Nothing Special   »   [go: up one dir, main page]

JP2001009246A - Immersion type flat membrane filtering device - Google Patents

Immersion type flat membrane filtering device

Info

Publication number
JP2001009246A
JP2001009246A JP11179554A JP17955499A JP2001009246A JP 2001009246 A JP2001009246 A JP 2001009246A JP 11179554 A JP11179554 A JP 11179554A JP 17955499 A JP17955499 A JP 17955499A JP 2001009246 A JP2001009246 A JP 2001009246A
Authority
JP
Japan
Prior art keywords
membrane
wall
membrane modules
treated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11179554A
Other languages
Japanese (ja)
Other versions
JP3617378B2 (en
Inventor
Hiroki Ando
尋樹 安藤
Kiyokazu Takemura
清和 武村
Yutaka Okuno
裕 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP17955499A priority Critical patent/JP3617378B2/en
Publication of JP2001009246A publication Critical patent/JP2001009246A/en
Application granted granted Critical
Publication of JP3617378B2 publication Critical patent/JP3617378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to effectively suppress the closure of various membrane modules and further to easily each chemical liquid at a low cost. SOLUTION: This device is disposed with the many membrane modules 16, 16,... stored in the water 14 to be treated in a flat membrane tank 12 in such a manner that the spacings therebetween are larger by every two rows. The membrane modules are enclosed dividedly by two row each by air diffusion induction walls 188. Openings are formed in the lower parts of the air diffusion induction walls 188 and communicating paths of the water 14 to be treated are formed in the upper parts thereof. Swirling flow passages of the water 14 to be treated are sufficiently assured for the respective membrane modules 16. The air diffusion induction walls 188 are so constituted that the openings are freely opened and closed and that the communicating paths can be shut off. Independent washing tanks 86 may be formed by closing the openings and shutting off the communicating paths.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浸漬平膜濾過装置に
係り、特に下水や産業排水等の処理に使用される浸漬平
膜濾過装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immersion flat membrane filtration apparatus, and more particularly to an immersion flat membrane filtration apparatus used for treating sewage and industrial wastewater.

【0002】[0002]

【従来の技術】浸漬平膜濾過装置は、産業排水系の凝集
汚泥処理や、下水等の活性汚泥処理に用いられる。この
装置では、高濃度化された懸濁液の処理槽(例えば硝化
槽)内に多数の膜モジュールが浸漬され、この膜モジュ
ールの内部に懸濁液がポンプやサイフォンにより吸引さ
れて処理水が得られる。前記多数の膜モジュールは、間
隔をもって垂直に設置されており、その下方には散気す
るための散気手段が設けられている。ここで、散気を行
う目的は、膜面に堆積する汚泥ケーキを除去し、膜の閉
塞を抑制する洗浄効果を得ること、処理槽内に旋回流を
起こして膜面にクロスフローを与えるとともに処理槽内
を攪拌すること、処理槽内の被処理水が活性汚泥等の微
生物を含有している場合は好気処理のための酸素供給を
することなどである。
2. Description of the Related Art An immersion flat membrane filtration device is used for the treatment of coagulated sludge in an industrial drainage system and the treatment of activated sludge such as sewage. In this apparatus, a large number of membrane modules are immersed in a treatment tank (for example, a nitrification tank) for a highly concentrated suspension, and the suspension is sucked into the inside of the membrane module by a pump or a siphon to remove treated water. can get. The plurality of membrane modules are vertically installed at intervals, and a diffusion means for diffusing air is provided below the membrane modules. Here, the purpose of the air diffusion is to remove sludge cake deposited on the membrane surface, obtain a cleaning effect of suppressing blockage of the membrane, and to cause a swirling flow in the treatment tank to give a cross flow to the membrane surface. Stirring the inside of the treatment tank, supplying oxygen for aerobic treatment when the water to be treated in the treatment tank contains microorganisms such as activated sludge, and the like.

【0003】前記多数の膜モジュール全体の周囲には、
散気誘導壁が設置され、この散気誘導壁により散気手段
から散気された気泡が膜モジュールへ向けて誘導され
る。これにより、散気誘導壁の内部には、上昇流、即ち
膜の濾過方向に対して垂直な方向にクロスフローが生じ
て膜面の汚泥に剪断力が発生し、膜面の閉塞が抑制され
る。前記上昇流は、液面位置で旋回して散気誘導壁の外
部を下降する下降流となり、散気誘導壁の下端から再び
散気誘導壁の内部に進入し、散気誘導壁の内部と外部と
を旋回する旋回流を形成する。なお、膜面に汚泥が付着
しても、散気手段からの気泡が膜面に当たるので、前記
汚泥が破壊される。
[0003] Around the plurality of membrane modules,
An air diffusion guide wall is provided, and air bubbles diffused from the air diffusion means are guided toward the membrane module by the air diffusion guide wall. As a result, an upward flow, that is, a cross flow in a direction perpendicular to the filtration direction of the membrane is generated inside the air diffusion guide wall, and a shear force is generated in the sludge on the membrane surface, and the blockage of the membrane surface is suppressed. You. The upward flow turns downward at the liquid level position and descends outside the diffusion guide wall, enters again into the diffusion guide wall from the lower end of the diffusion guide wall, and enters the inside of the diffusion guide wall. Form a swirling flow that swirls with the outside. Even if the sludge adheres to the membrane surface, the sludge is destroyed because bubbles from the air diffuser hit the membrane surface.

【0004】しかし、散気により膜面を常に洗浄してい
ても、膜面に付着した微細な粒子までは剥離できないた
め、膜面は徐々に閉塞し、やがて膜としての濾過機能を
果たさなくなる。このような時には、薬液による洗浄が
必要となり、被処理水の性状にもよるが通常数カ月〜1
年の間隔で定期的に行われる。
[0004] However, even if the membrane surface is constantly cleaned by aeration, even fine particles adhered to the membrane surface cannot be peeled off, so that the membrane surface gradually closes and eventually does not fulfill the filtration function as a membrane. In such a case, cleaning with a chemical solution is required, and depending on the properties of the water to be treated, it is usually several months to 1 hour.
It takes place regularly at annual intervals.

【0005】このように、従来の浸漬平膜濾過装置で
は、散気手段から散気することにより生じたクロスフロ
ーと気泡によって膜面の閉塞を抑制するとともに、定期
的な薬液洗浄によって膜モジュールの濾過機能を回復さ
せている。
[0005] As described above, in the conventional immersion flat membrane filtration device, the clogging of the membrane surface is suppressed by the cross flow and the air bubbles generated by the air diffusing means, and the membrane module is periodically cleaned by the chemical solution. The filtration function has been restored.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
浸漬平膜濾過装置では、並設された多数の膜モジュール
のうちの両端部の膜モジュールが閉塞しにくい反面、中
央部の膜モジュールが閉塞しやすいという欠点があっ
た。これは、前記中央部の膜モジュールは、両端部の膜
モジュールに比べて、上昇流を発生させるための旋回流
路を確保しにくく、汚泥溜まりを発生しやすいからであ
る。一旦形成された汚泥溜まりは、気泡を膜面に当てて
も破壊できず、逆に圧密化されて徐々に成長し、やがて
全膜面を閉塞する。このため、中央部の膜モジュール
は、両端部の膜モジュールに比べて閉塞しやすかった。
However, in the conventional immersion flat membrane filtration apparatus, the membrane modules at both ends of a large number of membrane modules arranged side by side are difficult to close, but the membrane module at the center is closed. There was a drawback that it was easy. This is because the center membrane module is more difficult to secure a swirl flow path for generating an upward flow and easily generates sludge accumulation than the membrane modules at both ends. Once formed, the sludge pool cannot be destroyed even when air bubbles are applied to the membrane surface, and on the contrary, it is compacted and grows gradually, eventually closing the entire membrane surface. For this reason, the membrane module at the center was more likely to be closed than the membrane modules at both ends.

【0007】閉塞した膜面は、薬液による洗浄をしなけ
ればならないが、従来の浸漬平膜濾過装置は、薬液洗浄
に多大な手間やコストがかかるという欠点があった。例
えば、薬液洗浄する方法としては、膜モジュールを処
理槽から取り出して別途用意された薬液槽に浸漬する方
法、処理槽内の懸濁液を一時的に抜き取って処理槽内
に薬液を満たす方法、濾過の流れと逆方向に膜モジュ
ールの内側から薬液流す方法がある。しかし、の方法
は、膜モジュールを取り出すための吊上装置や薬液槽等
の付帯設備のコストが大きく、の方法は、洗浄の必要
のない膜モジュールも洗浄するので洗浄に要するコスト
が高く、の方法は、洗浄薬液が膜を介して処理槽内に
流れ出すので有機膜を用いた処理に適していないという
欠点があった。
[0007] The closed membrane surface must be cleaned with a chemical solution, but the conventional immersion flat membrane filtration device has the disadvantage that cleaning the chemical solution requires a lot of labor and cost. For example, as a method of chemical cleaning, a method of taking out the membrane module from the processing tank and immersing it in a separately prepared chemical liquid tank, a method of temporarily extracting the suspension in the processing tank and filling the processing tank with the chemical liquid, There is a method of flowing a chemical solution from the inside of the membrane module in a direction opposite to the flow of filtration. However, the method of (1) has a large cost of auxiliary equipment such as a lifting device for removing the membrane module and a chemical solution tank, and the method of (2) also requires a high cost for cleaning because it also cleans a membrane module that does not require cleaning. The method has a drawback that the cleaning solution is not suitable for treatment using an organic film because the cleaning solution flows into the treatment tank through the film.

【0008】このようなことから、膜モジュールの薬液
洗浄を簡単且つ低コストで行うことができる浸漬平膜濾
過装置が要望されていた。
[0008] For these reasons, there has been a demand for an immersion flat membrane filtration apparatus that can easily and at low cost wash a chemical solution of a membrane module.

【0009】本発明はこのような事情に鑑みてなされた
もので、散気によって各膜モジュールの閉塞を効果的に
抑制し、さらには薬液洗浄を簡単且つ低コストで行うこ
とのできる浸漬平膜濾過装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is an immersion flat membrane capable of effectively suppressing blockage of each membrane module by diffusing air, and furthermore, performing a simple and low-cost cleaning of a chemical solution. It is an object to provide a filtration device.

【0010】[0010]

【課題を解決する為の手段】請求項1記載の発明は前記
目的を達成するために、処理槽内の被処理水中に多数の
膜モジュールが垂直に浸漬して並設されるとともに、前
記多数の膜モジュールの下方に散気手段が配設された浸
漬平膜濾過装置において、前記多数の膜モジュールを、
隣接する膜モジュール同士を1つのグループとして複数
のグループに分けて、該グループごとに上下に開口を備
えた囲い壁で囲んで前記散気手段から散気された気泡を
前記膜モジュールに誘導するとともに、該囲い壁同士
を、前記気泡により前記囲い壁の内側を上昇した被処理
水が前記囲い壁の外側を下降するための流路が確保され
る間隔で配置したことを特徴とする。
According to a first aspect of the present invention, in order to achieve the above object, a large number of membrane modules are vertically immersed in water to be treated in a treatment tank and are arranged side by side. In a submerged flat membrane filtration device in which a diffuser is disposed below the membrane module, the plurality of membrane modules are
Adjacent membrane modules are divided into a plurality of groups as one group, and air bubbles diffused from the air diffusing means are guided to the membrane modules by surrounding each of the groups with an enclosing wall having openings vertically. The enclosing walls are arranged at intervals such that a flow path for the water to be treated, which has risen inside the enclosing wall due to the air bubbles, to descend outside the enclosing wall is secured.

【0011】本発明によれば、前記多数のモジュールを
複数のグループ、例えば2列ごとに分けて囲い壁で囲む
とともに、その囲い壁同士を下降流のための流路が確保
される間隔で配置したので、各膜モジュールに対して十
分な旋回流が形成される。したがって、膜モジュールの
膜面に汚泥溜まりが形成されるのを防止でき、膜モジュ
ールの閉塞を効果的に抑制することができる。
According to the present invention, the plurality of modules are divided into a plurality of groups, for example, two rows, and are surrounded by the surrounding wall, and the surrounding walls are arranged at intervals at which a flow path for descending flow is secured. Therefore, a sufficient swirling flow is formed for each membrane module. Therefore, it is possible to prevent the formation of a sludge pool on the membrane surface of the membrane module, and it is possible to effectively suppress the blockage of the membrane module.

【0012】請求項3記載の発明によれば、前記囲い壁
の下側開口を閉成することにより、前記処理槽の内部
に、独立した洗浄槽が形成される。したがって、この洗
浄槽に薬液を投入することにより、その洗浄槽内の膜モ
ジュールのみを洗浄することができる。これにより、所
定の膜モジュールのみを簡単に且つ低コストで薬液洗浄
することができる。
According to the third aspect of the present invention, an independent cleaning tank is formed inside the processing tank by closing the lower opening of the enclosure wall. Therefore, by introducing a chemical solution into the cleaning tank, only the membrane module in the cleaning tank can be cleaned. As a result, only the predetermined membrane module can be easily and inexpensively cleaned with the chemical solution.

【0013】[0013]

【発明の実施の形態】以下添付図面に従って、本発明に
係る浸漬平膜濾過装置の好ましい実施の形態について詳
説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a submerged flat membrane filtration device according to the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は、浸漬平膜濾過装置の概略構造図で
あり、図2は、図1の平膜槽の内部構造を説明する斜視
図である。
FIG. 1 is a schematic structural view of an immersion flat membrane filtration device, and FIG. 2 is a perspective view illustrating the internal structure of the flat membrane tank of FIG.

【0015】浸漬平膜濾過装置10の平膜槽(処理槽に
相当)12の内部には、被処理水(懸濁液)14が貯留
されており、この被処理水14中に多数の膜モジュール
16、16…が浸漬されている。多数の膜モジュール1
6、16…は、垂直に、且つ互いが平行になるように配
設され、その膜モジュール16、16…の間隔は、図2
のY軸方向において2列ごとに大きく形成されている。
膜モジュール16は、筒状に形成された散気誘導壁(囲
い壁に相当)18によって2列ごとに囲まれている。ま
た、膜モジュール16は、図1に示すようにポンプ22
に接続され、ポンプ22を駆動することにより、膜モジ
ュール16の内部に吸引力を作用させることができる。
In a flat membrane tank (corresponding to a treatment tank) 12 of the immersion flat membrane filtration apparatus 10, a water to be treated (suspension) 14 is stored. The modules 16, 16 ... are immersed. Many membrane modules 1
Are arranged vertically and in parallel with each other, and the interval between the membrane modules 16, 16,.
In the Y-axis direction.
The membrane modules 16 are surrounded every two rows by an air diffusion guide wall (corresponding to an enclosure wall) 18 formed in a cylindrical shape. Further, as shown in FIG.
, And by driving the pump 22, a suction force can be applied to the inside of the membrane module 16.

【0016】膜モジュール16の下方には、平膜槽12
の底面12Aに沿って散気管24が設けられる。散気管
24は、できるだけ下方から散気できるように、散気孔
(図示せず)が側面に形成されている(図6参照)。こ
の散気管24は、開閉弁26が配設された送気管28を
介してブロア30に接続される。これにより、ブロア3
0を駆動すると、散気管24から気泡が散気され、散気
された気泡は、前記散気誘導壁18によって膜モジュー
ル16に誘導される。
Below the membrane module 16, a flat membrane tank 12 is provided.
A diffuser tube 24 is provided along the bottom surface 12A of the airbag. The diffuser tube 24 has a diffuser hole (not shown) formed on the side surface so that the diffuser can diffuse air from below as much as possible (see FIG. 6). The air diffuser 24 is connected to a blower 30 via an air supply pipe 28 provided with an on-off valve 26. Thereby, blower 3
When “0” is driven, bubbles are diffused from the diffuser tube 24, and the diffused bubbles are guided to the membrane module 16 by the diffusion guide wall 18.

【0017】また、前記散気管24は、配管32を介し
てポンプ34に接続され、このポンプ34に水道水供給
源36と薬液供給源38が接続される。これにより、配
管32に配設された開閉弁26を開いてポンプ34を駆
動すると、水道水と薬液が散気管24に送液される。ま
た、前記ポンプ34には、排水管42が接続され、排水
管42に配設された開閉弁44を開くことにより、散気
管24内の液体が外部に排水される。
The air diffuser 24 is connected to a pump 34 via a pipe 32, and a tap water supply 36 and a chemical supply 38 are connected to the pump 34. Thus, when the on-off valve 26 provided in the pipe 32 is opened and the pump 34 is driven, the tap water and the chemical are sent to the diffuser 24. A drain pipe 42 is connected to the pump 34, and the liquid in the diffuser pipe 24 is drained to the outside by opening an on-off valve 44 disposed on the drain pipe 42.

【0018】図3は、膜モジュール16の構造を説明す
る斜視図である。
FIG. 3 is a perspective view for explaining the structure of the membrane module 16.

【0019】同図に示すように、膜モジュール16は、
複数(例えば10枚)の膜袋46(一個のみ図示)と、
この膜袋46の左右両端を支持する一対の集水部48、
48とから構成される。膜袋46は、中空状の支持板
(プラ段)50の両面に、スペーサ52を介して有機平
膜54を貼りつけて形成される。各膜袋46の上下端部
は、バインダ56が取り付けられ、これにより前記膜袋
46の端部が補強される。また、膜袋46は、ウレタン
ゴム製の隙間保持部材58によって一定間隔になるよう
に支持されている。一方、集水部48は、各膜袋46の
内部と連通するとともに図1のポンプ22に接続され
る。これにより、ポンプ22を駆動すると、各膜袋46
の内部に吸引力が作用し、各膜袋46の外部の被処理水
14が有機平膜54を介して膜袋46の内部に吸引され
て濾過される。なお、膜モジュール16の大きさは、例
えば、幅(X軸方向)1116mm,厚さ(Y軸方向)
124mm、高さ(Z軸方向)1152mmである。
As shown in FIG.
A plurality (for example, 10) of membrane bags 46 (only one is shown);
A pair of water collecting portions 48 supporting the left and right ends of the membrane bag 46;
48. The membrane bag 46 is formed by attaching an organic flat membrane 54 to both sides of a hollow support plate (plastic step) 50 via a spacer 52. Binders 56 are attached to the upper and lower ends of each membrane bag 46, whereby the ends of the membrane bags 46 are reinforced. Further, the membrane bags 46 are supported at regular intervals by a gap holding member 58 made of urethane rubber. On the other hand, the water collecting section 48 communicates with the inside of each membrane bag 46 and is connected to the pump 22 of FIG. Thereby, when the pump 22 is driven, each membrane bag 46
A suction force acts inside the membrane bag 46, and the water 14 to be treated outside each membrane bag 46 is sucked into the membrane bag 46 via the organic flat membrane 54 and filtered. The size of the membrane module 16 is, for example, 1116 mm in width (X-axis direction) and thickness (Y-axis direction).
The height is 124 mm and the height (Z-axis direction) is 1152 mm.

【0020】図4は、散気誘導壁18を説明する側面図
であり、図5は、図4の平面図である。これらの図にお
いて、右側の散気誘導壁18は下部の開口61を開放し
た状態、左側の散気誘導壁18は下部の開口61を閉成
した状態を示している。
FIG. 4 is a side view illustrating the air diffusion guide wall 18, and FIG. 5 is a plan view of FIG. In these figures, the right air diffusion guide wall 18 shows a state where the lower opening 61 is opened, and the left air diffusion guide wall 18 shows a state where the lower opening 61 is closed.

