JP2001008909A - Electric sphygmomanometer - Google Patents
Electric sphygmomanometerInfo
- Publication number
- JP2001008909A JP2001008909A JP11181096A JP18109699A JP2001008909A JP 2001008909 A JP2001008909 A JP 2001008909A JP 11181096 A JP11181096 A JP 11181096A JP 18109699 A JP18109699 A JP 18109699A JP 2001008909 A JP2001008909 A JP 2001008909A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric sensor
- photoelectric
- blood pressure
- pulse wave
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、体動に起因するノ
イズ、アーティファクタの影響を受け難くした電子血圧
計に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic sphygmomanometer which is hardly affected by noise and artistic factors caused by body movement.
【0002】[0002]
【従来の技術】従来、光電脈波を用いた方式の血圧計と
しては指式血圧計がある。この指式血圧計のような従来
の血圧計は、カフで圧迫する指の動脈が体表から浅い部
分にあり、その拍動を測定し、血圧を決定する方式とし
て構成されている。このため、 i)発光素子と受光素子との間の距離が短い。 ii)測定中の体動によって光電脈波信号に体動ノイズが
重畳する。 ことから、次の問題点,がある。 動脈が体表から深い部分にあるような部位(例えば上
腕)では、脈波の測定が困難となり、光電脈波方式の血
圧測定は困難となる。 体動中の測定では、測定エラーが多発したり、測定精
度が悪化したりする。2. Description of the Related Art Conventionally, there is a finger-type blood pressure monitor as a blood pressure monitor using a photoelectric pulse wave. Conventional sphygmomanometers such as the finger sphygmomanometer are configured as a system in which the artery of the finger pressed by the cuff is at a shallow part from the body surface, and the pulsation is measured to determine the blood pressure. Therefore, i) the distance between the light emitting element and the light receiving element is short. ii) Body motion noise is superimposed on the photoelectric pulse wave signal due to the body motion during measurement. Therefore, there are the following problems. At a site where the artery is deep from the body surface (for example, at the upper arm), it is difficult to measure the pulse wave, and it is difficult to measure the blood pressure using the photoelectric pulse wave method. In measurement during body movement, measurement errors frequently occur and measurement accuracy deteriorates.
【0003】そこで、これらの問題点,を解決する
ために、本出願人は、 a)生体内での減衰率の少ない波長(700〜1000
nm)の光を測定光として用いる。 b)発光素子と受光素子との間の距離を所定の範囲(2
0〜90mm)に設定する。 c)光電脈波検出用として複数個のセンサを用いる。 条件を備え、体表から深い部分にある動脈の拍動からで
も光電脈波信号を得ることを可能とした血圧計を開発し
た。[0003] In order to solve these problems, the applicant of the present invention has: a) a wavelength (700 to 1000) having a small attenuation rate in a living body;
nm) is used as measurement light. b) The distance between the light emitting element and the light receiving element is set within a predetermined range (2
(0 to 90 mm). c) A plurality of sensors are used for detecting a photoelectric pulse wave. We have developed a sphygmomanometer that is capable of obtaining a photoplethysmographic signal even from the pulsation of an artery located deep from the body surface.
【0004】[0004]
【発明が解決しようとする課題】ところで、後者の血圧
計においては、複数個のセンサで得られた光電脈波信号
のうち、どの信号が最も血圧算出に適しているかは、被
測定者の属性(例えば測定部位の周長、動脈の深さ、皮
下脂肪の厚さなど)により異なるため、被測定者ごとに
適正なセンサを選定する必要がある。しかしながら、被
測定者の属性は、被測定者自身が容易に知り得る情報で
はないため、血圧計側で適正なセンサを選定できない場
合、結果的に精度が余り良くない血圧値を算出してしま
う。In the latter sphygmomanometer, which of the photoelectric pulse wave signals obtained by a plurality of sensors is most suitable for calculating the blood pressure is determined by the attribute of the subject. (For example, the circumference of the measurement site, the depth of the artery, the thickness of subcutaneous fat, etc.), it is necessary to select an appropriate sensor for each subject. However, since the attribute of the subject is not information that can be easily known by the subject, if the sphygmomanometer cannot select an appropriate sensor, a blood pressure value with insufficient accuracy is calculated as a result. .
【0005】従って、本発明は、そのような問題点に着
目してなされたもので、体表から深い部分にある動脈か
らも光電脈波信号を確実に得ること、被測定者の属性に
よらず血圧測定に最適なセンサを選定すること、及びそ
れらにより精度の高い血圧測定を行うことを実現する電
子血圧計を提供することを目的とする。Accordingly, the present invention has been made in view of such a problem, and it is necessary to reliably obtain a photoelectric pulse wave signal from an artery located deep from the body surface, and to improve the characteristics of the subject. It is an object of the present invention to select an optimal sensor for blood pressure measurement and to provide an electronic sphygmomanometer that realizes highly accurate blood pressure measurement by using them.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1記載の電子血圧計は、生体の測定
部位を加圧するためのカフと、カフ内を加圧・減圧する
圧力制御手段と、カフ内の圧力を検出する圧力検出手段
と、カフのそれぞれ異なる位置に設けられた複数個の脈
波成分検出用の光電センサと、カフに設けられると共に
体動成分を検出する少なくとも1個の体動成分検出手段
と、光電センサで得られた脈波成分から体動成分検出手
段で得られた体動成分を除去して血圧を算出する血圧算
出手段と、複数個の光電センサのうち、被測定者の属性
に最適な位置にある光電センサを選定する光電センサ選
定手段とを備え、前記光電センサ選定手段で選定された
光電センサにより得られる脈波成分を用いて血圧を算出
するようにしたことを特徴とする。In order to achieve the above object, an electronic sphygmomanometer according to claim 1 of the present invention provides a cuff for pressurizing a measurement site of a living body and pressurizing and depressurizing the inside of the cuff. Pressure control means, pressure detection means for detecting the pressure in the cuff, a plurality of photoelectric sensors for detecting pulse wave components provided at different positions of the cuff, and a body movement component provided on the cuff for detecting a body movement component At least one body movement component detection unit, a blood pressure calculation unit that removes a body movement component obtained by the body movement component detection unit from a pulse wave component obtained by the photoelectric sensor, and calculates a blood pressure; And a photoelectric sensor selecting unit that selects a photoelectric sensor located at a position that is optimal for the attribute of the person to be measured, and measures the blood pressure using a pulse wave component obtained by the photoelectric sensor selected by the photoelectric sensor selecting unit. It was calculated The features.
【0007】この電子血圧計は、体動成分検出手段で検
出した体動成分(ノイズ成分)を用いて、ノイズ成分が
重畳した脈波成分検出用の光電センサの脈波信号からノ
イズ成分のみを低減するものである。その際、正確な血
圧算出を行うため、脈波の検出に動脈の拍動を直接捉え
る手法(例えば光電脈波)を用いる。この手法は、カフ
圧の分布の影響を受けないカフ中央部の動脈の拍動を直
接捉えることが可能であり、コロトコフ音と同様に最高
血圧・最低血圧において特徴的な変化を示し、正確な血
圧測定が可能となる。This electronic sphygmomanometer uses a body motion component (noise component) detected by the body motion component detection means to extract only a noise component from a pulse wave signal of a photoelectric sensor for detecting a pulse wave component on which a noise component is superimposed. It is to reduce. At that time, in order to accurately calculate the blood pressure, a method of directly capturing the pulse of the artery (for example, a photoelectric pulse wave) is used for detecting the pulse wave. This method can directly capture the pulsation of the artery in the central part of the cuff, which is not affected by the distribution of the cuff pressure, and shows characteristic changes in systolic and diastolic blood pressures, similar to Korotkoff sounds. Blood pressure measurement becomes possible.
【0008】ところが、動脈が体表から深い部分にある
部位(例えば上腕)では、前記したとおり脈波の測定が
困難である。そこで、複数個の脈波成分検出用の光電セ
ンサを、カフのそれぞれ異なる位置に設けることによ
り、好ましくは光電センサの発光素子と受光素子との間
の距離が20〜90mmとなるように設けると共に、生
体内で減衰率の少ない波長(700〜1000nm)の
光を脈波測定光とするものを用いることにより、体表か
ら深い部分にある動脈の拍動を光電脈波として捉えるこ
とが可能となる。However, it is difficult to measure a pulse wave at a site where the artery is deep from the body surface (for example, the upper arm) as described above. Therefore, by providing a plurality of photoelectric sensors for detecting pulse wave components at different positions of the cuff, preferably, the distance between the light emitting element and the light receiving element of the photoelectric sensor is set to be 20 to 90 mm. By using light having a wavelength (700 to 1000 nm) having a small attenuation rate in a living body as pulse wave measurement light, it is possible to capture the pulsation of an artery deep from the body surface as a photoelectric pulse wave. Become.
【0009】ここで、カフの異なる位置に複数個の光電
センサを設けるのは、血圧算出に最適な光電センサの位
置が被測定者の属性により異なるからである。但し、こ
こでいう被測定者の属性とは、測定部位の周長、動脈の
体表からの深さ、皮下脂肪の厚さなどである。本発明の
電子血圧計では、光電センサ選定手段により、複数個の
脈波成分検出用の光電センサのうち、予め血圧算出に最
適な位置にある光電センサが選定され、選定された光電
センサにより得られる脈波成分を用いて血圧を算出する
ので、前記問題点を解決することができる。即ち、体表
から深い部分にある動脈からも光電脈波信号を確実に得
ることができ、被測定者の属性によらず血圧測定に最適
なセンサを選定でき、よって精度の高い血圧測定を行う
ことができる。The reason why a plurality of photoelectric sensors are provided at different positions of the cuff is that the optimal position of the photoelectric sensor for calculating the blood pressure varies depending on the attributes of the subject. Here, the attributes of the subject are the circumference of the measurement site, the depth of the artery from the body surface, the thickness of the subcutaneous fat, and the like. In the electronic sphygmomanometer of the present invention, the photoelectric sensor at the optimal position for blood pressure calculation is selected by the photoelectric sensor selecting means from among the plurality of photoelectric sensors for detecting the pulse wave component, and the photoelectric sensor is obtained by the selected photoelectric sensor. Since the blood pressure is calculated using the obtained pulse wave component, the above problem can be solved. In other words, a photoplethysmographic signal can be reliably obtained even from an artery located deep from the body surface, and an optimal sensor for blood pressure measurement can be selected regardless of the attributes of the subject, so that highly accurate blood pressure measurement is performed. be able to.
【0010】なお、本発明において、体動成分検出手段
としては、生体の動きを物理量に変換して測定するセン
サの場合は、速度センサ、加速度センサ、位置センサ、
変位センサ、角度センサ、方位センサ、傾斜センサなど
を、生体の動きによって変化する生体量(例えば血液
量)を測定するセンサの場合は、光電センサなどを用い
ればよい。In the present invention, when the body movement component detecting means is a sensor for converting the movement of a living body into a physical quantity for measurement, a speed sensor, an acceleration sensor, a position sensor,
In the case of a displacement sensor, an angle sensor, a direction sensor, an inclination sensor, or the like, a sensor that measures a biomass (for example, a blood volume) that changes according to the movement of a living body may use a photoelectric sensor or the like.
【0011】[0011]
【発明の実施の形態】以下、本発明を実施の形態に基づ
いて説明する。その第1の実施形態に係る電子血圧計の
構成を図1にブロック図で示す。この電子血圧計は、生
体の測定部位を加圧するためのカフ1と、カフ1内を加
圧する加圧ポンプ(圧力制御手段)2と、カフ1内を減
圧する排気弁(圧力制御手段)3と、カフ1内の圧力を
検出する圧力センサ(圧力検出手段)4と、算出された
血圧値等を表示する表示器5と、加圧ポンプ2、排気弁
3、表示器5等を制御するCPU6と、圧力センサ4か
らの出力を増幅する増幅器7と、増幅器7からのアナロ
グ信号をデジタル信号に変換してCPU6に入力するA
/D変換器8とを備える。但し、ここまでの構成は従来
の血圧計と同様である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a block diagram showing the configuration of the electronic sphygmomanometer according to the first embodiment. This electronic sphygmomanometer includes a cuff 1 for pressurizing a measurement site of a living body, a pressure pump (pressure control means) 2 for pressurizing the inside of the cuff 1, and an exhaust valve (pressure control means) 3 for reducing the pressure in the cuff 1 And a pressure sensor (pressure detecting means) 4 for detecting the pressure in the cuff 1, a display 5 for displaying the calculated blood pressure value and the like, a pressurizing pump 2, an exhaust valve 3, a display 5 and the like. A CPU 6, an amplifier 7 for amplifying an output from the pressure sensor 4, and an A for converting an analog signal from the amplifier 7 into a digital signal and inputting the digital signal to the CPU 6.
/ D converter 8. However, the configuration so far is the same as that of a conventional sphygmomanometer.
【0012】この電子血圧計は、カフ1に設けられた複
数個の脈波成分検出用の光電センサ10-1,…,10-n
と、同じくカフ1に設けられた体動成分検出手段として
の1個の加速度センサ11とを備え、光電センサ1
0-1,…,10-nがカフ1のそれぞれ異なる位置に設け
られ、CPU6が光電センサ10-1,…,10-nで得ら
れた脈波成分から加速度センサ11で得られた体動成分
を除去して血圧を算出する血圧算出機能と、複数個の光
電センサ10-1,…,10-nのうち、被測定者の属性に
最適な位置にある光電センサを選定する光電センサ選定
機能とを有し、選定された光電センサにより得られる脈
波成分を用いて血圧を算出するようにした点が特徴であ
る。This electronic sphygmomanometer includes photoelectric sensors 10 -1 ,..., 10 -n for detecting a plurality of pulse wave components provided on the cuff 1.
And one acceleration sensor 11 as body movement component detection means also provided on the cuff 1.
0 -1, ..., 10 -n are provided at different positions of the cuff 1, CPU 6 photoelectric sensor 10 -1, ..., body movement obtained from the pulse wave components obtained in 10 -n in the acceleration sensor 11 A blood pressure calculating function for calculating a blood pressure by removing components, and a photoelectric sensor selection for selecting a photoelectric sensor at an optimal position for the attribute of the subject from among the plurality of photoelectric sensors 10 -1 ,..., 10 -n. It is characterized by having a function and calculating a blood pressure using a pulse wave component obtained by a selected photoelectric sensor.
【0013】なお、光電センサ10-1,…,10-nは、
前記したとおり発光素子と受光素子との間の距離が20
〜90mmの範囲になるように設けられ、生体内で減衰
率の少ない波長(700〜1000nm)の光を使用す
るものである。各光電センサ10-1,…,10-nの光電
脈波信号は、それぞれ増幅器12-1,…,12-nによっ
て増幅され、更にA/D変換器8でデジタル信号に変換
されて、CPU6に入力される。また、加速度センサ1
1の体動信号は、増幅器13で増幅され、A/D変換器
8でデジタル信号に変換されてから、CPU6に入力さ
れる。The photoelectric sensors 10 -1 ,..., 10 -n are:
As described above, the distance between the light emitting element and the light receiving element is 20
It is provided so as to be in a range of up to 90 mm, and uses light of a wavelength (700 to 1000 nm) having a small attenuation rate in a living body. The photoelectric pulse wave signals of the photoelectric sensors 10 -1 ,..., 10 -n are respectively amplified by amplifiers 12 -1 ,..., 12 -n and further converted into digital signals by the A / D converter 8. Is input to Also, the acceleration sensor 1
The first body motion signal is amplified by the amplifier 13, converted into a digital signal by the A / D converter 8, and then input to the CPU 6.
【0014】図2に示す第2の実施形態に係る電子血圧
計は、体動成分検出手段として、加速度センサ11の代
わりに、1個の光電センサ14を用いるものであり、図
3に示す第3の実施形態に係る電子血圧計は、体動成分
検出手段として複数個の光電センサ14-1,…,14-n
を用いるものである。それ以外の構成は、第1の実施形
態の電子血圧計と同様である。The electronic sphygmomanometer according to the second embodiment shown in FIG. 2 uses one photoelectric sensor 14 instead of the acceleration sensor 11 as a body movement component detecting means. The electronic sphygmomanometer according to the third embodiment includes a plurality of photoelectric sensors 14 -1 ,..., 14 -n as body movement component detecting means.
Is used. Other configurations are the same as those of the electronic sphygmomanometer of the first embodiment.
【0015】第1の実施形態の電子血圧計(図1参照)
におけるカフ1の概略断面図を図4に示す。図4は、カ
フ1を上腕40に装着した状態を示し、上腕40内に骨
41と動脈42が延伸している。ここでは、体動成分検
出用の加速度センサ11はカフ1の表側に取付けられ、
脈波成分検出用の複数個(3個)の光電センサ10-1,
10-2,10-3はカフ1の内側(体表対面側)に取付け
られている。光電センサ10-1,10-2,10-3は、各
々が発光素子及び受光素子で構成されるのではなく、発
光素子20が全ての光電センサに共通とされ、受光素子
21,22,23が各光電センサ用とされる。発光素子
20と受光素子21〜23は、カフ1の周方向(上腕4
0の横断方向)における異なる位置に配置され、また各
受光素子21,22,23は、発光素子20からそれぞ
れ異なる位置に配置されている。勿論、発光素子20と
受光素子21〜23は、前記所定の範囲(20〜90m
m)に位置決めされている。An electronic sphygmomanometer according to the first embodiment (see FIG. 1)
FIG. 4 shows a schematic sectional view of the cuff 1 in FIG. FIG. 4 shows a state in which the cuff 1 is mounted on the upper arm 40, and a bone 41 and an artery 42 extend inside the upper arm 40. Here, the acceleration sensor 11 for detecting a body motion component is attached to the front side of the cuff 1,
A plurality (three) of photoelectric sensors 10 -1 for detecting a pulse wave component,
10 -2 and 10 -3 are attached inside the cuff 1 (the side facing the body surface). Each of the photoelectric sensors 10 -1 , 10 -2 , and 10 -3 does not include a light emitting element and a light receiving element, but the light emitting element 20 is common to all photoelectric sensors. Are for each photoelectric sensor. The light emitting element 20 and the light receiving elements 21 to 23 are arranged in the circumferential direction of the cuff 1 (the upper arm 4).
0 (in the transverse direction), and the light receiving elements 21, 22, and 23 are respectively located at different positions from the light emitting element 20. Of course, the light emitting element 20 and the light receiving elements 21 to 23 are within the predetermined range (20 to 90 m).
m).
【0016】第2の実施形態の電子血圧計(図2参照)
におけるカフ1の概略断面図を図5に示す。図5では、
体動成分検出用の光電センサ14は発光素子及び受光素
子で構成されず、発光素子は脈波成分検出用の光電セン
サ10-1,10-2,10-3の発光素子20と共通であ
り、受光素子31のみが発光素子20を挟んで受光素子
21〜23とは反対側に配置されている。An electronic sphygmomanometer according to a second embodiment (see FIG. 2)
5 shows a schematic sectional view of the cuff 1 in FIG. In FIG.
The photoelectric sensor 14 for detecting a body motion component is not composed of a light emitting element and a light receiving element, and the light emitting element is common to the light emitting elements 20 of the photoelectric sensors 10-1 , 10-2 , and 10-3 for detecting a pulse wave component. , Only the light receiving element 31 is disposed on the opposite side to the light receiving elements 21 to 23 with the light emitting element 20 interposed therebetween.
【0017】第3の実施形態の電子血圧計(図3参照)
におけるカフ1の概略断面図を図6に示す。図6では、
体動成分検出用の複数個(3個)の光電センサ14-1,
14 -2,14-3は、図5の場合と同様に、発光素子が脈
波成分検出用の光電センサ10-1,10-2,10-3の発
光素子20と共通であり、3個の受光素子31,32,
33がそれぞれ異なる位置に配置されている。この場
合、発光素子20と各受光素子31,32,33との間
の距離は、それぞれ発光素子20と受光素子21,2
2,23との間の距離と同一に設定されている。An electronic sphygmomanometer according to a third embodiment (see FIG. 3)
6 shows a schematic sectional view of the cuff 1 in FIG. In FIG.
Plural (three) photoelectric sensors 14 for detecting a body motion component-1,
14 -2, 14-3Is similar to the case of FIG.
Photoelectric sensor 10 for detecting wave components-1, 10-2, 10-3Departure
It is common to the optical element 20 and has three light receiving elements 31, 32,
33 are arranged at different positions. This place
Between the light emitting element 20 and each of the light receiving elements 31, 32, 33
Are distances between the light emitting element 20 and the light receiving elements 21 and 21, respectively.
The distance is set to be the same as the distance between 2 and 23.
【0018】特に図6の場合、被測定者の属性に最適な
位置にある脈波成分検出用の光電センサ10-1,1
0-2,10-3を選定するときに、体動成分の基本周波数
を求めるのに使用する体動信号は、複数個(3個)の体
動成分検出用の光電センサ14-1,14-2,14-3のう
ち、いずれのセンサの出力を用いてもよい。これは、選
定時には体動成分の基本周波数のみを必要としているか
らである。In particular, in the case of FIG. 6, the photoelectric sensor 10 -1 , 1 for detecting a pulse wave component is located at a position which is optimal for the attribute of the subject.
When 0 -2 and 10 -3 are selected, a plurality of (three) photoelectric sensors 14 -1 and 14 for detecting a plurality of (3) body motion components are used to determine the fundamental frequency of the body motion component. The output of any one of -2 and 14-3 may be used. This is because only the fundamental frequency of the body motion component is required at the time of selection.
【0019】又、体動成分検出用の光電センサ14-1,
14-2,14-3を複数個設ける利点としては、脈波に重
畳している体動ノイズを除去するのに有効となる。即
ち、被測定者の属性に最適な位置にあるとして選定され
た脈波成分検出用の光電センサに対応する体動成分検出
用の光電センサを用いてノイズ除去を行う。具体的に
は、脈波成分検出用の光電センサ10-1(即ち受光素子
21)が選定されたとすると、発光素子20と受光素子
21との間の距離と同一距離に位置する体動成分検出用
の光電センサ14-1(即ち受光素子31)で得られる体
動信号を用いてノイズを除去する。光電脈波信号、体動
信号とも発光素子20から同一距離に位置する受光素子
で取得することにより、体動成分である生体量の変化量
が光電脈波信号と体動信号に同じように働くため、光電
脈波信号に重畳している体動成分と相関の高い体動信号
を得ることができ、ノイズの除去効率が高くなる。Also, photoelectric sensors 14 -1 for detecting body movement components,
An advantage of providing a plurality of 14 -2 and 14 -3 is that it is effective for removing body motion noise superimposed on a pulse wave. That is, noise removal is performed using a photoelectric sensor for detecting a body motion component corresponding to the photoelectric sensor for detecting a pulse wave component selected as being located at a position that is optimal for the attribute of the subject. More specifically, if the photoelectric sensor 10 -1 (that is, the light receiving element 21) for detecting the pulse wave component is selected, the detection of the body motion component located at the same distance as the distance between the light emitting element 20 and the light receiving element 21 is performed. The noise is removed using the body motion signal obtained by the photoelectric sensor 14 -1 (that is, the light receiving element 31). By obtaining both the photoelectric pulse wave signal and the body motion signal with the light receiving element located at the same distance from the light emitting element 20, the amount of change in the biomass, which is the body motion component, acts in the same manner on the photoelectric pulse wave signal and the body motion signal. Therefore, a body motion signal having a high correlation with the body motion component superimposed on the photoelectric pulse wave signal can be obtained, and the noise removal efficiency increases.
【0020】更に、図4〜図6に示すカフ1では、脈波
成分検出用及び体動成分検出用の光電センサは、いずれ
もカフ1の周方向に垂直な方向(動脈42の延伸方向)
における中央又は中央より生体1の末端側(手側)に配
置されている。このため、光電脈波信号及び体動信号を
正確に検出できる。これは、カフ1の前記中央より心臓
側では、カフ1を最高血圧以上に加圧しても、カフ中央
部と比較して圧迫力が弱くなっているため、動脈42が
完全に阻血されず、心臓の鼓動に応じた脈波が生じる場
合があるからである。Further, in the cuff 1 shown in FIGS. 4 to 6, the photoelectric sensors for detecting the pulse wave component and the body motion component are both in a direction perpendicular to the circumferential direction of the cuff 1 (extending direction of the artery 42).
At the center or at the terminal side (hand side) of the living body 1 from the center. Therefore, the photoelectric pulse wave signal and the body motion signal can be accurately detected. This is because, even if the cuff 1 is pressurized to the highest blood pressure or higher on the heart side from the center of the cuff 1, the compression force is weaker than the central part of the cuff, so that the artery 42 is not completely occluded, This is because a pulse wave corresponding to the heartbeat may be generated.
【0021】ところで、被測定者の属性に最適な位置に
ある脈波成分検出用の光電センサの選定は、血圧をカフ
の減圧過程又は加圧過程のいずれかで測定するかによ
り、様々な過程で実行できる。例えばその選定を減圧測
定で行う場合において、上記図3及び図6のように構成
された電子血圧計の動作について図7のフロー図を参照
して説明する。この場合、血圧測定は減圧過程で行う。
つまり、図9に示すように、カフ1を一旦最高血圧以上
に加圧し、この加圧過程で脈波成分検出用の光電センサ
の選定を行い、加圧後、一定圧で減圧していき、血圧決
定方法として例えば、その減圧過程での脈波出現点を最
高血圧、脈波消失点を最低血圧とする。血圧決定方法と
しては、この他に脈波振幅の包絡線を算出し、所定の閾
値を設定して決定する方法などもある。By the way, the selection of the photoelectric sensor for detecting the pulse wave component at the position most suitable for the attribute of the subject depends on various processes depending on whether the blood pressure is measured in the depressurizing process or the pressurizing process of the cuff. Can be run with For example, in the case where the selection is performed by the decompression measurement, the operation of the electronic sphygmomanometer configured as shown in FIGS. 3 and 6 will be described with reference to the flowchart of FIG. In this case, the blood pressure measurement is performed during the decompression process.
In other words, as shown in FIG. 9, the cuff 1 is once pressurized to a pressure equal to or higher than the systolic blood pressure, a photoelectric sensor for detecting a pulse wave component is selected in the pressurizing process, and after the pressurization, the pressure is reduced at a constant pressure. As a blood pressure determination method, for example, a pulse wave appearance point in the pressure reduction process is set as a systolic blood pressure, and a pulse wave disappearance point is set as a diastolic blood pressure. As another blood pressure determining method, there is a method of calculating the envelope of the pulse wave amplitude, and setting and determining a predetermined threshold value.
【0022】まず、ステップ(以下、STと略す)1に
おいて、全ての変数が初期化された後、カフの加圧が開
始される(ST2)。この加圧中に、発光素子20と受
光素子21〜23で構成される脈波成分検出用の光電セ
ンサ10-1,10-2,10-3により、光電脈波信号が測
定され、発光素子20と受光素子31〜33で構成され
る体動成分検出用の光電センサ14-1,14-2,14-3
により、体動信号が測定される(ST3)。First, in step (hereinafter abbreviated as ST) 1, after all variables are initialized, pressurization of the cuff is started (ST2). During this pressurization, photoelectric pulse wave signals are measured by photoelectric sensors 10 -1 , 10 -2 , and 10 -3 for detecting a pulse wave component composed of the light emitting element 20 and the light receiving elements 21 to 23, and the light emitting element 20-1 and photoelectric sensors 14 -1 , 14 -2 , 14 -3 for detecting body movement components, which are composed of light receiving elements 31 to 33.
, A body motion signal is measured (ST3).
【0023】次いで、被測定者の属性に最適な位置にあ
る脈波成分検出用の光電センサが決定される(ST
4)。最適な光電脈波信号の指標として、各光電センサ
からの光電脈波信号を周波数解析して信号パワーを算出
し、各信号パワーにおける脈波成分と体動成分の信号パ
ワーを比較し、脈波成分対体動成分比(以下、S/N比
という)が最も高い光電センサを、被測定者の属性に最
適な位置にある光電センサとする。S/N比が高いとい
うことは、体動ノイズに比べ、脈波成分が良好に捉えら
れていることを意味するから、S/N比が最も高い信号
パワーが得られる光電センサは被測定者の属性に適して
いることになる。逆に、S/N比が低いということは、
体動ノイズに比べ、脈波成分が十分に捉えられていない
ことを意味するため、S/N比が低い信号パワーしか得
られない光電センサは被測定者の属性に適していないこ
とになり、以後の体動ノイズ除去処理において、十分な
ノイズ除去効果が期待できず、正確な血圧算出が行えな
い。Next, a photoelectric sensor for detecting a pulse wave component at a position optimal for the attribute of the subject is determined (ST).
4). As an index of the optimal photoplethysmographic signal, the photoplethysmographic signal from each photoelectric sensor is frequency-analyzed to calculate signal power, and the pulse wave component and the body motion component signal power at each signal power are compared. The photoelectric sensor having the highest component-to-body motion component ratio (hereinafter, referred to as S / N ratio) is defined as the photoelectric sensor located at a position that is optimal for the attribute of the subject. Since the high S / N ratio means that the pulse wave component is captured better than the body motion noise, the photoelectric sensor that can obtain the signal power with the highest S / N ratio is the subject. Will be suitable for the attribute. Conversely, a low S / N ratio means that
Compared with the body motion noise, it means that the pulse wave component is not sufficiently captured, so that the photoelectric sensor that can obtain only a signal power with a low S / N ratio is not suitable for the attribute of the subject, In the subsequent body motion noise removal processing, a sufficient noise removal effect cannot be expected, and accurate blood pressure calculation cannot be performed.
【0024】上記のとおり被測定者の属性に最適な位置
にある脈波成分検出用の光電センサが決定された後、選
定された脈波成分検出用の光電センサに対応する体動成
分検出用の光電センサが決定される(ST5)。即ち、
図6において、被測定者の属性に最適な位置にある脈波
成分検出用の光電センサとして、例えば光電センサ10
-3(受光素子23)が選定された場合、発光素子20と
受光素子23との間の距離と同一距離に位置する光電セ
ンサ14-3(受光素子33)が決定される。After the photoelectric sensor for detecting the pulse wave component at the position optimal for the attribute of the subject is determined as described above, the body motion component corresponding to the selected photoelectric sensor for detecting the pulse wave component is detected. Are determined (ST5). That is,
In FIG. 6, as a photoelectric sensor for detecting a pulse wave component at a position that is optimal for the attribute of the subject, for example, a photoelectric sensor 10
When -3 (light receiving element 23) is selected, the photoelectric sensor 14 -3 (light receiving element 33) located at the same distance as the distance between the light emitting element 20 and the light receiving element 23 is determined.
【0025】カフの内圧が最高血圧以上に達したら、一
定圧での減圧が開始され(ST6)、その減圧過程でカ
フ圧力の測定、光電脈波信号の測定、体動信号の測定が
行われ(ST7)、その測定結果により光電脈波信号か
らノイズとなる体動成分が除去される(ST8)。光電
脈波信号を周波数解析して算出した信号パワー中から脈
波成分と体動成分を検出する具体的手法は、次のとおり
である。最初に、複数個(3個)の体動成分検出用の光
電センサ14-1,14-2,14-3のうち、前記のように
任意の光電センサで測定した体動信号を周波数解析し、
体動成分の基本周波数を算出する。続いて、光電脈波信
号を周波数解析して得られる信号パワー中において、先
に求めた体動成分の基本周波数と合致する成分が体動成
分の信号パワーとなり、残りの信号パワー中において、
体動成分の基本周波数の高調波成分を除去して得られる
成分が脈波成分の信号パワーとなる。When the internal pressure of the cuff reaches or exceeds the maximum blood pressure, decompression at a constant pressure is started (ST6). During the decompression process, measurement of the cuff pressure, measurement of the photoelectric pulse wave signal, and measurement of the body motion signal are performed. (ST7), a body motion component that becomes noise is removed from the photoelectric pulse wave signal based on the measurement result (ST8). A specific method for detecting a pulse wave component and a body motion component from the signal power calculated by frequency analysis of the photoelectric pulse wave signal is as follows. First, a body motion signal measured by an arbitrary photoelectric sensor among a plurality (three) of photoelectric sensors 14 -1 , 14 -2 , and 14 -3 for detecting body motion components is subjected to frequency analysis. ,
Calculate the fundamental frequency of the body motion component. Subsequently, in the signal power obtained by frequency analysis of the photoelectric pulse wave signal, a component that matches the fundamental frequency of the body motion component obtained earlier becomes the signal power of the body motion component, and in the remaining signal power,
The component obtained by removing the harmonic component of the fundamental frequency of the body motion component becomes the signal power of the pulse wave component.
【0026】例えば図11及び図12は体動中における
血圧測定を示し、図11は3個の脈波成分検出用の光電
センサにより得られる光電脈波信号を示し、図12は2
個の体動成分検出用の光電センサにより得られる体動信
号を示している。これより明らかなように、光電脈波信
号の信号パワーにおいて、体動成分の基本周波数に合致
する成分が体動成分の信号パワーとなる。For example, FIGS. 11 and 12 show blood pressure measurement during body movement, FIG. 11 shows photoelectric pulse wave signals obtained by three photoelectric sensors for detecting pulse wave components, and FIG.
9 shows a body motion signal obtained by a photoelectric sensor for detecting individual body motion components. As is clear from this, in the signal power of the photoelectric pulse wave signal, a component that matches the fundamental frequency of the body motion component is the signal power of the body motion component.
【0027】光電脈波信号から体動成分が除去された
後、最高血圧及び最低血圧が算出され(ST9)、得ら
れた血圧値が表示される(ST10)。上記図7のフロ
ー図は、被測定者の属性に最適な位置にある脈波成分検
出用の光電センサの選定を減圧測定で行う場合である
が、加圧測定で行う場合のフロー図を図8に示す。この
場合、カフの加圧中に血圧測定を行う。脈波成分検出用
の光電センサの選定は、図10に示すように、例えば血
圧測定のための加圧の前に予備加圧を行い、この予備加
圧過程で行う。これは、加圧測定では、カフ圧が最低血
圧よりも低い場合、脈波が出現する区間が存在しない場
合があるからである。After the body motion component is removed from the photoelectric pulse wave signal, the systolic blood pressure and the diastolic blood pressure are calculated (ST9), and the obtained blood pressure values are displayed (ST10). The flow chart of FIG. 7 is a case where the photoelectric sensor for detecting the pulse wave component at the position most suitable for the attribute of the subject is selected by the pressure reduction measurement. FIG. In this case, the blood pressure measurement is performed during pressurization of the cuff. As shown in FIG. 10, the selection of the photoelectric sensor for detecting the pulse wave component is performed, for example, by performing pre-pressurization before pressurization for measuring blood pressure, and in this pre-pressurization process. This is because in the pressure measurement, when the cuff pressure is lower than the diastolic blood pressure, there is a case where there is no section in which a pulse wave appears.
【0028】まず、ST11で初期化が行われた後、カ
フの予備加圧が行われ(ST12)、その予備加圧中に
光電脈波信号及び体動信号が測定される(ST13)。
そして、前記と同様に、被測定者の属性に最適な位置に
ある脈波成分検出用の光電センサが決定され(ST1
4)、それに応じて体動成分検出用の光電センサが決定
される(ST15)。First, after initialization is performed in ST11, pre-pressurization of the cuff is performed (ST12), and a photoelectric pulse wave signal and a body motion signal are measured during the pre-pressurization (ST13).
Then, in the same manner as described above, the photoelectric sensor for detecting the pulse wave component at the position optimal for the attribute of the subject is determined (ST1).
4) A photoelectric sensor for detecting a body motion component is determined accordingly (ST15).
【0029】次いで、カフが最高血圧以上に加圧され
(ST16)、その加圧過程でカフ圧力の測定、光電脈
波信号の測定、体動信号の測定が行われ(ST17)、
その測定結果により光電脈波信号から体動成分が除去さ
れる(ST18)。その後、最高血圧及び最低血圧が算
出され(ST19)、得られた血圧値が表示され(ST
20)、カフが急速排気される(ST21)。Next, the cuff is pressurized to a pressure equal to or higher than the systolic blood pressure (ST16). During the pressurization process, measurement of the cuff pressure, measurement of the photoelectric pulse wave signal, and measurement of the body motion signal are performed (ST17).
The body movement component is removed from the photoelectric pulse wave signal based on the measurement result (ST18). Thereafter, the systolic blood pressure and the diastolic blood pressure are calculated (ST19), and the obtained blood pressure values are displayed (ST19).
20), the cuff is rapidly exhausted (ST21).
【0030】なお、図7及び図8のフロー図は、被測定
者の属性に最適な位置にある脈波成分検出用の光電セン
サの選定を、それぞれ減圧測定及び加圧測定で行う場合
であるが、減圧測定及び加圧測定のいずれにおいても、
血圧算出(図7のST9、図8のST19)中に行うこ
とも可能である。又、上記実施形態は、体動中の血圧測
定での選定に係るが、安静時の血圧測定においても同様
である。即ち、この場合、光電脈波信号を周波数解析し
て得られる信号パワーの最も高い光電センサが被測定者
の属性に最適な位置にある光電センサとなる。The flow charts of FIGS. 7 and 8 show a case where a photoelectric sensor for detecting a pulse wave component located at a position most suitable for the attribute of the subject is measured by pressure reduction measurement and pressure measurement, respectively. However, in both the decompression measurement and the pressure measurement,
It can also be performed during blood pressure calculation (ST9 in FIG. 7, ST19 in FIG. 8). Further, the above embodiment relates to selection in blood pressure measurement during body movement, but the same applies to blood pressure measurement at rest. That is, in this case, the photoelectric sensor having the highest signal power obtained by frequency-analyzing the photoelectric pulse wave signal is the photoelectric sensor located at a position optimal for the attribute of the subject.
【0031】例えば図13及び図14は安静下における
血圧測定を示し、図13は3個の脈波成分検出用の光電
センサにより得られる光電脈波信号を示し、図14は2
個の体動成分検出用の光電センサにより得られる体動信
号を示している。この場合、光電脈波信号の信号パワー
において、信号パワーが最も高い光電センサ(ここでは
センサ3)が最適となる。For example, FIGS. 13 and 14 show blood pressure measurements under resting conditions, FIG. 13 shows photoelectric pulse wave signals obtained by three photoelectric sensors for detecting pulse wave components, and FIG.
9 shows a body motion signal obtained by a photoelectric sensor for detecting individual body motion components. In this case, among the signal powers of the photoelectric pulse wave signals, the photoelectric sensor having the highest signal power (here, sensor 3) is optimal.
【0032】更に、血圧測定が体動中で行われている
か、或いは安静下で行われているかの判定も同様に行う
ことが可能である。つまり、図14に示すように、体動
成分検出用の光電センサで測定した体動信号を周波数解
析して得られる信号パワーの値を、予め設定しておいた
閾値と比較する。信号パワーが閾値より大きい場合は体
動ノイズであると判定し、その体動ノイズを多く検出し
たときは、体動中の測定と判定する。反対に、信号パワ
ーが閾値より小さい場合は体動ノイズではないと判定
し、体動ノイズを全く検出しないか少ししか検出しない
ときは、安静下の測定と判定する。Further, it is possible to similarly determine whether the blood pressure measurement is being performed during body movement or whether the measurement is being performed at rest. That is, as shown in FIG. 14, the value of the signal power obtained by frequency analysis of the body motion signal measured by the photoelectric sensor for body motion component detection is compared with a preset threshold. If the signal power is greater than the threshold, it is determined that the noise is body movement noise, and if a large amount of the body movement noise is detected, it is determined that the measurement is during body movement. Conversely, when the signal power is smaller than the threshold value, it is determined that it is not body motion noise, and when no or only a small amount of body motion noise is detected, it is determined that the measurement is at rest.
【0033】この他、上記フロー図は、体動成分検出用
として複数個の光電センサを用いる場合(図3参照)で
あるが、1個の加速度センサや光電センサの場合(図
1、図2参照)も同様である。但し、この場合は、脈波
成分検出用の光電センサの選定に応じて体動成分検出用
のセンサを決定する必要はない。In addition, the above flow chart shows a case in which a plurality of photoelectric sensors are used for detecting a body movement component (see FIG. 3). However, in the case of one acceleration sensor or photoelectric sensor (see FIGS. 1 and 2). The same applies to the above. However, in this case, it is not necessary to determine the sensor for detecting the body motion component according to the selection of the photoelectric sensor for detecting the pulse wave component.
【0034】[0034]
【発明の効果】本発明の電子血圧計は、以上説明したよ
うに構成されるため、下記の効果を有する。 (1)体表から深い部分にある動脈からも光電脈波信号
を確実に得ることができる。 (2)複数個の脈波成分検出用の光電センサのうち、被
測定者の属性によらず血圧測定に最適な脈波成分検出用
の光電センサを選定することができる。 (3)(1),(2)により、精度の高い血圧測定を行
うことができる。 (4)請求項7の構成とすれば、光電脈波信号に重畳し
ている体動成分と相関の高い体動信号を得ることがで
き、ノイズの除去効率が高くなる。 (5)請求項16の構成とすれば、光電脈波信号及び体
動信号を正確に検出できる。The electronic sphygmomanometer of the present invention has the following effects because it is configured as described above. (1) A photoplethysmographic signal can be reliably obtained from an artery located deep from the body surface. (2) An optimal photoelectric sensor for detecting a pulse wave component can be selected from among a plurality of photoelectric sensors for detecting a pulse wave component, regardless of the attributes of the subject. (3) According to (1) and (2), highly accurate blood pressure measurement can be performed. (4) According to the configuration of claim 7, a body motion signal having a high correlation with the body motion component superimposed on the photoelectric pulse wave signal can be obtained, and the noise removal efficiency increases. (5) According to the configuration of claim 16, the photoelectric pulse wave signal and the body motion signal can be accurately detected.
【図1】第1の実施形態に係る電子血圧計の構成を示す
ブロック図である。FIG. 1 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to a first embodiment.
【図2】第2の実施形態に係る電子血圧計の構成を示す
ブロック図である。FIG. 2 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to a second embodiment.
【図3】第3の実施形態に係る電子血圧計の構成を示す
ブロック図である。FIG. 3 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to a third embodiment.
【図4】第1の実施形態の電子血圧計におけるカフの概
略断面図である。FIG. 4 is a schematic sectional view of a cuff in the electronic sphygmomanometer according to the first embodiment.
【図5】第2の実施形態の電子血圧計におけるカフの概
略断面図である。FIG. 5 is a schematic sectional view of a cuff in the electronic sphygmomanometer according to the second embodiment.
【図6】第3の実施形態の電子血圧計におけるカフの概
略断面図である。FIG. 6 is a schematic sectional view of a cuff in an electronic sphygmomanometer according to a third embodiment.
【図7】血圧測定をカフの減圧過程で行う場合における
第3の実施形態の電子血圧計の動作を示すフロー図であ
る。FIG. 7 is a flowchart showing an operation of the electronic sphygmomanometer according to the third embodiment in a case where blood pressure measurement is performed during the depressurization process of the cuff.
【図8】血圧測定をカフの加圧過程で行う場合における
第3の実施形態の電子血圧計の動作を示すフロー図であ
る。FIG. 8 is a flowchart showing the operation of the electronic sphygmomanometer according to the third embodiment in the case where blood pressure measurement is performed during the cuff pressurization process.
【図9】血圧測定をカフの減圧過程で行う場合の時間と
カフ圧との関係を示すグラフである。FIG. 9 is a graph showing the relationship between time and cuff pressure when blood pressure measurement is performed during the depressurization process of the cuff.
【図10】血圧測定をカフの加圧過程で行う場合の時間
とカフ圧との関係を示すグラフである。FIG. 10 is a graph showing the relationship between time and cuff pressure when blood pressure measurement is performed during the cuff pressurization process.
【図11】体動中の血圧測定の場合で実施形態の電子血
圧計における脈波成分検出用の光電センサで得られる光
電脈波信号を示すグラフである。FIG. 11 is a graph showing a photoelectric pulse wave signal obtained by a photoelectric sensor for detecting a pulse wave component in the electronic sphygmomanometer according to the embodiment in the case of measuring blood pressure during body movement.
【図12】体動中の血圧測定の場合で実施形態の電子血
圧計における体動成分検出用の光電センサで得られる体
動信号を示すグラフである。FIG. 12 is a graph showing a body motion signal obtained by a photoelectric sensor for detecting a body motion component in the electronic sphygmomanometer according to the embodiment in the case of measuring blood pressure during body movement.
【図13】安静下の血圧測定の場合で実施形態の電子血
圧計における脈波成分検出用の光電センサで得られる光
電脈波信号を示すグラフである。FIG. 13 is a graph showing a photoelectric pulse wave signal obtained by a photoelectric sensor for detecting a pulse wave component in the electronic sphygmomanometer according to the embodiment in the case of blood pressure measurement under rest.
【図14】安静下の血圧測定の場合で実施形態の電子血
圧計における体動成分検出用の光電センサで得られる体
動信号を示すグラフである。FIG. 14 is a graph showing a body motion signal obtained by a photoelectric sensor for detecting a body motion component in the electronic sphygmomanometer according to the embodiment in the case of measuring blood pressure under rest.
1 カフ 2 加圧ポンプ(圧力制御手段) 3 排気弁(圧力制御手段) 4 圧力センサ(圧力検出手段) 6 CPU(血圧算出手段、光電セ
ンサ選定手段) 10-1,…,10-n 脈波成分検出用の光電センサ 11 体動成分検出用の加速度センサ
(体動成分検出手段) 14-1,…,14-n 体動成分検出用の光電センサ
(体動成分検出手段)DESCRIPTION OF SYMBOLS 1 Cuff 2 Pressure pump (pressure control means) 3 Exhaust valve (pressure control means) 4 Pressure sensor (pressure detection means) 6 CPU (blood pressure calculation means, photoelectric sensor selection means) 10-1 , ..., 10- n pulse wave Photoelectric sensor for component detection 11 Acceleration sensor for body motion component detection (body motion component detection means) 14 -1 ,..., 14- n Photoelectric sensor for body motion component detection (body motion component detection means)
Claims (16)
カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力
を検出する圧力検出手段と、カフのそれぞれ異なる位置
に設けられた複数個の脈波成分検出用の光電センサと、
カフに設けられると共に体動成分を検出する少なくとも
1個の体動成分検出手段と、光電センサで得られた脈波
成分から体動成分検出手段で得られた体動成分を除去し
て血圧を算出する血圧算出手段と、複数個の光電センサ
のうち、被測定者の属性に最適な位置にある光電センサ
を選定する光電センサ選定手段とを備え、前記光電セン
サ選定手段で選定された光電センサにより得られる脈波
成分を用いて血圧を算出するようにしたことを特徴とす
る電子血圧計。1. A cuff for pressurizing a measurement site of a living body,
Pressure control means for pressurizing and depressurizing the inside of the cuff, pressure detecting means for detecting the pressure inside the cuff, and a plurality of pulse wave component detecting photoelectric sensors provided at different positions of the cuff,
At least one body movement component detecting means provided on the cuff and detecting a body movement component, and removing the body movement component obtained by the body movement component detection means from the pulse wave component obtained by the photoelectric sensor to reduce blood pressure A blood pressure calculating means for calculating, and a photoelectric sensor selecting means for selecting a photoelectric sensor located at a position most suitable for the attribute of the person to be measured among the plurality of photoelectric sensors, the photoelectric sensor selected by the photoelectric sensor selecting means An electronic sphygmomanometer characterized in that blood pressure is calculated using a pulse wave component obtained by the following.
センサにより得られる光電脈波信号を周波数解析して信
号パワーを算出し、各光電センサにより得られる脈波成
分と体動成分の信号パワーを比較し、脈波成分対体動成
分比が最も高い光電センサを、被測定者の属性に最適な
位置にある光電センサとすることを特徴とする請求項1
記載の電子血圧計。2. The photoelectric sensor selecting means calculates a signal power by frequency-analyzing a photoelectric pulse wave signal obtained by a plurality of photoelectric sensors, and calculates a pulse wave component and a body motion component signal obtained by each photoelectric sensor. The photoelectric sensor having the highest ratio of pulse wave component to body motion component by comparing powers is a photoelectric sensor located at a position optimal for the attribute of the subject.
Electronic blood pressure monitor as described.
センサにより得られる光電脈波信号を周波数解析して信
号パワーを算出し、体動成分検出手段で得られる体動成
分を周波数解析して体動成分の基本周波数を算出し、光
電脈波の信号パワー中の成分のうち、体動成分の基本周
波数と光電脈波の信号パワーの周波数とが合致する成分
を体動成分とすることを特徴とする請求項2記載の電子
血圧計。3. The photoelectric sensor selecting means calculates a signal power by frequency-analyzing a photoelectric pulse wave signal obtained by a plurality of photoelectric sensors, and frequency-analyzes a body motion component obtained by a body motion component detecting means. Calculating the fundamental frequency of the body motion component, and among the components in the signal power of the photoplethysmogram, the component in which the fundamental frequency of the body motion component matches the frequency of the signal power of the photoplethysmogram is defined as the body motion component. The electronic sphygmomanometer according to claim 2, characterized in that:
理量に変換して測定するセンサであることを特徴とする
請求項1、請求項2又は請求項3記載の電子血圧計。4. The electronic sphygmomanometer according to claim 1, wherein said body movement component detecting means is a sensor for converting a movement of a living body into a physical quantity and measuring the physical quantity.
って変化する生体量を測定するセンサであることを特徴
とする請求項1、請求項2又は請求項3記載の電子血圧
計。5. An electronic sphygmomanometer according to claim 1, wherein said body movement component detecting means is a sensor for measuring a biomass that changes according to the movement of the living body.
サであることを特徴とする請求項5記載の電子血圧計。6. The electronic sphygmomanometer according to claim 5, wherein the sensor for measuring the biomass is a photoelectric sensor.
ンサであり、これら複数個の体動成分検出用の光電セン
サは、前記複数個の脈波成分検出用の光電センサに対応
してカフのそれぞれ異なる位置に設けられ、複数個の体
動成分検出用の光電センサのうち、前記被測定者の属性
に最適な位置にある脈波成分検出用の光電センサに対応
する体動成分検出用の光電センサにより得られる体動信
号を、血圧算出における体動成分除去に使用することを
特徴とする請求項6記載の電子血圧計。7. The body movement component detecting means includes a plurality of photoelectric sensors, and the plurality of body movement component detection photoelectric sensors correspond to the plurality of pulse wave component detection photoelectric sensors. A body motion component corresponding to a pulse wave component detection photoelectric sensor that is provided at a different position of the cuff and is at a position that is optimal for the attribute of the subject among a plurality of body motion component detection photoelectric sensors. The electronic sphygmomanometer according to claim 6, wherein a body motion signal obtained by the photoelectric sensor for detection is used for removing a body motion component in blood pressure calculation.
かを判別する判別手段を備えることを特徴とする請求項
1記載の電子血圧計。8. The electronic sphygmomanometer according to claim 1, further comprising a discriminating means for discriminating between a blood pressure measurement at rest and a blood pressure measurement during body movement.
れる体動信号を周波数解析して得られる信号パワーの大
小によって判別することを特徴とする請求項8記載の電
子血圧計。9. An electronic sphygmomanometer according to claim 8, wherein said discriminating means discriminates according to the magnitude of signal power obtained by frequency analysis of the body motion signal obtained by the body motion component detecting means.
圧測定の場合は、各光電センサにより得られる光電脈波
信号を周波数解析して得られる信号パワーが最も大きい
光電センサを、被測定者の属性に最適な位置にある光電
センサとすることを特徴とする請求項1記載の電子血圧
計。10. In the case of measuring blood pressure at rest, the photoelectric sensor selecting means determines a photoelectric sensor having the largest signal power obtained by frequency analysis of a photoelectric pulse wave signal obtained by each photoelectric sensor. 2. The electronic sphygmomanometer according to claim 1, wherein the photoelectric sensor is located at a position optimal for the attribute of the electronic blood pressure sensor.
い、前記光電センサ選定手段による光電センサの選定
は、カフ内の加圧過程で行うことを特徴とする請求項
1、請求項2、請求項3、請求項4、請求項5、請求項
6、請求項7、請求項8、請求項9又は請求項10記載
の電子血圧計。11. The method according to claim 1, wherein the calculation of the blood pressure is performed in a pressure reducing process in the cuff, and the selection of the photoelectric sensor by the photoelectric sensor selecting means is performed in a pressurizing process in the cuff. The electronic sphygmomanometer according to claim 3, claim 4, claim 5, claim 5, claim 6, claim 7, claim 8, claim 9, or claim 10.
い、前記光電センサ選定手段による光電センサの選定
は、血圧算出と併行して行うことを特徴とする請求項
1、請求項2、請求項3、請求項4、請求項5、請求項
6、請求項7、請求項8、請求項9又は請求項10記載
の電子血圧計。12. The method according to claim 1, wherein the calculation of the blood pressure is performed during a pressure reduction process in the cuff, and the selection of the photoelectric sensor by the photoelectric sensor selecting means is performed in parallel with the calculation of the blood pressure. The electronic sphygmomanometer according to claim 3, claim 4, claim 5, claim 5, claim 6, claim 7, claim 8, claim 9, or claim 10.
い、血圧を算出するための加圧の前に予備加圧を行い、
前記光電センサ選定手段による光電センサの選定は、予
備加圧過程で行うことを特徴とする請求項1、請求項
2、請求項3、請求項4、請求項5、請求項6、請求項
7、請求項8、請求項9又は請求項10記載の電子血圧
計。13. The blood pressure calculation is performed during a pressurization process in a cuff, and a preliminary pressurization is performed before pressurization for calculating a blood pressure.
The selection of the photoelectric sensor by the photoelectric sensor selecting means is performed in a pre-pressurization process, wherein the selection of the photoelectric sensor is performed in a pre-pressurization process. 11. The electronic sphygmomanometer according to claim 8, claim 9, or claim 10.
い、前記光電センサ選定手段による光電センサの選定
は、血圧算出と併行して行うことを特徴とする請求項
1、請求項2、請求項3、請求項4、請求項5、請求項
6、請求項7、請求項8、請求項9又は請求項10記載
の電子血圧計。14. The method according to claim 1, wherein the calculation of the blood pressure is performed during a pressurization process in the cuff, and the selection of the photoelectric sensor by the photoelectric sensor selecting means is performed in parallel with the calculation of the blood pressure. The electronic sphygmomanometer according to claim 3, claim 4, claim 5, claim 5, claim 6, claim 7, claim 8, claim 9, or claim 10.
る異なる位置に配置されていることを特徴とする請求項
1、請求項2、請求項3、請求項4、請求項5、請求項
6、請求項7、請求項8、請求項9、請求項10、請求
項11、請求項12、請求項13又は請求項14記載の
電子血圧計。15. The photoelectric sensor according to claim 1, wherein the photoelectric sensors are arranged at different positions in a circumferential direction of the cuff. An electronic sphygmomanometer according to claim 7, claim 8, claim 9, claim 9, claim 10, claim 11, claim 12, claim 13, or claim 14.
な方向における中央又は中央より生体の末端側に配置さ
れていることを特徴とする請求項1、請求項2、請求項
3、請求項4、請求項5、請求項6、請求項7、請求項
8、請求項9、請求項10、請求項11、請求項12、
請求項13、請求項14又は請求項15記載の電子血圧
計。16. The photoelectric sensor according to claim 1, wherein the photoelectric sensor is disposed at a center in a direction perpendicular to the circumferential direction of the cuff or at a terminal side of the living body from the center. Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, Claim 10, Claim 11, Claim 12,
The electronic sphygmomanometer according to claim 13, claim 14, or claim 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18109699A JP3700048B2 (en) | 1999-06-28 | 1999-06-28 | Electronic blood pressure monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18109699A JP3700048B2 (en) | 1999-06-28 | 1999-06-28 | Electronic blood pressure monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001008909A true JP2001008909A (en) | 2001-01-16 |
JP3700048B2 JP3700048B2 (en) | 2005-09-28 |
Family
ID=16094772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18109699A Expired - Lifetime JP3700048B2 (en) | 1999-06-28 | 1999-06-28 | Electronic blood pressure monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3700048B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006038589A1 (en) * | 2004-10-06 | 2006-04-13 | Terumo Kabushiki Kaisha | Blood pressure measuring device and blood pressure measuring method |
JP2006102262A (en) * | 2004-10-06 | 2006-04-20 | Terumo Corp | Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium |
JP2006102151A (en) * | 2004-10-05 | 2006-04-20 | Terumo Corp | Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium |
JP2007054497A (en) * | 2005-08-26 | 2007-03-08 | Sharp Corp | Detector |
JP2009011585A (en) * | 2007-07-05 | 2009-01-22 | Toshiba Corp | Apparatus and method for pulse wave processing |
JP2012050746A (en) * | 2010-09-02 | 2012-03-15 | Fujitsu Ltd | Biological information detection apparatus and portable terminal |
JP2013202076A (en) * | 2012-03-27 | 2013-10-07 | Seiko Epson Corp | Pulsation detection device, electronic equipment and program |
US8747327B2 (en) | 2009-05-07 | 2014-06-10 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring blood pressure |
WO2015141216A1 (en) * | 2014-03-18 | 2015-09-24 | 京セラ株式会社 | Biometric-information measurement device and biometric-information measurement method |
JP2017517349A (en) * | 2014-06-13 | 2017-06-29 | 日東電工株式会社 | Device and method for removing artifacts in physiological measurements |
CN109009044A (en) * | 2018-08-15 | 2018-12-18 | 合肥博谐电子科技有限公司 | Novel pulse wave acquisition device |
JP2020142070A (en) * | 2019-02-28 | 2020-09-10 | 株式会社アドバンス | Continuous blood pressure measurement system by phase difference method |
JP2021509626A (en) * | 2018-03-07 | 2021-04-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Blood pressure measurement system and method |
WO2022137497A1 (en) * | 2020-12-25 | 2022-06-30 | 日本電気株式会社 | Biometric measuring device, biometric measuring method, and program |
JP7474841B2 (en) | 2019-09-03 | 2024-04-25 | コーニンクレッカ フィリップス エヌ ヴェ | Reliable blood pressure measurement detection |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60135029A (en) * | 1983-12-23 | 1985-07-18 | 松下電工株式会社 | Blood stream and pulse detection apparatus |
JPH0313106U (en) * | 1989-06-22 | 1991-02-08 | ||
JPH07299043A (en) * | 1994-05-10 | 1995-11-14 | Sanyo Electric Co Ltd | Pulse detecting device |
JPH08289876A (en) * | 1995-02-20 | 1996-11-05 | Seiko Epson Corp | Pulse meter |
JPH119563A (en) * | 1997-06-27 | 1999-01-19 | Senoh Corp | Vibrationproof pulse ear sensor |
JPH11318840A (en) * | 1998-05-14 | 1999-11-24 | Omron Corp | Pulse wave detector |
-
1999
- 1999-06-28 JP JP18109699A patent/JP3700048B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60135029A (en) * | 1983-12-23 | 1985-07-18 | 松下電工株式会社 | Blood stream and pulse detection apparatus |
JPH0313106U (en) * | 1989-06-22 | 1991-02-08 | ||
JPH07299043A (en) * | 1994-05-10 | 1995-11-14 | Sanyo Electric Co Ltd | Pulse detecting device |
JPH08289876A (en) * | 1995-02-20 | 1996-11-05 | Seiko Epson Corp | Pulse meter |
JPH119563A (en) * | 1997-06-27 | 1999-01-19 | Senoh Corp | Vibrationproof pulse ear sensor |
JPH11318840A (en) * | 1998-05-14 | 1999-11-24 | Omron Corp | Pulse wave detector |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006102151A (en) * | 2004-10-05 | 2006-04-20 | Terumo Corp | Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium |
JP4563766B2 (en) * | 2004-10-05 | 2010-10-13 | テルモ株式会社 | Blood pressure measurement device, blood pressure measurement method, control program, and computer-readable storage medium |
WO2006038589A1 (en) * | 2004-10-06 | 2006-04-13 | Terumo Kabushiki Kaisha | Blood pressure measuring device and blood pressure measuring method |
JP2006102262A (en) * | 2004-10-06 | 2006-04-20 | Terumo Corp | Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium |
JP4657666B2 (en) * | 2004-10-06 | 2011-03-23 | テルモ株式会社 | Blood pressure measurement device |
JP2007054497A (en) * | 2005-08-26 | 2007-03-08 | Sharp Corp | Detector |
JP4607709B2 (en) * | 2005-08-26 | 2011-01-05 | シャープ株式会社 | Detection device |
JP2009011585A (en) * | 2007-07-05 | 2009-01-22 | Toshiba Corp | Apparatus and method for pulse wave processing |
US8747327B2 (en) | 2009-05-07 | 2014-06-10 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring blood pressure |
JP2012050746A (en) * | 2010-09-02 | 2012-03-15 | Fujitsu Ltd | Biological information detection apparatus and portable terminal |
JP2013202076A (en) * | 2012-03-27 | 2013-10-07 | Seiko Epson Corp | Pulsation detection device, electronic equipment and program |
WO2015141216A1 (en) * | 2014-03-18 | 2015-09-24 | 京セラ株式会社 | Biometric-information measurement device and biometric-information measurement method |
JPWO2015141216A1 (en) * | 2014-03-18 | 2017-04-06 | 京セラ株式会社 | Biological information measuring apparatus and biological information measuring method |
US10327707B2 (en) | 2014-03-18 | 2019-06-25 | Kyocera Corporation | Biological information measurement apparatus and biological information measurement method |
JP2017517349A (en) * | 2014-06-13 | 2017-06-29 | 日東電工株式会社 | Device and method for removing artifacts in physiological measurements |
JP2021509626A (en) * | 2018-03-07 | 2021-04-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Blood pressure measurement system and method |
CN109009044A (en) * | 2018-08-15 | 2018-12-18 | 合肥博谐电子科技有限公司 | Novel pulse wave acquisition device |
CN109009044B (en) * | 2018-08-15 | 2024-01-02 | 合肥博谐电子科技有限公司 | Novel pulse wave acquisition device |
JP2020142070A (en) * | 2019-02-28 | 2020-09-10 | 株式会社アドバンス | Continuous blood pressure measurement system by phase difference method |
JP7474841B2 (en) | 2019-09-03 | 2024-04-25 | コーニンクレッカ フィリップス エヌ ヴェ | Reliable blood pressure measurement detection |
WO2022137497A1 (en) * | 2020-12-25 | 2022-06-30 | 日本電気株式会社 | Biometric measuring device, biometric measuring method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP3700048B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5368039A (en) | Method and apparatus for determining blood pressure | |
US7361148B2 (en) | Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus | |
US6702754B2 (en) | Arteriosclerosis inspecting apparatus | |
JP3470121B2 (en) | Electronic blood pressure measurement device | |
RU2502463C2 (en) | Device for measuring information about blood pressure, capable of obtaining parameter for determining arteriosclerosis degree | |
US7029449B2 (en) | Arteriosclerosis inspecting apparatus | |
US7022084B2 (en) | Heart-sound detecting apparatus and heart-sound detecting method | |
US20020107450A1 (en) | Heart-sound detecting apparatus and heart-sound detecting method | |
US20030004425A1 (en) | Heart-sound detecting apparatus | |
US8840561B2 (en) | Suprasystolic measurement in a fast blood-pressure cycle | |
JP3700048B2 (en) | Electronic blood pressure monitor | |
JP5504477B2 (en) | Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same | |
US6955649B2 (en) | Arteriosclerosis evaluating apparatus | |
CN115135236A (en) | Improved personal health data collection | |
US6786872B2 (en) | Augmentation-index measuring apparatus | |
US6884221B2 (en) | Circulatory-organ evaluating apparatus | |
EP1356766A1 (en) | Blood-pressure measuring apparatus having pulse waveform analyzing function | |
WO2008156377A1 (en) | Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff | |
JPH05165Y2 (en) | ||
JP2001008908A (en) | Electric sphygmomanometer | |
US20040171941A1 (en) | Blood flow amount estimating apparatus | |
US20040171944A1 (en) | Filter for use with pulse-wave sensor and pulse wave analyzing apparatus | |
JPH0663024A (en) | Instrument for simultaneous and continuous bloodless measurement of blood pressure and degree of oxygen saturation in blood | |
JP2010207344A (en) | Blood pressure/blood velocity state determination device and method for determining the same | |
JP2001309895A (en) | Sphygmomanometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3700048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |