、三角フラスコ4個に、それぞれ
溶存酸素濃度が5μg/Lであり、細菌が1,000個
/L存在する超純水1Lずつを入れた。これらの超純水
に、酸素ガスと水素ガスを吹き込んで溶存酸素濃度20
μg/L、溶存水素濃度10μg/Lとした。酸化還元
電位は、−200mVであった。三角フラスコをゴム栓
で密栓し、室温でそれぞれ1日、3日、7日及び15日
間保存した。所定日数保存したのち、細菌数を測定し
た。細菌数は、1日後500個/L、3日後150個/
L、7日後30個/L、15日後15個/Lであった。 実施例5 溶存水素濃度を20μg/Lとした以外は、実施例4と
同じ操作を行った。酸化還元電位は−230mVであ
り、細菌数は、1日後100個/L、3日後50個/
L、7日後15個/L、15日後0個/Lであった。 実施例6 溶存水素濃度を100μg/Lとした以外は、実施例4
と同じ操作を行った。酸化還元電位は−350mVであ
り、細菌数は、1日後100個/L、3日後45個/
L、7日後7個/L、15日後0個/Lであった。 実施例7 実施例1と同様にして、三角フラスコ4個に、それぞれ
溶存酸素濃度が5μg/Lであり、細菌が1,000個
/L存在する超純水1Lずつを入れた。これらの超純水
に、酸素ガスと水素ガスを吹き込んで溶存酸素濃度50
μg/L、溶存水素濃度10μg/Lとした。酸化還元
電位は、−150mVであった。三角フラスコをゴム栓
で密栓し、室温でそれぞれ1日、3日、7日及び15日
間保存した。所定日数保存したのち、細菌数を測定し
た。細菌数は、1日後800個/L、3日後250個/
L、7日後50個/L、15日後50個/Lであった。 実施例8 溶存水素濃度を20μg/Lとした以外は、実施例7と
同じ操作を行った。酸化還元電位は−200mVであ
り、細菌数は、1日後750個/L、3日後200個/
L、7日後48個/L、15日後40個/Lであった。 実施例9 溶存水素濃度を100μg/Lとした以外は、実施例7
と同じ操作を行った。酸化還元電位は−300mVであ
り、細菌数は、1日後300個/L、3日後120個/
L、7日後43個/L、15日後40個/Lであった。 比較例1 実施例1と同様にして、三角フラスコ4個に、それぞれ
溶存酸素濃度が5μg/Lであり、細菌が1,000個
/L存在する超純水1Lずつを入れた。これらの超純水
に、酸素ガスと水素ガスを吹き込んで溶存酸素濃度5,
000μg/L、溶存水素濃度10μg/Lとした。酸
化還元電位は、400mVであった。三角フラスコをゴ
ム栓で密栓し、室温でそれぞれ1日、3日、7日及び1
5日間保存した。所定日数保存したのち、細菌数を測定
した。細菌数は、1日後1,000個/L、3日後80
0個/L、7日後700個/L、15日後700個/L
であった。 比較例2 溶存水素濃度を20μg/Lとした以外は、比較例1と
同じ操作を行った。酸化還元電位は380mVであり、
細菌数は、1日後1,000個/L、3日後800個/
L、7日後700個/L、15日後700個/Lであっ
た。 比較例3 溶存水素濃度を100μg/Lとした以外は、比較例1
と同じ操作を行った。酸化還元電位は300mVであ
り、細菌数は、1日後1,000個/L、3日後800
個/L、7日後700個/L、15日後700個/Lで
あった。 比較例4 実施例1と同様にして、三角フラスコ4個に、それぞれ
溶存酸素濃度が5μg/Lであり、細菌が1,000個
/L存在する超純水1Lずつを入れた。酸化還元電位
は、300mVであった。これらの超純水にガスを吹き
込むことなく、三角フラスコをゴム栓で密栓し、室温で
それぞれ1日、3日、7日及び15日間保存した。所定
日数保存したのち、細菌数を測定した。細菌数は、1日
後1,000個/L、3日後700個/L、7日後70
0個/L、15日後700個/Lであった。実施例1〜
9及び比較例1〜4の結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In the examples, the dissolved oxygen concentration was measured using a dissolved oxygen meter [TOA Dempa Kogyo Co., Ltd., DO20
A], the dissolved hydrogen concentration was measured using a dissolved hydrogen meter [Electrochemical Instrument Co., Ltd., CLC-171D type], and the oxidation-reduction potential was measured using an oxidation-reduction potential meter [Horiba, D-22]. It measured using. In addition, the number of bacteria was measured as a filtered sample volume of 1 L according to JIS K0550. Example 1 In four Erlenmeyer flasks made of tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA) sufficiently washed with ultrapure water, the dissolved oxygen concentration was 5 μg each.
/ L, ultrapure water 1 with 1,000 bacteria / L
L was added. Hydrogen gas was blown into these ultrapure waters to achieve a dissolved hydrogen concentration of 10 μg / L. The oxidation-reduction potential was -300 mV. The Erlenmeyer flask was sealed with a rubber stopper and stored at room temperature for 1, 3, 7 and 15 days, respectively. After storage for a predetermined number of days, the number of bacteria was measured. The number of bacteria was 102 cells / L after 1 day, 10 cells / L after 3 days, and 0 cells / L after 7 days and 15 days. Example 2 The same operation as in Example 1 was performed except that the dissolved hydrogen concentration was set to 20 μg / L. The oxidation-reduction potential was -350 mV, and the number of bacteria was 80 cells / L after 1 day, 3 cells / L after 3 days, 7