【0021】これらの図に示すように、散気誘導壁18
は、膜モジュール16の膜面に対して直交する一対の側
壁18A、18Aと、膜モジュール16の膜面に対して
平行な一対の側壁18B、18Bとによって矩形の筒状
に形成される。この散気誘導壁18は、前記膜モジュー
ル16を2列ごとに囲むように配置され、隣接する散気
誘導壁18と所定の間隔で配設される。ここで、前記所
定の間隔とは、隣り合う散気誘導壁18、18同士の間
を下降する下降流の流路が十分に確保される間隔とす
る。
As shown in these figures, the air diffusing guide wall 18
Is formed in a rectangular cylindrical shape by a pair of side walls 18A, 18A orthogonal to the film surface of the film module 16 and a pair of side walls 18B, 18B parallel to the film surface of the film module 16. The diffusion guide walls 18 are arranged so as to surround the membrane module 16 every two rows, and are arranged at a predetermined interval from the adjacent diffusion guide walls 18. Here, the predetermined interval is an interval at which a flow path of a descending flow descending between the adjacent diffusion guide walls 18 is sufficiently secured.

【0022】前記側壁18A、18Aは、下端が平膜槽
12の底面12Aに密接するとともに、上端が被処理水
14の液位よりも上方になるように形成される。一方、
側壁18B、18Bは、前記側壁18Aよりも高さ方向
において短く形成され、下方に開口61が形成されると
ともに上部に被処理水14の連通路が形成されるように
前記側壁18A、18Aに架設される。これにより、被
処理水14が散気誘導壁18の内部を上昇して前記連通
路を介して散気誘導壁18の外部に流出し、さらに散気
誘導壁18、18同士間を下降して前記開口61を介し
て内部に進入する、被処理水14の旋回流路が形成され
る。
The side walls 18A, 18A are formed such that the lower end is in close contact with the bottom surface 12A of the flat membrane tank 12 and the upper end is above the liquid level of the water 14 to be treated. on the other hand,
The side walls 18B, 18B are formed shorter in the height direction than the side walls 18A, and are erected on the side walls 18A, 18A such that an opening 61 is formed below and a communication path for the water 14 to be formed is formed above. Is done. As a result, the water to be treated 14 rises inside the diffusion guide wall 18 and flows out of the diffusion guide wall 18 via the communication passage, and further descends between the diffusion guide walls 18. A swirling flow path of the water to be treated 14 that enters the inside through the opening 61 is formed.

【0023】また、前記膜モジュール16、16の間に
は仕切壁20が設けられ、各膜モジュール16に形成さ
れる旋回流路が左右対象となるように構成されている。
A partition wall 20 is provided between the membrane modules 16 so that the swirling channels formed in each membrane module 16 are symmetrical.

【0024】前記側壁18Bの下方には、揺動壁60が
平膜槽12の底面12Aにヒンジ62等により回動自在
に取り付けられている。揺動壁60は、図4及び図5に
示したリンク機構を介してレバー74に連結される。リ
ンク機構の構造については、3個のリンク66、66…
がピン68により水平面上で回動自在に設けられ、この
リンク66の両端が、揺動壁60の上部内側の取付板7
0に回動自在に支持される。そして、前記リンク66
に、L字状の支持棒72を介してレバー74が設けられ
る。したがって、レバー74を図5の矢印方向に押し引
き動作すると、リンク66が回動して揺動壁60の上端
同士の間隔が変動し、揺動壁60が揺動する。例えば、
図5の右側に示すようにレバー74を上方にスライドさ
せると、揺動壁60が所定の角度になり、開口61を介
して被処理水の旋回流路が十分に確保される。また、レ
バー74を下方にスライドさせると、揺動壁60が揺動
して前記側壁18Bに当接し、前記下方の開口61が閉
成される。前記揺動壁60には、側壁18Bとの当接部
分にシールゴム76が貼り付けられており、前記開口6
1は、確実に密閉される。なお、前記ヒンジ62は、ゴ
ムシート78によって覆われており、このゴムシート7
8によって連結部分からの漏洩が防止されている。
Below the side wall 18B, a swing wall 60 is rotatably attached to the bottom surface 12A of the flat membrane tank 12 by a hinge 62 or the like. The swing wall 60 is connected to the lever 74 via the link mechanism shown in FIGS. Regarding the structure of the link mechanism, three links 66, 66...
Are provided rotatably on a horizontal plane by pins 68. Both ends of the link 66 are attached to the mounting plate 7
It is rotatably supported at zero. And the link 66
In addition, a lever 74 is provided via an L-shaped support rod 72. Therefore, when the lever 74 is pushed and pulled in the direction of the arrow in FIG. 5, the link 66 rotates and the interval between the upper ends of the swing walls 60 fluctuates, and the swing wall 60 swings. For example,
When the lever 74 is slid upward as shown on the right side of FIG. 5, the swing wall 60 is at a predetermined angle, and the swirling flow path of the water to be treated is sufficiently secured through the opening 61. When the lever 74 is slid downward, the swing wall 60 swings and comes into contact with the side wall 18B, and the lower opening 61 is closed. A seal rubber 76 is attached to the swing wall 60 at a contact portion with the side wall 18B.
1 is securely sealed. The hinge 62 is covered with a rubber sheet 78, and the rubber sheet 7
8 prevents leakage from the connecting part.

【0025】また、散気誘導壁18は、前記側壁18B
の上方の連通路を遮断することができるように構成され
ている。即ち、図4の左側の散気誘導壁18のように、
側壁18Bの上方に、別体からなるスライド壁80を取
り付けることにより、側壁18Bの実質的な上端を被処
理水14の液位よりも上方に位置させる。スライド壁8
0は、側壁18Aの両側部に形成されたガイド部84に
ガイドされて上下方向にスライドするように構成され、
スライド壁80を自重により下方にスライドさせた後、
テーパブロック82を前記ガイド部84に落とし込むこ
とにより取り付けられる。スライド壁80の上下端部に
は、テーパ面が形成されており、このうち下端のテーパ
面が側壁18Bのテーパ面に当接され、上端のテーパ面
がテーパブロック82のテーパに当接される。また、ス
ライド壁80の上下端部にはシールゴム81が貼り付け
られ、さらに側壁18Aとの当接面にはシールゴム(図
示せず)が貼り付けられる。これにより、前記スライド
壁80は、スライド壁80とテーパブロック82の自重
により内側に押し付けられて、前記シールゴムにより確
実に密着され、側壁18Bの上方の連通路が遮断され
る。
Further, the air diffusion guide wall 18 is formed by the side wall 18B.
It is configured to be able to shut off the communication passage above. That is, like the air diffusion guide wall 18 on the left side of FIG.
By mounting a separate slide wall 80 above the side wall 18B, the substantial upper end of the side wall 18B is positioned above the liquid level of the water 14 to be treated. Sliding wall 8
0 is configured to be guided by guide portions 84 formed on both side portions of the side wall 18A and to slide vertically.
After sliding the sliding wall 80 downward by its own weight,
The taper block 82 is attached by dropping it into the guide portion 84. Tapered surfaces are formed at the upper and lower ends of the slide wall 80, of which the lower tapered surface is in contact with the tapered surface of the side wall 18B, and the upper tapered surface is in contact with the taper of the tapered block 82. . A seal rubber 81 is attached to the upper and lower ends of the slide wall 80, and a seal rubber (not shown) is attached to a contact surface with the side wall 18A. As a result, the slide wall 80 is pressed inward by the weight of the slide wall 80 and the tapered block 82, and is securely adhered to the seal rubber, thereby blocking the communication path above the side wall 18B.

【0026】次に上記の如く構成された浸漬平膜濾過装
置10の作用を図6に基づいて説明する。図6は、浸漬
平膜濾過装置10の作用を説明する模式図であり、膜モ
ジュール16を3つのグループに分けた場合にそのうち
の2つのグループで濾過運転し、残りのグループで薬液
洗浄する例である。
Next, the operation of the immersion flat membrane filtration device 10 configured as described above will be described with reference to FIG. FIG. 6 is a schematic diagram illustrating the operation of the immersion flat membrane filtration device 10. In the case where the membrane modules 16 are divided into three groups, two of the groups perform a filtration operation, and the remaining group performs chemical cleaning. It is.

【0027】まず、通常の濾過運転をする膜モジュール
16の説明であるが、この場合には図5のレバー74を
上方にスライドさせておく。これにより、揺動壁60が
内側に所定の角度に揺動し、側壁18Bの下部の開口6
1が開放される。したがって、散気管24から散気する
と、散気された気泡は、揺動壁60と散気誘導壁18に
よって膜モジュール16の下方に誘導され、膜モジュー
ル16に沿って上昇する。これにより、膜面に気泡が当
たり、膜面に付着した汚泥が破壊される。このとき、気
泡の上昇に伴って散気誘導壁18内に上昇流が形成さ
れ、さらに側壁18Bの上方の連通路から回り込んだ下
降流が散気誘導壁18の外部に形成される。これによ
り、散気誘導壁18の内部と外部と旋回する旋回流が形
成され、この旋回流による剪断力によって、膜モジュー
ル16の膜に付着した汚泥が剥離される。
First, a description will be given of the membrane module 16 which performs a normal filtration operation. In this case, the lever 74 shown in FIG. 5 is slid upward. As a result, the swing wall 60 swings inward at a predetermined angle, and the lower opening 6 of the side wall 18B.
1 is released. Therefore, when air is diffused from the diffuser tube 24, the diffused air bubbles are guided below the membrane module 16 by the swing wall 60 and the diffusion guide wall 18, and rise along the membrane module 16. As a result, air bubbles hit the membrane surface, and the sludge attached to the membrane surface is destroyed. At this time, an ascending flow is formed in the diffusion guide wall 18 as the bubbles rise, and a descending flow wrapping around from the communication path above the side wall 18B is formed outside the diffusion guide wall 18. As a result, a swirling flow swirling between the inside and the outside of the air diffusion guide wall 18 is formed, and the sludge attached to the membrane of the membrane module 16 is separated by the shearing force due to the swirling flow.

【0028】ところで、本実施の形態では、多数の膜モ
ジュール16が2列ごとに散気誘導壁18に囲まれると
ともに、散気誘導壁18、18…が所定の間隔で配設さ
れているので、散気誘導壁18、18同士の間を下降す
る旋回流の旋回流路が各膜モジュール16に対して十分
に確保されている。これを従来装置と比較すると、従来
装置では多数の膜モジュール全体が1つの散気導入壁で
囲まれているので、両端部の膜モジュールにおいては膜
面と平行な壁面を越えて下降する旋回流路が十分に確保
される一方で、中央部の膜モジュールにおいては膜面と
直交する壁面を越えて下降する旋回流路しかなく、下降
流のための旋回流路が狭い。このように、下降流のため
の流路が狭いと散気誘導壁の内部に進入した際に上昇す
る旋回流が乱れて膜面の汚泥に働く剪断力が膜面におい
て不均一になる。このため、従来装置の中央部の膜モジ
ュールは、両端部の膜モジュールに対して閉塞しやす
い。本実施の形態では、全ての膜モジュール16が、従
来装置の両端部の膜モジュールに相当し、旋回流路が十
分に確保されている。したがって、各膜モジュール16
の膜面には、旋回流による剪断力が均等に働くので、各
膜モジュールの膜面の閉塞を効果的に抑制することがで
きる。これにより、各膜モジュール16の寿命を向上さ
せることができる。
In the present embodiment, a large number of membrane modules 16 are surrounded by the diffusion guide walls 18 every two rows, and the diffusion guide walls 18, 18... Are arranged at predetermined intervals. The swirling flow path of the swirling flow descending between the air diffusion guide walls 18 is sufficiently secured for each membrane module 16. Comparing this with the conventional apparatus, in the conventional apparatus, since the entire membrane module is surrounded by one diffuser introduction wall, the swirling flow descending beyond the wall surface parallel to the membrane surface in the membrane modules at both ends. While a sufficient path is ensured, the central membrane module has only a swirl flow path descending beyond a wall surface perpendicular to the membrane surface, and the swirl flow path for the downward flow is narrow. As described above, when the flow path for the downward flow is narrow, the swirling flow that rises when entering the inside of the air diffusion guide wall is disturbed, and the shearing force acting on the sludge on the membrane surface becomes uneven on the membrane surface. For this reason, the membrane modules at the center of the conventional apparatus are easily blocked by the membrane modules at both ends. In the present embodiment, all the membrane modules 16 correspond to the membrane modules at both ends of the conventional apparatus, and a sufficient swirling flow path is secured. Therefore, each membrane module 16
Since the shear force due to the swirling flow acts evenly on the membrane surface of (1), blockage of the membrane surface of each membrane module can be effectively suppressed. Thereby, the life of each membrane module 16 can be improved.

【0029】また、本実施の形態では、前記開口61が
膜モジュール16の幅全体に渡って形成されているの
で、膜モジュール16の幅方向において旋回流による膜
の閉塞防止効果が等しくなり、より効果的に膜の閉塞を
防止することができる。
In this embodiment, since the openings 61 are formed over the entire width of the membrane module 16, the effect of preventing the membrane from being blocked by the swirling flow in the width direction of the membrane module 16 is equalized. Blockage of the membrane can be effectively prevented.

【0030】また、前記旋回流は、各膜モジュール16
において略均等に形成されるので、各膜モジュール16
の膜面に付着した汚泥溜まりに働く剪断力も略均等にな
る。したがって、各膜モジュール16ごとの閉塞の抑制
効果のバラツキが少なくなり、各膜モジュール16の寿
命のバラツキがなくなる。
The swirling flow is applied to each of the membrane modules 16.
Are formed substantially uniformly in each of the membrane modules 16.
The shearing force acting on the sludge pool adhering to the surface of the membrane becomes substantially uniform. Therefore, variation in the effect of suppressing the blockage of each membrane module 16 is reduced, and variation in the life of each membrane module 16 is eliminated.

【0031】また、本実施の形態では、散気管24を平
膜槽12の底面12Aに沿って配設したので、平膜槽1
2の底部に滞留域が形成されない。したがって、被処理
水が嫌気状態となって腐敗することを防止でき、液性状
を安定化することができる。
In the present embodiment, since the diffuser tube 24 is disposed along the bottom surface 12A of the flat membrane tank 12, the flat membrane tank 1
No stagnation area is formed at the bottom of 2. Therefore, it is possible to prevent the water to be treated from becoming anaerobic and decay, and to stabilize the liquid properties.

【0032】さらに、本実施の形態では、揺動壁60を
所定の角度に揺動させたので、散気管24から散気され
た気泡は、散気誘導壁18の外部に開口61から漏れる
ことなく、膜モジュール16に誘導される。したがっ
て、前記旋回流が安定して発生するので、膜モジュール
16の膜面の閉塞の抑制効果も安定する。
Further, in the present embodiment, since the swing wall 60 is swung at a predetermined angle, bubbles diffused from the diffuser tube 24 leak out of the opening 61 to the outside of the diffuser guide wall 18. Instead, it is guided to the membrane module 16. Therefore, the swirling flow is generated stably, and the effect of suppressing the blockage of the membrane surface of the membrane module 16 is also stabilized.

【0033】次に、薬液洗浄する膜モジュール16の説
明であるが、この場合には図5のレバー74を下方にス
ライドさせ、そして、スライド壁80を側壁18Bの上
部に取り付ける。これにより、側壁18Bの下方の開口
61が閉成されるとともに、側壁18Bの上方の連通路
が遮断されるので、平膜槽12の内部に周囲から独立し
た洗浄槽86が形成される。
Next, a description will be given of the membrane module 16 for chemical cleaning. In this case, the lever 74 shown in FIG. 5 is slid downward, and the slide wall 80 is attached to the upper portion of the side wall 18B. As a result, the opening 61 below the side wall 18B is closed, and the communication path above the side wall 18B is shut off, so that a cleaning tank 86 independent from the surroundings is formed inside the flat membrane tank 12.

【0034】次いで、図1の開閉弁26を閉じるととも
に、開閉弁40、44を開く。これにより、前記洗浄槽
86の内部の被処理水14が外部に排出される。次に、
開閉弁44を閉じてポンプ34を駆動することにより、
洗浄槽86に薬液と水道水が供給される。これにより、
図8の洗浄槽86内の膜モジュール16を洗浄すること
ができる。
Next, the on-off valve 26 shown in FIG. 1 is closed and the on-off valves 40 and 44 are opened. Thus, the water 14 to be treated inside the cleaning tank 86 is discharged to the outside. next,
By driving the pump 34 by closing the on-off valve 44,
A chemical solution and tap water are supplied to the cleaning tank 86. This allows
The membrane module 16 in the cleaning tank 86 in FIG. 8 can be cleaned.

【0035】このように、本実施の形態では、独立した
洗浄槽86を形成して膜モジュール16を洗浄するの
で、所定の膜モジュール16のみを薬液洗浄することが
できる。したがって、必要以上に薬液を使わないので、
薬液洗浄にかかるコストを大幅に削減することができ
る。また、他のグループの膜モジュール16において通
常の濾過運転を行いながら薬液洗浄することができるの
で、浸漬平膜濾過装置10の濾過効率を向上させること
ができる。また、この方法では、膜モジュール16を取
り出したりする必要がないので、簡単に薬液洗浄するこ
とができる。さらに、散気管24から薬液を投入するの
で、散気管24内の洗浄効果を得ることができる。
As described above, in the present embodiment, since the independent cleaning tank 86 is formed to clean the membrane module 16, only a predetermined membrane module 16 can be cleaned with the chemical solution. Therefore, we do not use chemicals more than necessary,
The cost for chemical cleaning can be greatly reduced. In addition, since the chemical solution can be washed while performing a normal filtration operation in the membrane modules 16 of another group, the filtration efficiency of the immersion flat membrane filtration device 10 can be improved. In addition, in this method, it is not necessary to take out the membrane module 16, and therefore, the chemical solution can be easily washed. Further, since the liquid medicine is supplied from the air diffuser 24, an effect of cleaning the inside of the air diffuser 24 can be obtained.

【0036】なお、上述した実施の形態では、散気誘導
壁18によって膜モジュール16を2列ごとに囲むよう
にしたが、これに限られるものではなく、多数の膜モジ
ュール16、16…を複数のグループに分けて散気誘導
壁18で囲むとともにその散気誘導壁18を所定の間隔
で配設することにより、各膜モジュール16に対する旋
回流路を広げることができるので、膜モジュール16の
閉塞を効果的に抑制することができる。なお、多数の膜
モジュール16を一つずつ散気誘導壁18によって囲む
ようにしてもよい。
In the above-described embodiment, the membrane modules 16 are surrounded by the air diffusing walls 18 every two rows. However, the present invention is not limited to this, and a large number of membrane modules 16, 16. By arranging the air diffusion guide walls 18 at predetermined intervals and enclosing the air diffusion guide walls 18 at predetermined intervals, the swirling flow path for each membrane module 16 can be widened. Can be effectively suppressed. Note that a large number of membrane modules 16 may be surrounded one by one by the air diffusion guide wall 18.

【0037】また、前記揺動壁60の揺動手段は上述し
た実施の形態に限られるものではなく、例えばシリンダ
等の駆動装置によって揺動させてもよい。
The oscillating means of the oscillating wall 60 is not limited to the above-described embodiment, but may be oscillated by a driving device such as a cylinder.

【0038】また、側壁18Bの下方の開口61の開閉
手段や、側壁18Bの上方の連通路の遮断手段は、上述
した実施の形態に限られるものではない。例えば、図7
に示す散気誘導壁90は、側壁が2段のスライド壁9
2、94によって構成されている。スライド壁92、9
4の構造は、上述したスライド壁80と同様であるので
説明を省略する。この散気誘導壁90で濾過する場合
(図7の左側の場合)、スライド壁92を所定の位置で
ピン(図示せず)等により固定する。また、薬液洗浄す
る場合(図7の右側の場合)、前記ピンを外すととも
に、スライド壁92の上方にテーパブロック96、スラ
イド壁94、テーパブロック98を順に落とし込む。こ
れにより、両方のスライド壁92、94ともテーパによ
り内側に押し付けられ、スライド壁92、94のそれぞ
れの上下端に設けられたシールゴム95が密着し、独立
した洗浄槽86が形成される。
The means for opening and closing the opening 61 below the side wall 18B and the means for shutting off the communication path above the side wall 18B are not limited to the above-described embodiment. For example, FIG.
Is a sliding wall 9 having a two-stage side wall.
2, 94. Sliding walls 92, 9
The structure of No. 4 is the same as that of the slide wall 80 described above, and the description is omitted. In the case of filtering by the air diffusion guide wall 90 (the case on the left side in FIG. 7), the slide wall 92 is fixed at a predetermined position by a pin (not shown) or the like. In the case of cleaning with a chemical solution (in the case of the right side in FIG. 7), the pins are removed, and the taper block 96, the slide wall 94, and the taper block 98 are sequentially dropped above the slide wall 92. As a result, both the slide walls 92 and 94 are pressed inward by the taper, and the seal rubbers 95 provided at the upper and lower ends of each of the slide walls 92 and 94 come into close contact with each other, so that an independent cleaning tank 86 is formed.

【0039】また、図8に示すような筒状の囲い壁99
を散気誘導壁18の上部や下部に取り付けることによっ
て、前記開口61や連通路を塞いでもよい。
A cylindrical enclosure wall 99 as shown in FIG.
The opening 61 and the communication path may be closed by attaching the upper and lower portions of the air diffusion guide wall 18.

【0040】また、本実施の形態では、スライド壁80
によって連通路を塞いだが、平膜槽12の被処理水14
の液位を低下させてもよい。
In this embodiment, the slide wall 80
The communication passage is closed by the treatment water 14 in the flat membrane tank 12.
May be lowered.

【0041】さらに、本実施の形態では、側壁18B側
にのみ開口61や前記連通路を形成したが、これに限定
するものではなく、側壁18A側にも開口や連通路を形
成し、これを遮断できるように構成してもよい。
Further, in the present embodiment, the opening 61 and the communication path are formed only on the side wall 18B side, but the present invention is not limited to this, and the opening and the communication path are also formed on the side wall 18A side. You may comprise so that it can be shut off.

【0042】[0042]

【発明の効果】以上説明したように、本発明の浸漬平膜
濾過装置によれば、前記多数のモジュールを複数のグル
ープに分けて囲い壁で囲むとともに、その囲い壁同士を
下降流の流路が十分に確保される間隔で配置しているの
で、各膜モジュールに対して十分な旋回流路が確保さ
れ、膜モジュールの閉塞を効果的に抑制することができ
る。また、本発明によれば、前記囲い壁の下側開口を閉
成するので、処理槽内に独立した洗浄槽を形成すること
ができ、所定の膜モジュールを容易に洗浄することがで
きる。
As described above, according to the immersion flat membrane filtration device of the present invention, the large number of modules are divided into a plurality of groups and surrounded by the surrounding walls, and the surrounding walls are separated by the downward flow path. Are arranged at intervals enough to ensure a sufficient swirl flow path for each membrane module, and blockage of the membrane module can be effectively suppressed. Further, according to the present invention, since the lower opening of the enclosure wall is closed, an independent washing tank can be formed in the processing tank, and a predetermined membrane module can be easily washed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る浸漬平膜濾過装置の
概略構造図
FIG. 1 is a schematic structural diagram of an immersion flat membrane filtration device according to an embodiment of the present invention.

【図2】図1の平膜槽の内部構造を説明する斜視図FIG. 2 is a perspective view illustrating the internal structure of the flat membrane tank in FIG.

【図3】図2の膜モジュールの斜視図FIG. 3 is a perspective view of the membrane module of FIG. 2;

【図4】図2の散気誘導壁の側面断面図FIG. 4 is a side sectional view of the air diffusion guide wall of FIG. 2;

【図5】図4の散気誘導壁の上方からの断面図5 is a cross-sectional view of the air diffusion guide wall of FIG. 4 as viewed from above.

【図6】本発明の実施の形態に係る浸漬平膜濾過装置の
作用説明図
FIG. 6 is a diagram illustrating the operation of the immersion flat membrane filtration device according to the embodiment of the present invention.

【図7】図4と異なる形状の散気誘導壁の側面断面図FIG. 7 is a side cross-sectional view of an air diffusion guide wall having a shape different from that of FIG. 4;

【図8】図4と異なる形状の散気誘導壁の一部を示す斜
視図
FIG. 8 is a perspective view showing a part of an air diffusion guide wall having a shape different from that of FIG. 4;

【符号の説明】[Explanation of symbols]

10…浸漬平膜濾過装置、12…平膜槽、14…被処理
水、16…膜モジュール、18…散気誘導壁、24…散
気管、60…揺動壁、61…開口、80…スライド壁
DESCRIPTION OF SYMBOLS 10 ... Immersion flat membrane filtration device, 12 ... Flat membrane tank, 14 ... Water to be treated, 16 ... Membrane module, 18 ... Aeration guide wall, 24 ... Aeration tube, 60 ... Oscillating wall, 61 ... Opening, 80 ... Slide wall

フロントページの続き Fターム(参考) 4D006 GA02 HA48 HA93 JA03Z JA04Z JA18A JA29A JA30A JA31A JA39A JA53Z JA71 KA12 KA44 KA67 KC02 KC14 KC16 MA03 MB02 MC07 PA02 PA05 PB08 PB70 PC64 Continued on front page F term (reference) 4D006 GA02 HA48 HA93 JA03Z JA04Z JA18A JA29A JA30A JA31A JA39A JA53Z JA71 KA12 KA44 KA67 KC02 KC14 KC16 MA03 MB02 MC07 PA02 PA05 PB08 PB70 PC64

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】処理槽内の被処理水中に多数の膜モジュー
ルが垂直に浸漬して並設されるとともに、前記多数の膜
モジュールの下方に散気手段が配設された浸漬平膜濾過
装置において、 前記多数の膜モジュールを、隣接する膜モジュール同士
を1つのグループとして複数のグループに分けて、該グ
ループごとに上下に開口を備えた囲い壁で囲んで前記散
気手段から散気された気泡を前記膜モジュールに誘導す
るとともに、該囲い壁同士を、前記気泡により前記囲い
壁の内側を上昇した被処理水が前記囲い壁の外側を下降
するための流路が確保される間隔で配置したことを特徴
とする浸漬平膜濾過装置。
1. A submerged flat membrane filtration apparatus in which a number of membrane modules are vertically immersed in water to be treated in a treatment tank and juxtaposed, and a diffuser is provided below the plurality of membrane modules. In the above, a large number of the membrane modules are divided into a plurality of groups with adjacent membrane modules as one group, and each of the groups is surrounded by an enclosure wall having openings at upper and lower sides and diffused from the air diffuser. The bubbles are guided to the membrane module, and the surrounding walls are arranged at intervals at which a flow path for the water to be treated, which has risen inside the surrounding wall due to the bubbles, to fall outside the surrounding wall is secured. An immersion flat membrane filtration device characterized by the following.
【請求項2】前記一つのグループは、2列の膜モジュー
ルから成ることを特徴とする請求項1記載の浸漬平膜濾
過装置。
2. The immersion flat membrane filter according to claim 1, wherein said one group comprises two rows of membrane modules.
【請求項3】前記囲い壁の下側開口には、該下側開口を
開閉する開閉手段が設けられ、前記開閉手段で前記下側
開口を閉成すると前記囲い壁内が前記処理槽から隔絶さ
れることを特徴とする請求項1又は2記載の浸漬平膜濾
過装置。
3. An opening / closing means for opening and closing the lower opening is provided at a lower opening of the enclosure wall, and when the lower opening is closed by the opening / closing means, the inside of the enclosure wall is isolated from the processing tank. The immersion flat membrane filtration device according to claim 1 or 2, wherein the filtration is performed.
JP17955499A 1999-06-25 1999-06-25 Immersion flat membrane filtration device Expired - Fee Related JP3617378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17955499A JP3617378B2 (en) 1999-06-25 1999-06-25 Immersion flat membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17955499A JP3617378B2 (en) 1999-06-25 1999-06-25 Immersion flat membrane filtration device

Publications (2)

Publication Number Publication Date
JP2001009246A true JP2001009246A (en) 2001-01-16
JP3617378B2 JP3617378B2 (en) 2005-02-02

Family

ID=16067781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17955499A Expired - Fee Related JP3617378B2 (en) 1999-06-25 1999-06-25 Immersion flat membrane filtration device

Country Status (1)

Country Link
JP (1) JP3617378B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047830A (en) * 2001-08-06 2003-02-18 Yuasa Corp Dipping type membrane filtration apparatus and dipping type membrane filtration method
WO2004018084A1 (en) * 2002-08-21 2004-03-04 U.S. Filter Wastewater Group, Inc. Aeration method
WO2004033078A1 (en) * 2002-10-10 2004-04-22 U.S. Filter Wastewater Group, Inc. Backwash method
JP2004305886A (en) * 2003-04-07 2004-11-04 Kubota Corp Aeration device
US6979404B2 (en) 2002-01-02 2005-12-27 Triple I Self-manifolding sheet membrane module
WO2009144770A1 (en) * 2008-05-30 2009-12-03 株式会社クボタ Immersed membrane separation apparatus
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
EP2143691A3 (en) * 2008-07-11 2010-08-11 Helmut Prieske Membrane bioreactor and method for processing waste water
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
JP2003047830A (en) * 2001-08-06 2003-02-18 Yuasa Corp Dipping type membrane filtration apparatus and dipping type membrane filtration method
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US6979404B2 (en) 2002-01-02 2005-12-27 Triple I Self-manifolding sheet membrane module
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
WO2004018084A1 (en) * 2002-08-21 2004-03-04 U.S. Filter Wastewater Group, Inc. Aeration method
WO2004033078A1 (en) * 2002-10-10 2004-04-22 U.S. Filter Wastewater Group, Inc. Backwash method
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
KR101002466B1 (en) 2002-10-10 2010-12-17 지멘스 워터 테크놀로지스 코포레이션 Backwash method
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
JP2004305886A (en) * 2003-04-07 2004-11-04 Kubota Corp Aeration device
JP4530621B2 (en) * 2003-04-07 2010-08-25 株式会社クボタ Cleaning method for air diffuser
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7722769B2 (en) 2005-10-05 2010-05-25 Siemens Water Technologies Corp. Method for treating wastewater
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
WO2009144770A1 (en) * 2008-05-30 2009-12-03 株式会社クボタ Immersed membrane separation apparatus
JP5283696B2 (en) * 2008-05-30 2013-09-04 株式会社クボタ Immersion membrane separator
EP2143691A3 (en) * 2008-07-11 2010-08-11 Helmut Prieske Membrane bioreactor and method for processing waste water
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JP3617378B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP2001009246A (en) Immersion type flat membrane filtering device
JP5111757B2 (en) Filtration unit
JPH115023A (en) Hollow fiber membrane filter
JPH11300177A (en) Membrane separator
JP3536610B2 (en) Immersion type membrane filtration device
KR20090028737A (en) Apparatus having a bioreactor and membrane filtration module for treatment of an incoming fluid
JP3258553B2 (en) Membrane separation device
JPH0722749B2 (en) Sewage treatment equipment
JP2009154101A (en) Filtration module, filtration module laminate, and filtration apparatus
JP4374885B2 (en) Membrane separator
JP2000210542A (en) Method and apparatus for washing membrane unit in waste water treatment equipment
JP2004305886A (en) Aeration device
JP4819841B2 (en) Membrane separator
JP4046445B2 (en) Wastewater treatment method
KR100745121B1 (en) Filtering apparatus
KR101447954B1 (en) A membrane module cassette train with a vertical type manifold and the cleaning method
JP3556610B2 (en) Wastewater treatment device and fluid transfer method in wastewater treatment device
JP2005152777A (en) Filtration tank
JP4140155B2 (en) Immersion flat membrane separator
JPH10309579A (en) Membrane built-in type water treating device
KR200420112Y1 (en) Water filter apparatus of submerged type
KR200368692Y1 (en) Submerged hollow fiber membrane unit module and hollow fiber membrane module using the unit module
JPH09308882A (en) Water treatment apparatus
JP3512344B2 (en) Chemical liquid cleaning device for membrane cartridge and chemical liquid cleaning method
JP4275286B2 (en) Flow control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees