JP2001006854A - Double layer ceramic heater - Google Patents
Double layer ceramic heaterInfo
- Publication number
- JP2001006854A JP2001006854A JP11179542A JP17954299A JP2001006854A JP 2001006854 A JP2001006854 A JP 2001006854A JP 11179542 A JP11179542 A JP 11179542A JP 17954299 A JP17954299 A JP 17954299A JP 2001006854 A JP2001006854 A JP 2001006854A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- pyrolytic
- boron
- temperature
- heater pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
【請求項3】 前記ヒーターパターンが、炭化水素と三
塩化硼素の混合ガスを原料とする熱化学気相蒸着法によ
って形成された請求項1または請求項2に記載の複層セ
ラミックスヒーター。3. The multilayer ceramic heater according to claim 1, wherein the heater pattern is formed by a thermal chemical vapor deposition method using a mixed gas of hydrocarbon and boron trichloride as a raw material.
【0001】[0001]
【発明の属する技術分野】本発明は、半導体の熱処理や
光デバイスの製造工程に用いられるセラミックスヒータ
ーに関し、特に、急速昇温及び急速冷却が行われる加熱
源として好適な複層セラミックスヒーターに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater used for a heat treatment of a semiconductor or a manufacturing process of an optical device, and more particularly to a multilayer ceramic heater suitable as a heating source for performing rapid temperature rise and rapid cooling.
【0002】[0002]
【従来の技術】従来、半導体の熱処理に使用される抵抗
加熱方式のヒーターとしては、アルミナ、窒化アルミニ
ウム、ジルコニア、窒化硼素などの焼結セラミックスか
らなる支持基板にモリブデン、タングステンなどの高融
点金属の線や箔を巻き付けるか又は接着し、その上に電
気絶縁性のセラミックス板を載せたものが用いられてい
る。また、電気絶縁性を有するセラミックス支持基板上
に導電性セラミックスの発熱層を設け、この表面に電気
絶縁性セラミックスの被覆保護層を形成した抵抗加熱方
式のセラミックスヒーターが開発され、絶縁性及び耐食
性を改善している。2. Description of the Related Art Conventionally, as a heater of a resistance heating type used for heat treatment of a semiconductor, a supporting substrate made of sintered ceramics such as alumina, aluminum nitride, zirconia, and boron nitride is used. A wire or foil is wound or adhered, and an electrically insulating ceramic plate is mounted thereon. In addition, a resistance heating type ceramic heater was developed in which a heating layer of conductive ceramic was provided on a ceramic support substrate having electrical insulation, and a coating protective layer of electrically insulating ceramic was formed on this surface. Has improved.
【0003】しかし、絶縁性セラミックス支持基板に
は、通常、焼結セラミックスが使用されるが、これには
焼結助剤が添加されているので、加熱時の不純物汚染や
耐食性の低下が懸念される。さらに、焼結体であるため
耐熱衝撃性にも問題がある。特に、大形の焼結体では、
回避できない焼結の不均一さのために、基板が割れ易く
なる等の不都合が懸念され、急激な昇温と冷却が行われ
るプロセスにおいては、ヒーターへ適用が困難である。
この問題を解決する方法として、熱化学気相蒸着法(熱
CVD法)により形成された熱分解窒化硼素支持基板の
表面に、熱分解グラファイトからなるヒーターパターン
を接合し、さらに、そのヒーターパターンを覆って支持
基板と同じ熱分解グラファイトで保護層を形成した緻密
な層状の膜でできた一体型の抵抗加熱方式の複合セラミ
ックスヒーターが開発されている。However, sintered ceramics are usually used for the insulating ceramics support substrate. Since a sintering aid is added to the substrate, there is a concern that impurities may be contaminated during heating and corrosion resistance may be reduced. You. Furthermore, since it is a sintered body, there is a problem in thermal shock resistance. In particular, for large sintered bodies,
There is a concern that inevitable sintering non-uniformity causes inconvenience such as the substrate being easily broken, and it is difficult to apply the heater to a process in a process in which the temperature is rapidly increased and cooled.
As a method for solving this problem, a heater pattern made of pyrolytic graphite is bonded to the surface of a pyrolytic boron nitride support substrate formed by a thermal chemical vapor deposition method (thermal CVD method), and the heater pattern is further formed. An integrated resistance heating type composite ceramics heater made of a dense layered film in which a protective layer is formed of the same pyrolytic graphite as the supporting substrate to cover the same has been developed.