The number was 0 / L on the day and 15 days later. Example 3 Example 1 except that the concentration of dissolved hydrogen was 100 μg / L.
The same operation was performed. The redox potential was -400 mV, and the number of bacteria was 76 cells / L after 1 day and 0 cells / L after 3 days. Example 4 In the same manner as in Example 1, 4 liters of ultrapure water having a dissolved oxygen concentration of 5 μg / L and 1,000 bacteria / L were placed in four Erlenmeyer flasks. Oxygen gas and hydrogen gas are blown into these ultrapure water to dissolve dissolved oxygen
μg / L and the dissolved hydrogen concentration was 10 μg / L. The oxidation-reduction potential was -200 mV. The Erlenmeyer flask was sealed with a rubber stopper and stored at room temperature for 1, 3, 7 and 15 days, respectively. After storage for a predetermined number of days, the number of bacteria was measured. The number of bacteria was 500 cells / L after 1 day and 150 cells / L after 3 days.
L, 30 / L after 7 days and 15 / L after 15 days. Example 5 The same operation as in Example 4 was performed except that the dissolved hydrogen concentration was set to 20 μg / L. The oxidation-reduction potential was -230 mV, and the number of bacteria was 100 cells / L after 1 day and 50 cells / L after 3 days.
L, 15 pieces / L after 7 days, and 0 pieces / L after 15 days. Example 6 Example 4 except that the concentration of dissolved hydrogen was changed to 100 μg / L.
The same operation was performed. The oxidation-reduction potential was -350 mV, and the number of bacteria was 100 cells / L after 1 day and 45 cells / L after 3 days.
L, 7 / L after 7 days and 0 / L after 15 days. Example 7 In the same manner as in Example 1, four erlenmeyer flasks were charged with 1 L of ultrapure water having a dissolved oxygen concentration of 5 μg / L and 1,000 bacteria / L each. Oxygen gas and hydrogen gas are blown into these ultrapure water to dissolve dissolved oxygen
μg / L and the dissolved hydrogen concentration was 10 μg / L. The oxidation-reduction potential was -150 mV. The Erlenmeyer flask was sealed with a rubber stopper and stored at room temperature for 1, 3, 7 and 15 days, respectively. After storage for a predetermined number of days, the number of bacteria was measured. The number of bacteria was 800 / L after 1 day and 250 / L after 3 days.
L, 50 / L after 7 days and 50 / L after 15 days. Example 8 The same operation as in Example 7 was performed except that the concentration of dissolved hydrogen was set to 20 μg / L. The oxidation-reduction potential was -200 mV, and the number of bacteria was 750 cells / L after 1 day and 200 cells / L after 3 days.
L, 48 / L after 7 days and 40 / L after 15 days. Example 9 Example 7 except that the concentration of dissolved hydrogen was 100 μg / L.
The same operation was performed. The oxidation-reduction potential was -300 mV, and the number of bacteria was 300 cells / L after 1 day and 120 cells / L after 3 days.
L, 43 / L after 7 days and 40 / L after 15 days. Comparative Example 1 In the same manner as in Example 1, four liter Erlenmeyer flasks were charged with 1 L each of ultrapure water having a dissolved oxygen concentration of 5 μg / L and 1,000 bacteria / L. Oxygen gas and hydrogen gas are blown into these ultrapure water to dissolve dissolved oxygen
000 μg / L and dissolved hydrogen concentration of 10 μg / L. The oxidation-reduction potential was 400 mV. The Erlenmeyer flask was sealed with a rubber stopper and allowed to stand at room temperature for 1 day, 3 days, 7 days and 1 day, respectively.
Stored for 5 days. After storage for a predetermined number of days, the number of bacteria was measured. The number of bacteria was 1,000 / L after 1 day and 80 after 3 days.
0 / L, 700 / L after 7 days, 700 / L after 15 days
Met. Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the dissolved hydrogen concentration was set to 20 μg / L. The oxidation-reduction potential is 380 mV,
The number of bacteria was 1,000 / L after 1 day and 800 / L after 3 days.
L, 700 / L after 7 days and 700 / L after 15 days. Comparative Example 3 Comparative Example 1 except that the concentration of dissolved hydrogen was 100 μg / L.
The same operation was performed. The oxidation-reduction potential was 300 mV, and the number of bacteria was 1,000 / L after 1 day and 800 after 3 days.
Pcs / L, 700 pcs / L after 7 days, and 700 pcs / L after 15 days. Comparative Example 4 In the same manner as in Example 1, four Erlenmeyer flasks were each charged with 1 L of ultrapure water having a dissolved oxygen concentration of 5 μg / L and 1,000 bacteria / L. The oxidation-reduction potential was 300 mV. Without blowing gas into these ultrapure waters, the Erlenmeyer flask was sealed with a rubber stopper and stored at room temperature for 1, 3, 7 and 15 days, respectively. After storage for a predetermined number of days, the number of bacteria was measured. The bacterial count was 1,000 / L after 1 day, 700 / L after 3 days, and 70 after 7 days.
The number was 0 / L, and 700 / L after 15 days. Example 1
Table 1 shows the results of Comparative Example 9 and Comparative Examples 1 to 4.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表に見られるように、溶存酸素濃度が
5,000μg/Lと高い比較例1〜3の超純水及び溶
存酸素濃度が5μg/Lと低いが、水素ガスを溶解して
いない比較例4の超純水は、酸化還元電位が正で300
mV以上であり、15日経過後も、三角フラスコ中の細
菌数は70%程度にしか減少していない。これに対し
て、溶存酸素濃度が5μg/Lであり、水素ガスを溶解
した実施例1〜3の超純水は、酸化還元電位が負で−3
00mV以下であり、三角フラスコ中の細菌は、3日経
過後にはほぼ死滅し、7日経過後には完全に0個/Lに
なっている。溶存酸素濃度が20μg/Lであり、水素
ガスを溶解した実施例4〜6の超純水、溶存酸素濃度が
50μg/Lであり、水素ガスを溶解した実施例7〜9
の超純水も、酸化還元電位は負であり、三角フラスコ中
の細菌は、実施例4〜6の超純水では15日経過後には
ほぼ0個/Lとなり、実施例7〜9の超純水でも15日
経過後には、細菌数は最初の5%以下となっている。こ
れらの結果から、溶存酸素濃度の低い超純水に水素ガス
を溶解することによって、超純水中の細菌数が減少する
ことが確認された。 実施例10 図2に示される超純水製造供給装置テストプラントを用
いて、水素ガスの溶解による抗菌効果を試験した。この
プラントの超純水の水質は、溶存酸素濃度5μg/L以
下、有機体炭素2μg/L以下、比抵抗値18.2MΩ・
cm以上である。また、端末配管の材質はポリフッ化ビニ
リデン(PVDF)であり、超純水循環量は1.5m3
hである。ポンプと紫外線照射装置の間に溶存水素計
[電気化学計器(株)、CLC−171D型]を設置して
超純水の溶存水素濃度を測定し、信号を水素ガス発生器
[ジーエルサイエンス社、HG260]に送って、超純
水の水素ガスの溶解量が10〜20μg/Lとなるよう
に制御した。端末配管システムで超純水をサンプリング
し、JIS K 0550に準じ、ろ過試料量1Lとして
定期的に細菌数を測定した。水素ガスの供給を開始する
以前の超純水中の細菌数は100個/Lであったが、水
素ガスの供給を開始して3日後に20個/L、7日後に
0個/Lとなり、その後も細菌が増殖してくることはな
かった。実施例10の結果を、第2表に示す。
As shown in Table 1, the ultrapure water of Comparative Examples 1 to 3 having a high dissolved oxygen concentration of 5,000 μg / L and the low dissolved oxygen concentration of 5 μg / L, but dissolved hydrogen gas. The ultrapure water of Comparative Example 4 has a positive redox potential of 300
mV or more, and even after 15 days, the number of bacteria in the Erlenmeyer flask has been reduced to only about 70%. On the other hand, the ultrapure water of Examples 1 to 3 in which the dissolved oxygen concentration is 5 μg / L and hydrogen gas is dissolved has a negative oxidation-reduction potential of −3.
The bacterium in the Erlenmeyer flask was almost dead after 3 days, and was completely 0 cells / L after 7 days. Ultrapure water of Examples 4 to 6 in which the dissolved oxygen concentration was 20 μg / L and hydrogen gas was dissolved, and Examples 7 to 9 in which the dissolved oxygen concentration was 50 μg / L and hydrogen gas was dissolved
The ultra-pure water also has a negative oxidation-reduction potential, and the bacteria in the Erlenmeyer flask become almost 0 cells / L after 15 days in the ultra-pure water of Examples 4 to 6, and the bacteria of Examples 7 to 9 After 15 days in pure water, the bacterial count is less than the first 5%. From these results, it was confirmed that the number of bacteria in ultrapure water was reduced by dissolving hydrogen gas in ultrapure water having a low dissolved oxygen concentration. Example 10 The antibacterial effect by dissolving hydrogen gas was tested using the ultrapure water production and supply device test plant shown in FIG. The quality of ultrapure water of this plant is as follows: dissolved oxygen concentration 5 μg / L or less, organic carbon 2 μg / L or less, specific resistance 18.2 MΩ ·
cm or more. The material of the terminal pipe is polyvinylidene fluoride (PVDF), and the circulation amount of ultrapure water is 1.5 m 3 /
h. A dissolved hydrogen meter [Electrochemical Meter Co., Ltd., Model CLC-171D] is installed between the pump and the ultraviolet irradiation device to measure the dissolved hydrogen concentration of ultrapure water, and the signal is converted to a hydrogen gas generator [GL Sciences, HG260] to control the amount of hydrogen gas dissolved in ultrapure water to be 10 to 20 μg / L. Ultrapure water was sampled by a terminal piping system, and the number of bacteria was measured periodically according to JIS K 0550 with a filtered sample volume of 1 L. The number of bacteria in the ultrapure water before starting the supply of hydrogen gas was 100 / L, but it became 20 / L 3 days after the supply of hydrogen gas was started, and became 0 / L after 7 days. Bacteria did not grow thereafter. Table 2 shows the results of Example 10.

【0012】[0012]

【表2】 [Table 2]

【0013】第2表に見られるように、超純水製造供給
装置テストプラントにおいても、本発明の抗菌方法が有
効であり、超純水中の細菌の発生と増殖を完全に抑制し
得ることが確認された。
As can be seen from Table 2, the antibacterial method of the present invention is also effective in a test plant for producing and supplying ultrapure water, and can completely suppress the generation and growth of bacteria in ultrapure water. Was confirmed.

【0014】[0014]

【発明の効果】本発明の超純水製造供給装置の抗菌方法
及び抗菌装置によれば、超純水製造供給装置を停止する
ことなしに、サブシステム及び端末配管系内において殺
菌及び微生物の増殖を抑制することが可能となる。
According to the antibacterial method and the antibacterial device of the ultrapure water production and supply apparatus of the present invention, sterilization and microbial growth in the subsystem and the terminal piping system without stopping the ultrapure water production and supply apparatus. Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、超純水製造供給装置の一例の工程系統
図である。
FIG. 1 is a process flow diagram of an example of an ultrapure water production and supply device.

【図2】図2は、本発明装置の一態様の工程系統図であ
る。
FIG. 2 is a process flow diagram of one embodiment of the apparatus of the present invention.

【図3】図3は、本発明装置の他の態様の工程系統図で
ある。
FIG. 3 is a process flow chart of another embodiment of the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

A サブシステム B 端末配管システム 1 純水タンク 2 ポンプ 3 低圧紫外線(UV)照射装置 4 イオン交換装置 5 限外ろ過(UF)膜分離装置 6A 送り配管 6B 戻り配管 6a〜6n 分岐配管 7A〜7N ユースポイント 8 計器 9 制御器 10 水素ガス供給装置 A Subsystem B Terminal piping system 1 Pure water tank 2 Pump 3 Low pressure ultraviolet (UV) irradiation device 4 Ion exchange device 5 Ultrafiltration (UF) membrane separation device 6A Send piping 6B Return piping 6a-6n Branch piping 7A-7N Use Point 8 Instrument 9 Controller 10 Hydrogen gas supply device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C058 AA20 BB07 CC02 CC04 DD01 DD03 DD07 JJ06 JJ07 KK02 KK46 4D037 AA03 AB03 BA18 CA03 CA15 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C058 AA20 BB07 CC02 CC04 DD01 DD03 DD07 JJ06 JJ07 KK02 KK46 4D037 AA03 AB03 BA18 CA03 CA15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超純水製造供給装置における水経路に、溶
存酸素濃度が50μg/L以下であり、水素ガスを溶解
した、酸化還元電位が負の値を示す超純水を通水するこ
とを特徴とする超純水製造供給装置の抗菌方法。
An ultrapure water having a dissolved oxygen concentration of 50 μg / L or less, a hydrogen gas dissolved therein, and a negative oxidation-reduction potential having a negative value is passed through a water path in an ultrapure water production and supply device. An antibacterial method for an ultrapure water production and supply device, comprising:
【請求項2】水素ガスを、溶存水素濃度が1〜100μ
g/Lとなるように溶解する請求項1記載の超純水製造
供給装置の抗菌方法。
2. A hydrogen gas having a dissolved hydrogen concentration of 1 to 100 μm.
The antibacterial method of the ultrapure water production and supply apparatus according to claim 1, wherein the antibacterial substance is dissolved so as to be g / L.
【請求項3】超純水製造装置、超純水製造装置からユー
スポイントへの超純水送り配管及びユースポイントから
の超純水戻り配管の任意の位置の水経路に、水素ガス供
給装置を接続してなることを特徴とする超純水製造供給
装置の抗菌装置。
3. A hydrogen gas supply device is provided in a water path at an arbitrary position of an ultrapure water production apparatus, an ultrapure water feed pipe from the ultrapure water production apparatus to a use point, and an ultrapure water return pipe from the use point. An antibacterial device for an ultrapure water production and supply device, wherein the device is connected.
【請求項4】水素ガス供給装置の接続位置が、超純水製
造装置のサブシステムに設けられた紫外線照射装置の後
段である請求項3記載の超純水製造供給装置の抗菌装
置。
4. The antibacterial device of the ultrapure water production and supply device according to claim 3, wherein the connection position of the hydrogen gas supply device is located at a stage subsequent to the ultraviolet irradiation device provided in the subsystem of the ultrapure water production device.
【請求項5】水経路に、酸化還元電位計又は溶存水素計
が設けられてなる請求項3記載の超純水製造供給装置の
抗菌装置。
5. The antibacterial device according to claim 3, wherein an oxidation-reduction potentiometer or a dissolved hydrogen meter is provided in the water path.
JP21921599A 1999-08-02 1999-08-02 Antibacterial method and antibacterial device for ultrapure water production and supply device Expired - Fee Related JP4565364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21921599A JP4565364B2 (en) 1999-08-02 1999-08-02 Antibacterial method and antibacterial device for ultrapure water production and supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21921599A JP4565364B2 (en) 1999-08-02 1999-08-02 Antibacterial method and antibacterial device for ultrapure water production and supply device

Publications (2)

Publication Number Publication Date
JP2001038364A true JP2001038364A (en) 2001-02-13
JP4565364B2 JP4565364B2 (en) 2010-10-20

Family

ID=16732015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21921599A Expired - Fee Related JP4565364B2 (en) 1999-08-02 1999-08-02 Antibacterial method and antibacterial device for ultrapure water production and supply device

Country Status (1)

Country Link
JP (1) JP4565364B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245440A (en) * 2005-03-04 2006-09-14 Tdk Corp Method for storing substrate and method for manufacturing coil component
WO2015022874A1 (en) * 2013-08-13 2015-02-19 株式会社シャレックス Hydrogen-containing antimicrobial agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165889A (en) * 1989-11-24 1991-07-17 Ebara Infilco Co Ltd Method for removing residual germicide
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JPH0699197A (en) * 1991-05-17 1994-04-12 Ebara Res Co Ltd Method and equipment for purifying pure water or ultrapure water
JPH06121990A (en) * 1992-10-12 1994-05-06 Japan Organo Co Ltd Removing method for dissolved oxygen in water
JPH0716581A (en) * 1993-06-30 1995-01-20 Permelec Electrode Ltd Method for sterilizing ultrapure water with ozone and device therefor
JPH1064867A (en) * 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
JPH10180243A (en) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd Ultrapure water production device
JPH1157417A (en) * 1997-08-20 1999-03-02 Asahi Chem Ind Co Ltd Manufacturing of ultrapure water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165889A (en) * 1989-11-24 1991-07-17 Ebara Infilco Co Ltd Method for removing residual germicide
JPH0699197A (en) * 1991-05-17 1994-04-12 Ebara Res Co Ltd Method and equipment for purifying pure water or ultrapure water
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JPH06121990A (en) * 1992-10-12 1994-05-06 Japan Organo Co Ltd Removing method for dissolved oxygen in water
JPH0716581A (en) * 1993-06-30 1995-01-20 Permelec Electrode Ltd Method for sterilizing ultrapure water with ozone and device therefor
JPH1064867A (en) * 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
JPH10180243A (en) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd Ultrapure water production device
JPH1157417A (en) * 1997-08-20 1999-03-02 Asahi Chem Ind Co Ltd Manufacturing of ultrapure water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245440A (en) * 2005-03-04 2006-09-14 Tdk Corp Method for storing substrate and method for manufacturing coil component
WO2015022874A1 (en) * 2013-08-13 2015-02-19 株式会社シャレックス Hydrogen-containing antimicrobial agent
GB2531207A (en) * 2013-08-13 2016-04-13 Share-X Co Ltd Hydrogen-containing antimicrobial agent
JPWO2015022874A1 (en) * 2013-08-13 2017-03-02 株式会社シャレックス Hydrogen-containing antimicrobial agent
GB2531207B (en) * 2013-08-13 2020-04-01 Share X Co Ltd Hydrogen-containing antimicrobial agent

Also Published As

Publication number Publication date
JP4565364B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US4836929A (en) Process for breaking down organic substances and/or microbes in pretreated feed water for high-purity water recirculation systems
US9309138B2 (en) Fresh water production method
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JP3919259B2 (en) Ultrapure water production equipment
US7803272B2 (en) Water treatment system
KR101809769B1 (en) Water treatment method and ultrapure water production method
TWI568683B (en) Water treatment method and method for producing ultrapure water
JP5914964B2 (en) Ultrapure water production method
JP5066487B2 (en) Method and apparatus for treating hydrogen peroxide-containing organic water
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JPS6336890A (en) Apparatus for producing high-purity water
JP2001038364A (en) Sterilization method and device for ultrapure water production and feed device
JP2008259967A (en) Method and apparatus for modifying separation membrane, modified separation membrane and method and device for operating separation membrane
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP2004346390A (en) Method and device for generating gas by electrolysis
KR20180115692A (en) Cleaning method of ultrapure water production system
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP3148849B2 (en) Seawater desalination method by reverse osmosis
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JP3433601B2 (en) Wastewater recovery and purification equipment
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JP3353810B2 (en) Reverse osmosis seawater desalination system
JP2008264630A (en) Water treatment apparatus for making ultrapure water and water treatment system for making ultrapure water
JPWO2016136957A1 (en) Organic substance-containing water treatment method and organic substance-containing water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees