Nothing Special   »   [go: up one dir, main page]

JP2001020003A - Sliding material - Google Patents

Sliding material

Info

Publication number
JP2001020003A
JP2001020003A JP11195713A JP19571399A JP2001020003A JP 2001020003 A JP2001020003 A JP 2001020003A JP 11195713 A JP11195713 A JP 11195713A JP 19571399 A JP19571399 A JP 19571399A JP 2001020003 A JP2001020003 A JP 2001020003A
Authority
JP
Japan
Prior art keywords
sliding
sliding material
treatment
sintered metal
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11195713A
Other languages
Japanese (ja)
Inventor
Akira Kani
明 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP11195713A priority Critical patent/JP2001020003A/en
Publication of JP2001020003A publication Critical patent/JP2001020003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive sliding material excellent in lubricity, wear resistance and mechanical strength. SOLUTION: The powder of a raw metal selected from stainless steel, heat resistant steel, copper, copper alloy, aluminum, aluminum alloy, etc., is sintered by powder metallurgy to produce an annular sintered metal 11 having a lot of dispersed pores 11a. A lot of recessed parts 10b, each being a part of an exposed one among the dispersed pores 11a, are present at random at the end face 10a which is to be a sliding surface of the sintered metal 11, and a hardened layer 12 is formed by a hardening treatment method selected from nitriding treatment, carbonization treatment, and ion implantation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機器の回転軸周で
流体を密封するメカニカルシール等において回転軸側の
密封要素もしくはこれに摺接する静止側の密封要素とし
て用いられる摺動材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member used as a sealing element on a rotating shaft side or a stationary sealing element sliding on the rotating shaft in a mechanical seal or the like for sealing a fluid around a rotating shaft of an apparatus. is there.

【0002】[0002]

【従来の技術】メカニカルシールは、回転軸側に設けら
れてこの回転軸と共に回転する摺動材と、非回転のハウ
ジング側に設けられた静止側の摺動材とが軸心と直交す
る端面同士で密接摺動することにより、軸周における流
体の漏洩を阻止するものであり、その摺動材には、優れ
た耐摩耗性や摺動特性が要求される。このため、摺動材
の材料としては、耐摩耗性に優れた炭化珪素、アルミナ
等の硬質材あるいは自己潤滑性に優れたカーボン等が用
いられる。
2. Description of the Related Art A mechanical seal is an end face in which a sliding member provided on a rotating shaft side and rotating with the rotating shaft and a stationary sliding member provided on a non-rotating housing side are orthogonal to the axis. The close sliding between the members prevents leakage of fluid around the shaft, and the sliding material is required to have excellent wear resistance and sliding characteristics. For this reason, as a material of the sliding material, a hard material such as silicon carbide or alumina having excellent wear resistance, or carbon having excellent self-lubricating properties is used.

【0003】等温非圧縮性流体による潤滑下で平面同士
を摺動させた場合、前記平面が極めて平滑であれば、摺
動面間には理論的には定常状態において潤滑液膜は形成
されないが、実際のメカニカルシールでは、摺動面上に
生じた微小なうねりや、表面粗さ等の要因によって、潤
滑液膜が形成される。しかし、摺動中は、前記うねりや
表面粗さは摩擦熱等によって変化しており、この変化に
伴う潤滑液膜の厚さの変動によって、摺動面における摩
擦係数や発熱量も変動するため、摺動材をPV値等の著
しく高い過酷な条件で使用すると、摩擦係数の平均値や
最大値及び摺動発熱量が増大して、摺動面の微小な変質
や破壊等が進展する。
When sliding between flat surfaces under lubrication with an isothermal incompressible fluid, if the flat surfaces are extremely smooth, a lubricating liquid film is theoretically not formed between the sliding surfaces in a steady state. In an actual mechanical seal, a lubricating liquid film is formed due to factors such as minute undulations generated on the sliding surface and surface roughness. However, during sliding, the waviness and surface roughness change due to frictional heat and the like, and a change in the thickness of the lubricating liquid film accompanying this change causes a change in the coefficient of friction and the amount of heat generated on the sliding surface. When the sliding material is used under severe conditions, such as a PV value, which is extremely high, the average value and the maximum value of the friction coefficient and the amount of heat generated by the sliding increase, so that minute deterioration or breakage of the sliding surface progresses.

【0004】例えば、炭化珪素等の硬質摺動材は、自己
潤滑性を有するカーボンからなる摺動材と組み合わせて
使用した場合に、摩擦熱によってカーボン側の摺動面に
ブリスタと呼ばれる火膨れによる虫食い状の異常損耗が
しばしば発生することが知られている。このような摺動
面の破壊は、摺動面間の液体潤滑膜が完全に消滅したた
めに発生するものである。
For example, when a hard sliding material such as silicon carbide is used in combination with a sliding material made of carbon having self-lubricating properties, frictional heat causes a blister called blister on a sliding surface on the carbon side. It is known that worm-like abnormal wear often occurs. Such destruction of the sliding surface occurs because the liquid lubricating film between the sliding surfaces has completely disappeared.

【0005】そこで近年は、摺動特性の向上を図るため
に、所定の割合で多数の気孔を有する気孔分散摺動材が
開発されている。その典型的な例としては、例えば炭化
珪素焼結体からなる気孔分散摺動材が、特公平5−69
066号公報等に開示されている。この種の気孔分散摺
動材によれば、上述した摺動面でのブリスタ等の発生を
有効に防止することができる。これは、摺動面に露出し
た気孔による多数の凹部が潤滑液溜りとして機能するこ
とによって、潤滑液膜が消滅しやすい過酷な摺動条件で
も潤滑液膜の安定化が図られ、摺動面の潤滑及び冷却が
促されるからである。
Therefore, in recent years, a pore-dispersed sliding material having a large number of pores at a predetermined ratio has been developed in order to improve the sliding characteristics. As a typical example, a pore-dispersion sliding material made of, for example, a silicon carbide sintered body is disclosed in Japanese Patent Publication No. 5-69.
066, etc. According to this kind of pore-dispersed sliding material, it is possible to effectively prevent the occurrence of blisters and the like on the sliding surface described above. This is because the lubricating liquid film is stabilized even under severe sliding conditions in which the lubricating liquid film tends to disappear, because a large number of concave portions due to pores exposed on the sliding surface function as a lubricating liquid pool. This is because lubrication and cooling are promoted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
技術によれば、炭化珪素焼結体は高価であり、しかも、
炭化珪素の焼結過程でその内部に気孔を形成するために
焼結材料中に添加する合成樹脂粉末が、加熱によって分
解されるので、焼結炉が汚染されるといった問題が指摘
される。また、炭化珪素焼結体は破壊靭性値が小さく、
すなわち脆性が高いので衝撃によってクラックを生じや
すく、内部に気孔を形成することによってますます強度
低下を来す。
However, according to the above prior art, the silicon carbide sintered body is expensive, and moreover,
During the sintering process of silicon carbide, the synthetic resin powder to be added to the sintering material to form pores therein is decomposed by heating, which causes a problem that the sintering furnace is contaminated. Also, the silicon carbide sintered body has a small fracture toughness value,
That is, because of its high brittleness, cracks are easily generated by impact, and the strength is further reduced by forming pores inside.

【0007】なお、上述の問題は炭化珪素焼結体からな
る摺動材について述べているが、炭化チタン、窒化チタ
ン、炭窒化チタン、窒化珪素等の焼結体についても同様
の問題が指摘される。
[0007] Although the above-mentioned problem has been described with respect to a sliding material made of a silicon carbide sintered body, a similar problem has been pointed out with respect to a sintered body of titanium carbide, titanium nitride, titanium carbonitride, silicon nitride and the like. You.

【0008】本発明は、上記のような問題に鑑みてなさ
れたもので、その主な技術的課題とするところは、潤滑
性、耐摩耗性及び機械的強度に優れると共に安価な摺動
材を提供することにある。
The present invention has been made in view of the above problems, and its main technical problem is to provide an inexpensive sliding material having excellent lubricity, abrasion resistance and mechanical strength. To provide.

【0009】[0009]

【課題を解決するための手段】上述した技術的課題を有
効に解決するため、本発明に係る摺動材は、内部に多数
の気孔が分散して存在する焼結金属からなり、摺動面と
なる端面の表層部に硬化処理による硬化層を形成したも
のである。すなわち、摺動面が硬化層からなることによ
って、耐摩耗性の向上を図ると共に、前記摺動面に現れ
た気孔による凹部が潤滑液溜まりとして機能することに
よって液体潤滑性の向上を図り、焼結金属からなるもの
とすることによって破壊靭性値を大きくしている。
In order to effectively solve the above-mentioned technical problems, a sliding material according to the present invention is made of a sintered metal having a large number of pores dispersed therein and has a sliding surface. A hardened layer formed by a hardening process is formed on the surface layer portion of the end face to be formed. That is, the sliding surface is formed of a hardened layer, thereby improving the wear resistance, and the concave portion formed by the pores appearing on the sliding surface functions as a lubricating liquid reservoir, thereby improving the liquid lubricity. The fracture toughness value is increased by using a binder metal.

【0010】焼結金属としては、粉末冶金により焼結し
たステンレス鋼、耐熱鋼、銅、銅合金、アルミニウム、
アルミニウム合金から選択される。粉末冶金による焼結
過程では、金属粒子同士が固体のまま結合されることに
よって必然的に分散気孔が形成されるので、予め合成樹
脂粉末等の混合によって意図的に気孔形成操作を行う必
要がなく、このため熱分解した合成樹脂による焼結炉の
汚染を防止することができる。また、前記粉末冶金法に
より形成される分散気孔は、一般的には平均気孔径が5
〜100μmで、気孔率は3〜20%となるが、摺動材
の使用条件等を考慮して決められる。
As the sintered metal, stainless steel, heat-resistant steel, copper, copper alloy, aluminum,
Selected from aluminum alloys. In the sintering process by powder metallurgy, since the dispersed pores are inevitably formed by bonding the metal particles together in a solid state, there is no need to intentionally perform a pore forming operation by previously mixing a synthetic resin powder or the like. Thus, contamination of the sintering furnace by the thermally decomposed synthetic resin can be prevented. The dispersed pores formed by the powder metallurgy generally have an average pore diameter of 5
Although the porosity is 3 to 20% at 100 μm, it is determined in consideration of the usage conditions of the sliding material.

【0011】硬化層を形成するための硬化処理は、窒化
処理、炭化処理及びイオン注入処理方法から、焼結金属
の種類、摺動条件や密封対象流体の特性、温度等を考慮
して選択される。また、その層厚は、摺動条件、目標寿
命等を考慮して決められるが、一般的には数μm〜数十
μmとする。このようにして形成された硬化層は、別物
質からなる硬質の層をコーティングした場合のような剥
離のおそれがなく、しかも硬化処理による元素分布が層
厚方向へ連続的に変化する一種の傾斜機能材となってい
るため、耐熱衝撃にも優れたものとなる。
The hardening treatment for forming the hardened layer is selected from nitriding, carbonization and ion implantation methods in consideration of the type of sintered metal, sliding conditions, characteristics of the fluid to be sealed, temperature, and the like. You. The thickness of the layer is determined in consideration of sliding conditions, target life, and the like, but is generally several μm to several tens μm. The hardened layer formed in this way is free from the risk of peeling off when a hard layer made of another material is coated, and has a kind of gradient in which the element distribution due to the hardening process changes continuously in the layer thickness direction. Because it is a functional material, it also has excellent thermal shock resistance.

【0012】焼結金属の表面では、気孔は凹部として現
れる。摺動面に現れた多数の凹部は、この摺動面と相手
材の摺動面との間に流体力学的な潤滑液膜として介入す
る液体の一部を保持して、潤滑液膜を安定化させる機能
を有する。
On the surface of the sintered metal, the pores appear as depressions. A large number of recesses appearing on the sliding surface hold a part of the liquid that intervenes as a hydrodynamic lubricating liquid film between this sliding surface and the sliding surface of the mating material to stabilize the lubricating liquid film. Has the function of

【0013】[0013]

【発明の実施の形態】図1は、本発明に係る摺動材の一
実施形態を示す摺動面付近の概略的な拡大断面図であ
る。この摺動材10は、メカニカルシールの摺動環とし
ての形状を呈する焼結金属11からなり、相手材との摺
動面となる端面10aの表層部に、硬化層12を形成し
たもので、前記端面10aには多数の凹部10bがラン
ダムに形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic enlarged sectional view near a sliding surface showing an embodiment of a sliding member according to the present invention. The sliding member 10 is made of a sintered metal 11 having a shape as a sliding ring of a mechanical seal, and has a hardened layer 12 formed on a surface layer of an end surface 10a serving as a sliding surface with a mating member. A large number of concave portions 10b are formed at random on the end face 10a.

【0014】図2は、摺動材10の製造工程を示す流れ
図である。すなわち、まずステップS1においては、ス
テンレス鋼、耐熱鋼、銅、銅合金、アルミニウム、アル
ミニウム合金等から選択された原料金属粉末を混合し、
次のステップS2において、前記原料金属粉末を、圧縮
成形金型装置の円環状の成形空間内に充填し、所定の圧
力で圧縮成形する。これによって、メカニカルシールの
摺動環の形状を呈する粉末成形体が予備成形される。
FIG. 2 is a flowchart showing a manufacturing process of the sliding member 10. That is, first, in step S1, a raw metal powder selected from stainless steel, heat-resistant steel, copper, copper alloy, aluminum, aluminum alloy and the like is mixed,
In the next step S2, the raw metal powder is filled into an annular molding space of a compression molding die apparatus, and compression molded at a predetermined pressure. Thereby, a powder compact having the shape of the sliding ring of the mechanical seal is preformed.

【0015】次にステップS3においては、圧縮成形金
型装置から取り出した上記粉末成形体を、焼結炉により
原料金属の融解温度より低い所定の焼結温度で所定の時
間加熱することによって、環状の焼結金属11を焼結す
る。そしてステップS4においては、焼結された環状焼
結金属11の寸法精度を高めると共に、金属粒子の結合
強度を高めるために、再圧縮成形を行い、更にステップ
S5においては、摺動面となる端面10aを研磨等によ
って平坦に機械加工する。先に説明したように、金属粉
末の焼結により得られる焼結金属11は、内部に多数の
分散気孔11aを有する多孔質の焼結金属であるため、
機械加工された端面10aには、前記分散気孔11aの
一部が露出することによって、多数の凹部10bがラン
ダムに存在している。
Next, in step S3, the powder compact taken out of the compression molding die apparatus is heated in a sintering furnace at a predetermined sintering temperature lower than the melting temperature of the raw metal for a predetermined time, thereby forming an annular shape. Is sintered. In step S4, recompression molding is performed to increase the dimensional accuracy of the sintered annular sintered metal 11 and to increase the bonding strength of the metal particles. In step S5, the end face serving as a sliding surface is formed. 10a is machined flat by polishing or the like. As described above, since the sintered metal 11 obtained by sintering the metal powder is a porous sintered metal having a large number of dispersed pores 11a therein,
A large number of recesses 10b are randomly present on the machined end face 10a by exposing a part of the dispersed pores 11a.

【0016】次にステップS6においては、機械加工さ
れた焼結金属11の端面表層部に、窒化処理、炭化処理
及びイオン注入処理から選択された方法で硬化層12を
形成する。図3は、窒化処理により焼結金属の表層部に
硬化層を形成した場合の、表面からの深さと窒素濃度及
び硬度との関係を示すものである。本発明でいう「硬化
層」とは、焼結金属本来の硬度に対してある程度の硬化
が認められる範囲(図中aで示される領域)のことであ
る。
Next, in step S6, a hardened layer 12 is formed on the end surface of the machined sintered metal 11 by a method selected from nitriding, carbonizing and ion implantation. FIG. 3 shows the relationship between the depth from the surface, the nitrogen concentration and the hardness when a hardened layer is formed on the surface layer of the sintered metal by nitriding. The “hardened layer” in the present invention is a range (a region indicated by a in the figure) in which a certain degree of hardening is recognized with respect to the original hardness of the sintered metal.

【0017】[0017]

【実施例】図4は、SUS316のステンレス鋼粉末を
粉末冶金法で焼結することによって、平均気孔径50μ
m、気孔率8%で気孔を有する気孔分散焼結金属からな
る環状体を成形し、その摺動面となる端面表層部に、窒
化処理によって硬化層を形成した摺動材について、ビッ
カース硬度Hvを実際に測定した結果を、比較例とし
て、前記窒化処理前の前記気孔分散焼結金属について測
定した結果と併せて示すものである。
FIG. 4 is a diagram showing an example in which SUS316 stainless steel powder is sintered by powder metallurgy to obtain an average pore diameter of 50 μm.
m, an annular body made of a pore-dispersed sintered metal having a porosity of 8% and having a Vickers hardness Hv of a sliding material having a hardened layer formed by nitriding on the surface of an end surface serving as a sliding surface. Is shown together with the result of measurement of the pore-dispersed sintered metal before the nitriding treatment as a comparative example.

【0018】この測定結果から明らかなように、比較例
では、表層部に、切削や研磨による加工硬化と考えられ
る若干の硬度上昇が認められるが、顕著ではない。これ
に対し、窒化処理後のものでは、表層部に著しい硬度上
昇が認められる。
As is apparent from the measurement results, in the comparative example, a slight increase in hardness, which is considered to be work hardening caused by cutting or polishing, is recognized in the surface layer portion, but is not significant. On the other hand, in the case after the nitriding treatment, a remarkable increase in hardness is observed in the surface layer.

【0019】[摺動試験1]上記実施例による摺動材に
ついて、メカニカルシール試験機により摺動試験を実施
した。相手摺動材は高強度カーボン材からなるものであ
って、意図的に凹部を設けていない、平坦な摺動面を形
成したものを用い、それ以外の条件は下記のとおりとし
た。 試験条件 (1) 密封対象液 高粘度油 (2) 摺動速度 15m/s (3) 摺動面の面圧 0.35MPa (4) 密封対象液の温度 −10℃ (5) 摺動時間 2時間
[Sliding Test 1] The sliding material of the above embodiment was subjected to a sliding test using a mechanical seal tester. The mating sliding member was made of a high-strength carbon material and had a flat sliding surface without intentionally formed concave portions. Other conditions were as follows. Test conditions (1) Liquid to be sealed High viscosity oil (2) Sliding speed 15m / s (3) Surface pressure of sliding surface 0.35MPa (4) Temperature of liquid to be sealed -10 ° C (5) Sliding time 2 time

【0020】2時間の摺動後、相手材のカーボン摺動面
を観察したところ、カーボン損傷の形態であるブリスタ
の発生は皆無であった。したがってこの実施例の摺動材
によれば優れた潤滑性が得られることが確認された。
After sliding for 2 hours, the carbon sliding surface of the mating material was observed. As a result, no blisters, which are forms of carbon damage, were generated. Therefore, it was confirmed that the sliding material according to this example provided excellent lubricity.

【0021】[摺動試験2]次に、上記実施例による摺
動材及び窒化処理を施さない、気孔分散焼結金属からな
る比較例の摺動材について、メカニカルシール試験機に
より摺動試験を実施した。回転側に配置した相手摺動材
は高強度カーボン材からなるものであって、意図的に凹
部を設けていない、平坦な摺動面を形成したものを用
い、それ以外の条件は下記のとおりとした。 試験条件 (1) 密封対象液 水 (2) 摺動速度 4.5m/s (3) 密封圧力 0.5MPa (4) 密封対象液の温度 80℃ (5) 摺動時間 100時間 (6) 試験前の摺動面粗さ 実施例及び比較例共、凹部以外で0.1μm 相手摺動材(カーボン) 0.2μm
[Sliding Test 2] Next, a sliding test was performed by a mechanical seal tester on the sliding material according to the above embodiment and a sliding material of a pore-dispersed sintered metal not subjected to nitriding treatment. Carried out. The mating sliding material arranged on the rotating side is made of a high-strength carbon material and has no intentionally formed concave portion, and has a flat sliding surface, and other conditions are as follows. And Test conditions (1) Liquid to be sealed Water (2) Sliding speed 4.5m / s (3) Sealing pressure 0.5MPa (4) Temperature of liquid to be sealed 80 ° C (5) Sliding time 100 hours (6) Test Previous sliding surface roughness In both Examples and Comparative Examples, 0.1 μm except for the concave portion. Opposite sliding material (carbon) 0.2 μm

【0022】上記摺動試験によれば、窒化処理しない比
較例の摺動材の場合は、試験開始後40分を経過した時
点から密封対象液(水)の漏洩が認められ、100時間
までの総漏洩量は25ccに達した。また、比較例の摺
動材における摺動面の摩耗量は14μm、面粗さは1.
2μm、相手摺動材の摺動面摩耗量は21μm、面粗さ
は1.8μmであった。
According to the above-mentioned sliding test, in the case of the sliding material of the comparative example not subjected to nitriding treatment, leakage of the liquid to be sealed (water) was recognized from 40 minutes after the start of the test, and up to 100 hours. Total leakage reached 25cc. In addition, the wear amount of the sliding surface of the sliding material of the comparative example was 14 μm, and the surface roughness was 1.
The sliding surface wear amount of the mating sliding material was 21 μm, and the surface roughness was 1.8 μm.

【0023】これに対し、実施例の摺動材の場合は、試
験終了まで全く漏洩の発生が認められなかった。また、
実施例の摺動材における摺動面の摩耗量は0.2μm、
面粗さは0.3μm、相手摺動材の摺動面摩耗量は5μ
m、面粗さは0.5μmであった。すなわち、窒化処理
による硬化層を形成しない気孔分散焼結金属からなる比
較例の摺動材を用いた場合と比較して、摩耗量及び面荒
れが著しく少なく、しかも優れた密封性能を実現できる
ことが確認された。
On the other hand, in the case of the sliding material of the embodiment, no leakage was observed until the end of the test. Also,
The wear amount of the sliding surface in the sliding material of the example is 0.2 μm,
Surface roughness is 0.3μm, sliding surface wear of mating sliding material is 5μ
m, and the surface roughness was 0.5 μm. That is, as compared with the case of using the sliding material of the comparative example made of a pore-dispersed sintered metal that does not form a hardened layer by nitriding, the amount of wear and surface roughness is significantly reduced, and excellent sealing performance can be realized. confirmed.

【0024】[0024]

【発明の効果】本発明の摺動材によると、摺動面に形成
された凹部によって潤滑液膜の厚さ及び密封対象液の漏
洩量の適切な制御機能をもたせ、摺動面表層部に硬化層
を形成したことによって耐摩耗性に優れた摺動材とな
る。また母材が粉末冶金による焼結金属からなるため、
セラミックスで製作した場合に比較して破壊靭性値が高
まる。
According to the sliding material of the present invention, the thickness of the lubricating liquid film and the amount of leakage of the liquid to be sealed can be appropriately controlled by the concave portion formed on the sliding surface, and the surface of the sliding surface can be provided. The formation of the hardened layer results in a sliding material having excellent wear resistance. Also, since the base material is made of sintered metal by powder metallurgy,
The fracture toughness value is higher than when made of ceramics.

【0025】また、この摺動材の表面には焼結過程で形
成された分散気孔による多数の凹部が存在するため、摺
動面に凹部を形成するための加工を行う必要がない。そ
して前記気孔は、焼結過程で必然的に形成されるもので
あり、原料金属粉末に気孔形成のための合成樹脂粉末を
添加する必要がない。しかも金属粉末材料自体がセラミ
ックス材料よりも安価であり、したがって原料費及び加
工費が低減されて安価な製品を提供することができ、し
かも焼結炉の汚染を来さない。
Further, since a large number of concave portions due to dispersed pores formed in the sintering process are present on the surface of the sliding material, it is not necessary to perform processing for forming the concave portions on the sliding surface. The pores are inevitably formed during the sintering process, and there is no need to add synthetic resin powder for forming pores to the raw metal powder. Moreover, the metal powder material itself is cheaper than the ceramic material, so that the raw material cost and the processing cost can be reduced to provide an inexpensive product, and the sintering furnace is not contaminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る摺動材の摺動面付近の概略的な拡
大断面斜視図である。
FIG. 1 is a schematic enlarged cross-sectional perspective view of the vicinity of a sliding surface of a sliding material according to the present invention.

【図2】上記摺動材の製造工程を示す流れ図である。FIG. 2 is a flowchart showing a manufacturing process of the sliding material.

【図3】本発明における硬化層の物性の例を示す説明図
である。
FIG. 3 is an explanatory view showing an example of physical properties of a cured layer in the present invention.

【図4】実施例及び比較例の摺動材についてビッカース
硬度を測定した結果を示す説明図である。
FIG. 4 is an explanatory diagram showing the results of measuring Vickers hardness of the sliding materials of the example and the comparative example.

【符号の説明】[Explanation of symbols]

10 摺動材 10a 摺動面となる端面 10b 凹部 11 焼結金属 11a 気孔 12 硬化層 DESCRIPTION OF SYMBOLS 10 Sliding material 10a End face used as a sliding surface 10b Depression 11 Sintered metal 11a Pores 12 Hardened layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部に多数の気孔が分散して存在する焼
結金属からなり、摺動面となる端面の表層部にに硬化処
理による硬化層を形成したことを特徴とする摺動材。
1. A sliding material comprising a sintered metal having a large number of pores dispersed therein and having a hardened layer formed by a hardening treatment on a surface layer of an end surface serving as a sliding surface.
【請求項2】 請求項1に記載された焼結金属が、粉末
冶金により焼結したステンレス鋼、耐熱鋼、銅、銅合
金、アルミニウム、アルミニウム合金から選択されるこ
とを特徴とする摺動材。
2. A sliding material, wherein the sintered metal according to claim 1 is selected from stainless steel, heat resistant steel, copper, copper alloy, aluminum, and aluminum alloy sintered by powder metallurgy. .
【請求項3】 請求項1に記載された硬化処理が、窒化
処理、炭化処理、イオン注入処理から選択されることを
特徴とする摺動材。
3. The sliding material according to claim 1, wherein the hardening treatment is selected from nitriding treatment, carbonizing treatment, and ion implantation treatment.
JP11195713A 1999-07-09 1999-07-09 Sliding material Pending JP2001020003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195713A JP2001020003A (en) 1999-07-09 1999-07-09 Sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195713A JP2001020003A (en) 1999-07-09 1999-07-09 Sliding material

Publications (1)

Publication Number Publication Date
JP2001020003A true JP2001020003A (en) 2001-01-23

Family

ID=16345747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195713A Pending JP2001020003A (en) 1999-07-09 1999-07-09 Sliding material

Country Status (1)

Country Link
JP (1) JP2001020003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032059A (en) * 2001-12-12 2010-02-12 Ntn Corp High precision sliding bearing
WO2013133381A1 (en) * 2012-03-07 2013-09-12 Ntn株式会社 Sintered bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032059A (en) * 2001-12-12 2010-02-12 Ntn Corp High precision sliding bearing
WO2013133381A1 (en) * 2012-03-07 2013-09-12 Ntn株式会社 Sintered bearing
JP2013213580A (en) * 2012-03-07 2013-10-17 Ntn Corp Sintered bearing
US9249830B2 (en) 2012-03-07 2016-02-02 Ntn Corporation Sintered bearing
US9441670B2 (en) 2012-03-07 2016-09-13 Ntn Corporation Sintered bearing
US9939015B2 (en) 2012-03-07 2018-04-10 Ntn Corporation Sintered bearing

Similar Documents

Publication Publication Date Title
US6338906B1 (en) Metal-infiltrated ceramic seal
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
JP3291552B2 (en) Seal or bearing
US5108491A (en) Rolling bearing composition
JP2000170768A (en) Sliding member
KR100659940B1 (en) Oil-impregnated sintered sliding bearing
JP4761375B2 (en) Piston ring for internal combustion engine
JP2001020003A (en) Sliding material
JPS62270481A (en) Ceramics for sliding material
KR20030074648A (en) Rolling bearing comprising a powder metallurgical component
JP4141778B2 (en) Sliding parts and manufacturing method thereof
US6223437B1 (en) Method for fabricating a friction bearing, and friction bearing
JP5024788B2 (en) Sliding device, sliding member and manufacturing method thereof
JP3513273B2 (en) Gas bearing unit
JP4412466B2 (en) Hydrodynamic bearing device and processing method thereof
JP2003214430A (en) Sintered sliding bearing
JP2007064346A (en) Pressure ring and its manufacturing method
JP2744856B2 (en) Titanium boride composite silicon carbide sintered body for mechanical seal and mechanical seal
JP2002338368A (en) Silicon carbide sintered parts, mechanical seal using the same and its manufacturing method
JP5550031B2 (en) Manufacturing method of sliding member
JPH0712763Y2 (en) Gas seal
JP2002013646A (en) Sealed sliding ring and mechanical seal using the same
JP2543093B2 (en) Sliding parts for seals
JP2003042305A (en) Sliding component, mechanical seal using the sliding component, and manufacturing method therefor
JPS6385073A (en) Silicon carbide base sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081112