【0004】この複合セラミックスヒーターは、焼結助
剤等の不純物を含まず、化学的に安定で熱衝撃にも強い
ため、急激な昇降温を必要とする様々な分野、特に、ウ
エハ等を一枚ずつ処理する枚葉処理プロセスにおいて、
温度を段階的に変えて処理する連続プロセス等に幅広く
使用されている。また、このヒーターは、構成部材のす
べてが熱CVD法で作製され、粉末を焼結したセラミッ
クスに特有の粒界が存在しないため、脱ガス現象がな
く、真空内での処理プロセスにおいて、真空度に影響を
与えない。This composite ceramic heater does not contain impurities such as sintering aids and is chemically stable and resistant to thermal shock. Therefore, it can be used in various fields requiring a rapid temperature rise and fall, especially for wafers and the like. In a single-wafer processing process that processes each sheet,
It is widely used in continuous processes and the like in which the temperature is changed stepwise. In addition, since all the components are manufactured by the thermal CVD method and there is no grain boundary peculiar to the ceramic obtained by sintering the powder, the heater does not have a degassing phenomenon. Does not affect
【0005】この複合セラミックスヒーターには、発熱
層として熱分解グラファイトが埋設されている。この熱
分解グラファイトは、抵抗率温度依存性が大きく、負の
温度係数を有するので、温度上昇と共に抵抗率が低下す
るという特性を有する。このため、昇温や降温の際、電
圧又は電流を調節して一定の温度になるように温度調節
計等で制御しても、抵抗値が変わるため電力もそれに従
って変化し、制御が困難である。投入電力とヒーター温
度とは密接な関係があり、例えば、急速に一定温度に昇
温させて安定させるには、制御のプログラムの昇温ステ
ップを細かくする等の工夫をしなければならない。ま
た、室温近傍からの昇温開始時において、投入可能な最
大電圧をかけた場合、発熱層が、抵抗率温度依存性が大
きく負の温度係数を持ち、温度上昇と共に抵抗率が低下
するという特性を有していると、昇温開始時、つまり低
温時の初期抵抗値は高く、電圧制御の場合、電力は抵抗
に反比例するので、初期電圧は最大電力に対して小さく
なり、昇温の立ち上がりが遅れるという問題がある。In this composite ceramic heater, pyrolytic graphite is embedded as a heat generating layer. This pyrolytic graphite has a large temperature dependence of resistivity and a negative temperature coefficient, and thus has a characteristic that the resistivity decreases with increasing temperature. Therefore, at the time of temperature rise or temperature fall, even if the voltage or current is adjusted and controlled by a temperature controller or the like so as to be a constant temperature, the resistance value changes and the power also changes accordingly, making control difficult. is there. There is a close relationship between the input power and the heater temperature. For example, in order to quickly raise the temperature to a constant temperature and stabilize the temperature, it is necessary to take measures such as making the temperature raising step of the control program finer. In addition, when the maximum voltage that can be applied is applied at the start of heating from around room temperature, the heating layer has a large temperature dependence of resistivity, has a negative temperature coefficient, and the resistivity decreases with increasing temperature. When the temperature rise starts, that is, at the time of low temperature, the initial resistance value is high, and in the case of voltage control, since the power is inversely proportional to the resistance, the initial voltage becomes smaller than the maximum power, and the rise of the temperature rise There is a problem that is delayed.
【0006】[0006]
【発明が解決しようとする課題】従って、本発明の課題
は、上記のような従来知られた複合セラミックスヒータ
ーの欠点を克服して、特に、温度制御性の優れた複合セ
ラミックスヒーターを提供することにある。また、他の
課題は、昇温の立ち上がりが遅れることのない複合セラ
ミックスヒーターを提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a composite ceramic heater excellent in temperature control, which overcomes the above-mentioned drawbacks of the conventionally known composite ceramic heater. It is in. Another object is to provide a composite ceramic heater in which the rise of the temperature rise is not delayed.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を達成するために、特に、熱分解グラファイトの機能改
善に着目して試作研究を重ね、実用的に極めて望ましい
ヒーターを開発した。すなわち、本発明の複層セラミッ
クスヒーターは、熱分解窒化硼素支持基板の表面に、硼
素を 0.001〜30重量%含有する熱分解グラファイトから
なるヒーターパターンが形成され、該ヒーターパターン
を覆って、さらに給電端子部を除いた全表面に熱分解窒
化硼素保護層が形成されていることに技術的特徴があ
る。なお、支持基板、保護層及びヒーターパターンは熱
化学気相蒸着法によって形成し、このヒーターパターン
を、炭化水素と三塩化硼素の混合ガスを原料とする熱化
学気相蒸着法によって形成するのが好ましい。Means for Solving the Problems In order to achieve the above object, the present inventors have repeatedly conducted trial production research focusing on improving the function of pyrolytic graphite, and have developed a practically highly desirable heater. That is, in the multilayer ceramic heater according to the present invention, a heater pattern made of pyrolytic graphite containing 0.001 to 30% by weight of boron is formed on the surface of the pyrolytic boron nitride supporting substrate, and the heater pattern is further covered by covering the heater pattern. A technical feature is that a pyrolytic boron nitride protective layer is formed on the entire surface except for the terminal portion. The supporting substrate, the protective layer and the heater pattern are formed by a thermal chemical vapor deposition method, and the heater pattern is formed by a thermal chemical vapor deposition method using a mixed gas of hydrocarbon and boron trichloride as a raw material. preferable.
【0008】[0008]
【発明の実施の形態】本発明においては、特に、発熱層
として、 0.001〜30重量%の硼素を含有する熱分解グラ
ファイトを用いることにより、発熱層の抵抗率温度依存
性が小さくなるだけでなく、抵抗率そのものの値も小さ
くすることができる。硼素の含有量が、0.001 重量%未
満では、発熱層の抵抗率温度依存性の低下が不充分で、
硼素の添加効果が得られない。また、30重量%を超える
と、緻密な発熱層が形成されず、実用性に優れた発熱層
を得ることができない。従って、硼素含有量は上記の範
囲とされるが、好ましくは0.01〜20重量%である。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in particular, the use of pyrolytic graphite containing 0.001 to 30% by weight of boron as the heat generating layer not only reduces the temperature dependence of the resistivity of the heat generating layer but also reduces the temperature dependence. Also, the value of the resistivity itself can be reduced. If the boron content is less than 0.001% by weight, the temperature dependence of the resistivity of the heat generating layer is insufficiently reduced.
The effect of adding boron cannot be obtained. On the other hand, if the content exceeds 30% by weight, a dense heat-generating layer is not formed, and a heat-generating layer excellent in practicality cannot be obtained. Accordingly, the boron content is set in the above range, but is preferably 0.01 to 20% by weight.
【0009】熱分解グラファイトは、通常、例えば、メ
チルアルコールのような有機物質を炭素源として高温、
低圧条件下で熱分解させることによって生成される。本
発明のヒーターに用いられる硼素含有熱分解グラファイ
トは、例えば、メチルアルコールに三塩化硼素を溶解
し、1,500 ℃の温度、50Torrの減圧条件下でそれぞれの
ガス状成分を熱分解させることによって、熱分解窒化硼
素のような基体表面に熱分解グラファイトを生成・堆積
させることができる。硼素の熱分解グラファイト中の含
有量は、メチルアルコールへの三塩化硼素の添加量を選
択して、所望の含有量に調整される。[0009] Pyrolytic graphite is usually prepared by using an organic substance such as methyl alcohol as a carbon source at a high temperature,
Produced by pyrolysis under low pressure conditions. The pyrolytic graphite containing boron used in the heater of the present invention is prepared by dissolving boron trichloride in methyl alcohol and pyrolyzing each gaseous component at a temperature of 1,500 ° C. and a reduced pressure of 50 Torr, for example. Pyrolytic graphite can be generated and deposited on a substrate surface such as pyrolytic boron nitride. The content of boron in the pyrolytic graphite is adjusted to a desired content by selecting the amount of boron trichloride added to methyl alcohol.
【0010】本発明の複層セラミックヒーターは、熱分
解窒化硼素支持基板の表面に、硼素0.001〜30重量%を
添加含有させた熱分解グラファイトヒーターパターンが
形成され、さらにその全表面に熱分解窒化硼素保護層が
形成された基板一体型の抵抗加熱方式のヒーターであ
り、発熱層の抵抗率温度依存性が小さく、温度が変化し
ても抵抗率値の変化の幅が小さい。そのため、実際に昇
温や降温をして一定の温度になるよう温度調節計で制御
する際に、電圧又は電流を調節して所望の温度になるよ
うにすれば、抵抗値が変化しないため、電力も変化せ
ず、例えば、急速に一定温度に昇温させる際、制御プロ
グラムの制御ステップを細かくする等の工夫をしなくて
も、簡単なプログラムで温度を平衡させることができる
ので、容易かつ短時間にプログラムを最適化することが
できる。In the multilayer ceramic heater according to the present invention, a pyrolytic graphite heater pattern containing 0.001 to 30% by weight of boron is formed on the surface of the pyrolytic boron nitride support substrate, and the entire surface thereof is further subjected to pyrolytic nitriding. This is a substrate-integrated resistance heating type heater on which a boron protective layer is formed. The heating layer has small resistivity-temperature dependence, and the range of change in resistivity value is small even when the temperature changes. Therefore, when controlling by a temperature controller to actually raise or lower the temperature to a constant temperature, if the voltage or current is adjusted to the desired temperature, the resistance value does not change, The power does not change, for example, when the temperature is rapidly raised to a constant temperature, the temperature can be balanced with a simple program without any special measures such as making the control steps of the control program finer. The program can be optimized in a short time.
【0011】また、本発明の複層セラミックヒーター
は、室温付近からの昇温の際、昇温開始時に投入可能な
最大電圧をかけた場合でも発熱層の抵抗温度依存性が小
さく、温度が上昇しても抵抗率は変わらないという特性
を有しているため、低温時においても最大電圧に対し最
大電力が投入できるので、初期電力が最大投入可能電力
に等しく、昇温の立ち上がりが速い。支持基板となる熱
分解窒化硼素は、熱CVD法によって極めて緻密に作製
でき、薄くて低熱容量にもかかわらず、耐熱衝撃性に優
れた物性を有することから、これらの優れた諸特性を活
かしたセラミックヒーターの提供を可能とする。Further, in the multilayer ceramic heater according to the present invention, when the temperature is raised from around room temperature, even if a maximum voltage that can be applied at the start of the temperature rise is applied, the resistance temperature dependence of the heating layer is small, and the temperature rises. Even if the temperature is low, the maximum power can be applied to the maximum voltage even when the temperature is low. Therefore, the initial power is equal to the maximum power that can be applied, and the temperature rises quickly. The thermally decomposed boron nitride used as the supporting substrate can be extremely densely produced by the thermal CVD method, and has excellent physical properties with excellent thermal shock resistance despite its thinness and low heat capacity. It is possible to provide ceramic heaters.
【0012】さらに、上記特定範囲量の硼素を含有する
熱分解グラファイト発熱層は、抵抗率の温度依存性が小
さくなるだけでなく、抵抗率そのものの値を小さくする
ことができるという利点がある。換言すれば、同じ抵抗
のヒーターを作製する場合、硼素を 0.001〜30重量%添
加したものは、従来の発熱体の厚さを薄くすることがで
き、熱CVD法で作製した場合は、CVDの反応時間が
短縮されるので安価なヒーターを提供することができ、
工業的に有利である。Further, the pyrolytic graphite heating layer containing the above specific range of boron has the advantage that not only the temperature dependence of the resistivity but also the value of the resistivity itself can be reduced. In other words, when a heater having the same resistance is manufactured, a heater to which 0.001 to 30% by weight of boron is added can reduce the thickness of a conventional heating element. Since the reaction time is shortened, an inexpensive heater can be provided,
It is industrially advantageous.
【0013】[0013]
【実施例】次に、具体例により本発明をさらに詳細に説
明する。 (実施例1及び比較例1)NH3 とBCl3 を100 Torr
の減圧条件下に1,900 ℃の温度で反応させて、厚さ約1
mmの熱分解窒化硼素基板を作製した。次に、CH4 とB
Cl3 を1,500 ℃、50Torrの減圧条件下で熱分解させ
て、前記窒化硼素基板表面に厚さ約 100μmの硼素含有
熱分解グラファイト層を形成し、加工してヒーターとな
るパターンを形成した。次いで、NH3 とBCl3 とを
100 Torrの減圧条件下に1,900 ℃の温度で反応させて、
その上に厚さ約 100μmの熱分解窒化硼素保護層を形成
し、複層セラミックスヒーターを作製した。このときの
グラファイト層に含有される硼素は、熱分解グラファイ
トの8.2 重量%である。また、比較のために、熱分解グ
ラファイト層の形成にBCl3 を使用しない以外は、全
く同様に操作して同様の複層セラミックスヒーターを作
製した。Now, the present invention will be described in further detail with reference to specific examples. (Example 1 and Comparative Example 1) 100 Torr of NH 3 and BCl 3
At a temperature of 1,900 ° C under reduced pressure conditions of
A thermally decomposed boron nitride substrate of mm was produced. Next, CH 4 and B
Cl 3 was thermally decomposed at 1,500 ° C. under a reduced pressure of 50 Torr to form a boron-containing pyrolytic graphite layer having a thickness of about 100 μm on the surface of the boron nitride substrate, and processed to form a heater pattern. Then, the NH 3 and BCl 3
Reaction at a temperature of 1,900 ° C under reduced pressure of 100 Torr,
A pyrolytic boron nitride protective layer having a thickness of about 100 μm was formed thereon to produce a multilayer ceramic heater. At this time, the boron contained in the graphite layer was 8.2% by weight of the pyrolytic graphite. Further, for comparison, a similar multilayer ceramic heater was manufactured by operating in exactly the same manner except that BCl 3 was not used for forming the pyrolytic graphite layer.
【0014】作製した複層セラミックスヒーターを添付
図面により説明する。図1は、上記実施例1で作製した
本発明の複層セラミックスヒーター1の一例を示す平面
図である。図において、熱分解窒化硼素支持基板の表面
に、硼素含有熱分解グラファイトからなるヒーターパタ
ーン2が形成され、該ヒーターパターン2を覆って、さ
らに、給電端子3を除く全表面に熱分解窒化硼素保護層
が形成されている。該ヒーター領域の直径は約60mmであ
る。The manufactured multilayer ceramic heater will be described with reference to the accompanying drawings. FIG. 1 is a plan view showing an example of the multilayer ceramic heater 1 of the present invention produced in Example 1 above. In the drawing, a heater pattern 2 made of boron-containing pyrolytic graphite is formed on the surface of a pyrolytic boron nitride supporting substrate, and the entire surface except for the power supply terminal 3 is covered with the heater pattern 2 to protect the pyrolytic boron nitride. A layer is formed. The diameter of the heater area is about 60 mm.
【0015】作製した二種の複層セラミックスヒーター
の性能に関し、特に発熱体に着目して昇温試験を行っ
た。試験は、簡単な温度制御用プログラムを組み、10-5
Torr真空中で、最大電圧 100V、最大電流20A、投入
最大電力2,000 W、電圧PID制御により行った。その
結果、実施例1の発熱体は、抵抗値に温度依存性がな
く、抵抗値そのものも比較例1のヒーターに比べて半減
した。さらに、実施例1のヒーターは、急速な昇温が可
能で、かつ温度安定性も向上し、扱い易いことが確認さ
れた。図2は、各ヒーターの測定結果と設定されたプロ
グラムパターンがヒーター温度と経過時間との関係にお
いて示されている。また、図3は、投入電力と経過時間
との関係を示すグラフで、従来のヒーターと本発明のヒ
ーターが対比されている。両グラフから、本発明のヒー
ターは従来のヒーターに比べ、極めて短時間での昇温・
降温が可能であることが認められる。With respect to the performance of the two types of multilayer ceramic heaters thus produced, a heat-up test was conducted with particular attention to the heating elements. Test, set a simple temperature control program, 10 -5
In a Torr vacuum, the maximum voltage was 100 V, the maximum current was 20 A, the maximum input power was 2,000 W, and the voltage was controlled by PID. As a result, the resistance of the heating element of Example 1 did not depend on temperature, and the resistance itself was reduced by half compared to the heater of Comparative Example 1. Furthermore, it was confirmed that the heater of Example 1 was capable of rapidly raising the temperature, was improved in temperature stability, and was easy to handle. FIG. 2 shows the measurement result of each heater and the set program pattern in relation to the heater temperature and the elapsed time. FIG. 3 is a graph showing the relationship between the input power and the elapsed time, in which the conventional heater and the heater of the present invention are compared. From both graphs, it can be seen that the heater of the present invention raises the temperature in a very short time compared to the conventional heater.
It is recognized that the temperature can be lowered.
【0016】[0016]
【発明の効果】本発明の複層セラミックヒーターは、抵
抗温度依存性が小さく、かつ温度の変化による抵抗率の
変化幅が小さいため、電圧や電流による調節が容易で、
温度制御性が向上した。また、抵抗率が下げられるので
発熱層を薄くすることができ、薄型で低熱容量の急速な
昇降温が可能な複層セラミックヒーターを容易、かつ安
価に提供できる。The multilayer ceramic heater of the present invention has a small resistance-temperature dependence and a small range of change in resistivity due to a change in temperature.
Temperature controllability was improved. In addition, since the resistivity is reduced, the heat generating layer can be made thin, and a multilayer ceramic heater that is thin and has a low heat capacity and can rapidly raise and lower the temperature can be provided easily and at low cost.
【図1】 本発明の複層セラミックヒーターの一例を示
す平面図である。FIG. 1 is a plan view showing an example of a multilayer ceramic heater according to the present invention.
【図2】 ヒーター温度と経過時間との関係を示すグラ
フである。FIG. 2 is a graph showing a relationship between a heater temperature and an elapsed time.
【図3】 投入電力と経過時間との関係を示すグラフで
ある。FIG. 3 is a graph showing a relationship between applied power and elapsed time.
1・・・複層セラミックヒーター 2・・・ヒーターパターン 3・・・給電端子 1: Multilayer ceramic heater 2: Heater pattern 3: Power supply terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 延男 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 Fターム(参考) 3K034 AA04 AA05 AA16 AA22 AA31 BA06 BA13 BA14 BB06 BC17 JA01 JA10 3K092 PP20 QA05 QB15 QB30 QB45 QB62 QB78 RF02 RF03 RF17 RF19 RF27 TT31 VV16 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuo Arai 2-13-1 Isobe, Annaka-shi, Gunma F-term in Shin-Etsu Kagaku Kogyo Co., Ltd. Gunma Office (reference) 3K034 AA04 AA05 AA16 AA22 AA31 BA06 BA13 BA14 BB06 BC17 JA01 JA10 3K092 PP20 QA05 QB15 QB30 QB45 QB62 QB78 RF02 RF03 RF17 RF19 RF27 TT31 VV16
Claims (2)
を 0.001〜30重量%含有する熱分解グラファイトからな
るヒーターパターンが形成され、該ヒーターパターンを
覆って、さらに給電端子部を除いた全表面に熱分解窒化
硼素保護層が形成されてなる複層セラミックスヒータ
ー。1. A heater pattern made of pyrolytic graphite containing 0.001 to 30% by weight of boron is formed on the surface of a pyrolytic boron nitride supporting substrate. The heater pattern covers the heater pattern. A multilayer ceramic heater having a pyrolytic boron nitride protective layer formed on the surface.
ーンが、熱化学気相蒸着法によって形成された請求項1
に記載の複層セラミックスヒーター。2. The method according to claim 1, wherein the supporting substrate, the protective layer, and the heater pattern are formed by a thermal chemical vapor deposition method.
2. The multilayer ceramic heater according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17954299A JP3813381B2 (en) | 1999-06-25 | 1999-06-25 | Multilayer ceramic heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17954299A JP3813381B2 (en) | 1999-06-25 | 1999-06-25 | Multilayer ceramic heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001006854A true JP2001006854A (en) | 2001-01-12 |
JP3813381B2 JP3813381B2 (en) | 2006-08-23 |
Family
ID=16067581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17954299A Expired - Fee Related JP3813381B2 (en) | 1999-06-25 | 1999-06-25 | Multilayer ceramic heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3813381B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100396092B1 (en) * | 2001-06-05 | 2003-08-27 | 재단법인 포항산업과학연구원 | Carbon heater and fabrication method thereof |
EP1376660A2 (en) * | 2002-06-20 | 2004-01-02 | Shin-Etsu Chemical Co., Ltd. | Wafer heating apparatus with electrostatic attraction function |
KR100431655B1 (en) * | 2001-08-28 | 2004-05-17 | 삼성전자주식회사 | Heater assembly for heating a wafer |
JP2008531376A (en) * | 2005-02-24 | 2008-08-14 | エクスアテック、エル.エル.シー. | Pulse width modulation defroster |
DE102014216489A1 (en) | 2013-08-21 | 2015-02-26 | Shin-Etsu Chemical Co., Ltd. | THREE-DIMENSIONAL CERAMIC HEATING DEVICE |
JP2019186100A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Electric resistor, honeycomb structure, and electrically heated catalyst device |
CN110676195A (en) * | 2019-09-10 | 2020-01-10 | 博宇(天津)半导体材料有限公司 | Heater preparation mold and heater preparation method |
CN112853276A (en) * | 2020-12-31 | 2021-05-28 | 凯盛光伏材料有限公司 | Oxidation-resistant and pollution-resistant durable compound evaporation source |
-
1999
- 1999-06-25 JP JP17954299A patent/JP3813381B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100396092B1 (en) * | 2001-06-05 | 2003-08-27 | 재단법인 포항산업과학연구원 | Carbon heater and fabrication method thereof |
KR100431655B1 (en) * | 2001-08-28 | 2004-05-17 | 삼성전자주식회사 | Heater assembly for heating a wafer |
EP1376660A2 (en) * | 2002-06-20 | 2004-01-02 | Shin-Etsu Chemical Co., Ltd. | Wafer heating apparatus with electrostatic attraction function |
EP1376660A3 (en) * | 2002-06-20 | 2007-05-02 | Shin-Etsu Chemical Co., Ltd. | Wafer heating apparatus with electrostatic attraction function |
JP2008531376A (en) * | 2005-02-24 | 2008-08-14 | エクスアテック、エル.エル.シー. | Pulse width modulation defroster |
KR101342182B1 (en) | 2005-02-24 | 2013-12-16 | 엑사테크 엘.엘.씨. | Pulse width modulated defroster |
DE102014216489A1 (en) | 2013-08-21 | 2015-02-26 | Shin-Etsu Chemical Co., Ltd. | THREE-DIMENSIONAL CERAMIC HEATING DEVICE |
KR20150021885A (en) | 2013-08-21 | 2015-03-03 | 신에쓰 가가꾸 고교 가부시끼가이샤 | A Three-Dimensional Ceramic Heater |
TWI548302B (en) * | 2013-08-21 | 2016-09-01 | 信越化學工業股份有限公司 | A three-dimensional ceramic heater |
US10080259B2 (en) | 2013-08-21 | 2018-09-18 | Shin-Etsu Chemical Co., Ltd. | Three-dimensional ceramic heater |
JP2019186100A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Electric resistor, honeycomb structure, and electrically heated catalyst device |
CN110676195A (en) * | 2019-09-10 | 2020-01-10 | 博宇(天津)半导体材料有限公司 | Heater preparation mold and heater preparation method |
CN112853276A (en) * | 2020-12-31 | 2021-05-28 | 凯盛光伏材料有限公司 | Oxidation-resistant and pollution-resistant durable compound evaporation source |
Also Published As
Publication number | Publication date |
---|---|
JP3813381B2 (en) | 2006-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0964433B1 (en) | Multiple-layered ceramic heater | |
JP5524213B2 (en) | Wafer processing apparatus with adjustable electrical resistivity | |
TWI466847B (en) | Method for manufacturing ceramic sintered body, ceramic sintered body and ceramic heater | |
JP4879929B2 (en) | Electrostatic chuck and manufacturing method thereof | |
JPH08227933A (en) | Wafer heater with electrostatic attracting function | |
CA2381597C (en) | Circuit pattern of resistance heating elements and substrate-treating apparatus incorporating the pattern | |
US20040074898A1 (en) | Encapsulated graphite heater and process | |
JPH11260534A (en) | Heating apparatus and manufacture thereof | |
JP2005210077A (en) | Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor | |
JP4482472B2 (en) | Electrostatic chuck and manufacturing method thereof | |
JP2001006854A (en) | Double layer ceramic heater | |
EP1363316B1 (en) | Ceramic susceptor | |
TW541638B (en) | Heater member for mounting heating object and substrate processing apparatus using the same | |
TW200414287A (en) | Heating apparatus capable of electrostatic suction | |
JP4566213B2 (en) | Heating apparatus and manufacturing method thereof | |
JP2008159900A (en) | Ceramic heater with electrostatic chuck | |
CN110662314B (en) | Heater and preparation method thereof | |
JP4863176B2 (en) | Thin film heating element | |
JP2005294648A (en) | Electrostatic chuck and method for manufacturing the same | |
JPH06291049A (en) | Thin-film forming device | |
JP2009301796A (en) | Ceramic heater and its manufacturing method | |
JPH0465361A (en) | Silicon carbide heater and manufacture thereof | |
JPH0845651A (en) | Double-layered ceramic heater | |
JP2001357964A (en) | Laminated ceramic heater | |
JPH04119990U (en) | Wafer-shaped laminated ceramic heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3813381 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150609 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |