Nothing Special   »   [go: up one dir, main page]

JP2001071286A - Weaving method of articulated industrial robot - Google Patents

Weaving method of articulated industrial robot

Info

Publication number
JP2001071286A
JP2001071286A JP25228399A JP25228399A JP2001071286A JP 2001071286 A JP2001071286 A JP 2001071286A JP 25228399 A JP25228399 A JP 25228399A JP 25228399 A JP25228399 A JP 25228399A JP 2001071286 A JP2001071286 A JP 2001071286A
Authority
JP
Japan
Prior art keywords
shafts
motion
elliptical
industrial robot
weaving method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25228399A
Other languages
Japanese (ja)
Inventor
Seigo Nishikawa
清吾 西川
Ryuichi Morita
隆一 守田
Tatsuzo Nakazato
辰三 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP25228399A priority Critical patent/JP2001071286A/en
Publication of JP2001071286A publication Critical patent/JP2001071286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of defects in welding such as undercut, blow hole or the like without using a special device for rotating welding torches by sharing and controlling the teaching line copying motion to basic shafts and the circular motion or elliptical motion to wrist shafts. SOLUTION: This articulated industrial robot has revolving leg parts 2 revolved and driven about S-shafts on a base 1, has vertical arms 3 mounted on revolving leg parts 2 and oscillated and drive fore and aft about L-shafts, and further has horizontal arms 4 mounted on the vertical arms 3 and oscillated and driven up and down about U-shafts. Points of horizontal arms 4 are provided with wrist parts 5, and welding torches 6 are mounted on points of the wrist parts 5. The wrist parts 5 are respectively provided with three degrees of freedom, that is, the rotation about a R-shaft of the horizontal arm 4, the oscillation about a B-shaft perpendicular to the R-shaft, and the rotation about a T-shaft perpendicular to the B-shaft. A position of a point P is determined by angles of rotation of S, L, U three shafts, and a posture of the wrist parts 5 are determined by R, B, T three shafts. Here, the S, L, U three shafts are regarded as basic shafts, and the R, B, T three shafts are regarded as the wrist shafts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多関節産業用ロボ
ットの制御方法に関するものであり、特にアーク溶接ロ
ボットのウィービング動作に利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an articulated industrial robot, and more particularly to a method for weaving an arc welding robot.

【0002】[0002]

【従来の技術】溶接トーチを溶接線に沿って移動させな
がら、前記溶接トーチの先端が円運動をさせてウィービ
ングを行う方法は従来から各種のものが提案されてい
る。特開昭55−133871号公報では、溶接トーチ
を10Hz超の高速で回転させる方式が、また特開平1
−148465号公報には回転溶接とパルス溶接を組み
合わせた方式が開示されている。これらは、いずれも専
用の回転装置を用いる方式である。また、特開平1−2
73674号公報には、溶接線倣い動作をアーム軸に、
単振動動作を手首軸に各分担制御して高周波ウィービン
グさせる方法が開示されている。
2. Description of the Related Art Various methods have been proposed for weaving by moving the tip of the welding torch in a circular motion while moving the welding torch along a welding line. Japanese Patent Application Laid-Open No. 55-133881 discloses a method in which a welding torch is rotated at a high speed of more than 10 Hz.
Japanese Patent Application Publication No. 148465 discloses a method in which rotary welding and pulse welding are combined. Each of these methods uses a dedicated rotating device. Also, Japanese Patent Laid-Open No. 1-2
No. 73,674 discloses that a welding line following operation is performed on an arm axis,
A method is disclosed in which the simple oscillation operation is separately assigned to the wrist axis to perform high-frequency weaving.

【0003】[0003]

【発明が解決しようとする課題】ところがこれらの従来
の方法には次のような問題が生じていた。特開昭55−
133871号公報および特開平1−148465公報
で開示された方法では、溶接トーチに回転運動をさせる
ための専用の装置を必要としている。これらの専用装置
は、通常、高価であり、また、冶具やワークとの干渉を
発生させやすいという問題があった。特に、回転半径を
任意に変更できるようにしようとすると、特殊な機構が
必要となり、より高価、かつ、大型な装置となる。ま
た、メカ機構で回転半径を変更するには、一定の時間も
必要であり、溶接線ごとに回転半径変更を行うと作業の
サイクルタイムが延びる問題も発生する。現実の溶接作
業においては、溶接線毎に脚長の指定が変わることも多
々あるので、その度に回転半径を変える必要があるので
ある。また、特開平1−273674号公報で開示され
た方法は、単振動動作によるウィービングを行っている
ので、以下の問題が発生する。 1)アンダーカットの発生 単振動動作で高速ウィービングを実施すると、ビードの
縁にアンダーカットと呼ばれる溶接欠陥が発生しやす
い。これは、ウィービングの両端にアークが留まる時間
が短いためである。 2)ブローホールの発生 亜鉛メッキ鋼板を溶接した場合、亜鉛の蒸気によりブロ
ーホールと呼ばれる溶接欠陥が発生しやすい。これは、
単振動では、溶融プールに回転のエネルギーが与えられ
ないため、溶融プール回転による亜鉛蒸気の脱出が見込
めないためである。 3)隙間への対応 ウィービングを行うと、直線の軌跡で動作する場合より
も、隙間に対する許容値は高くなる。しかしながら、単
振動では、同じ軌跡を一度しか通過しないため、隙間に
より上板と下板の溶融プールが一度でも繋がらなけれ
ば、即、溶接欠陥となる。そこで、本発明は溶接トーチ
を回転運動させるための専用の装置なしに、アンダーカ
ット、ブローホールなどの溶接欠陥が発生しにくいウィ
ービング方法を提供することを目的とするものである。
However, these conventional methods have the following problems. JP-A-55-
The method disclosed in Japanese Patent No. 133871 and Japanese Patent Application Laid-Open No. 1-148465 requires a special device for rotating the welding torch. These dedicated devices are usually expensive and have the problem of easily causing interference with jigs and works. In particular, if it is attempted to change the radius of rotation arbitrarily, a special mechanism is required, resulting in a more expensive and larger device. Also, changing the radius of rotation by the mechanical mechanism requires a certain amount of time. If the radius of rotation is changed for each welding line, there arises a problem that the work cycle time is extended. In actual welding work, the designation of the leg length often changes for each welding line, so it is necessary to change the turning radius each time. In the method disclosed in Japanese Patent Application Laid-Open No. 1-273674, since the weaving is performed by the simple vibration operation, the following problem occurs. 1) Generation of undercut When high-speed weaving is performed by a simple vibration operation, a weld defect called an undercut is easily generated at an edge of a bead. This is because the time during which the arc stays at both ends of the weaving is short. 2) Generation of blowholes When a galvanized steel sheet is welded, welding defects called blowholes are likely to occur due to the vapor of zinc. this is,
This is because, in simple vibration, the energy of rotation is not given to the molten pool, so that escape of zinc vapor due to the rotation of the molten pool cannot be expected. 3) Correspondence to gaps When weaving is performed, the allowable value for the gaps is higher than when the operation is performed on a linear locus. However, in the simple vibration, since the same locus passes only once, if the molten pool of the upper plate and the lower plate is not connected even once by a gap, a welding defect is immediately generated. Accordingly, it is an object of the present invention to provide a weaving method in which welding defects such as undercuts and blow holes are less likely to occur without a dedicated device for rotating the welding torch.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
めに、請求項1の発明は、多関節産業用ロボットのウィ
ービング方法において、教示線倣い動作を基本軸に、円
動作または楕円動作を手首軸に分担制御してウィービン
グさせるものである。また請求項2の発明は前記円動作
または前記楕円動作の径を、前記教示線の始点で自在に
変更するものである。また請求項3の発明は前記円動作
または前記楕円動作の径を、前記教示線の途中で自在に
変更するものである。また請求項4の発明は前記円動作
または楕円動作の終点を前記教示線の終点に一致させる
ものである。また請求項5の発明は前記円動作または前
記楕円動作の径が所定の大きさになるまで、前記教示線
の始点から前記教示線倣い動作の進行にしたがって前記
径を徐々に拡大するものである。また請求項6の発明は
前記円動作または前記楕円動作の径を前記教示線の終点
の手前の所定位置から前記教示線倣い動作の進行にした
がって徐々に縮小するものである。また請求項7の発明
は、重ね隅肉アーク溶接において、溶接トーチが上板か
ら下板に向かう時に前記円動作または前記楕円動作の方
向が前記教示線倣い動作と同方向になるように前記円動
作または前記楕円動作の回転方向を決めるものである。
また請求項8の発明は、前記円動作または前記楕円動作
の回転方向を任意に変更できるものである。
According to a first aspect of the present invention, in a weaving method for an articulated industrial robot, a circular motion or an elliptical motion is performed based on a teaching line copying operation as a basic axis. Weaving is performed with the wrist axis controlled. According to a second aspect of the present invention, the diameter of the circular motion or the elliptical motion is freely changed at the starting point of the teaching line. According to a third aspect of the present invention, the diameter of the circular motion or the elliptical motion is freely changed in the middle of the teaching line. According to a fourth aspect of the present invention, the end point of the circular motion or the elliptical motion is made to coincide with the end point of the teaching line. According to a fifth aspect of the present invention, the diameter of the circular motion or the elliptical motion is gradually increased from the starting point of the teaching line to the predetermined size as the teaching line following operation proceeds. . According to a sixth aspect of the present invention, the diameter of the circular motion or the elliptical motion is gradually reduced from a predetermined position before an end point of the teaching line as the teaching line following operation proceeds. Further, in the lap fillet arc welding, when the welding torch moves from the upper plate to the lower plate, the circular operation or the elliptical operation is performed in the same direction as the teaching line copying operation. The rotation direction of the motion or the elliptical motion is determined.
According to the invention of claim 8, the rotation direction of the circular motion or the elliptical motion can be arbitrarily changed.

【0005】[0005]

【発明の実施の形態】図1は、本発明に使用する多関節
産業用ロボットの側面図であり、図2はその手首部を拡
大した斜視図である。図1に示すように、多関節産業用
ロボットの基台1の上に垂直軸(S軸)回りに旋回駆動
される旋回胴部2があり、旋回胴部2の上に水平軸(L
軸)回りに前後に揺動駆動される垂直アーム3があり、
さらに垂直アーム3の上には水平軸(U軸)回りに上下
に揺動駆動される水平アーム4がある。水平アーム4の
先端には手首部5があり、手首部5の先端には溶接トー
チ6が取付けられる。 手首部5は、水平アーム4の長
さ軸(R軸)まわりの回転とR軸に直交する軸(B軸)
回りの揺動とB軸に直交する軸(T軸)まわりの回転の
3個の自由度を持っている。ここで、R,B,Tの3軸
の交点を点Pと言うことにする。点Pの位置はS,L,
Uの3軸の回転角度で決定され、手首部5の姿勢、(溶
接トーチ6の姿勢と言い換えても良い)はR,B,Tの
3軸で決定される。そこでS,L,Uの3軸は基本軸、
R,B,Tの3軸は手首軸と呼ばれる。
FIG. 1 is a side view of an articulated industrial robot used in the present invention, and FIG. 2 is an enlarged perspective view of its wrist. As shown in FIG. 1, a turning body 2 that is driven to turn around a vertical axis (S axis) is provided on a base 1 of the articulated industrial robot, and a horizontal axis (L) is set on the turning body 2.
There is a vertical arm 3 driven to swing back and forth around the axis)
Further, on the vertical arm 3, there is a horizontal arm 4 which is driven to swing up and down around a horizontal axis (U axis). A wrist 5 is provided at the tip of the horizontal arm 4, and a welding torch 6 is attached to the tip of the wrist 5. The wrist 5 is rotated about the length axis (R axis) of the horizontal arm 4 and an axis orthogonal to the R axis (B axis).
It has three degrees of freedom of swing around and rotation around an axis (T axis) orthogonal to the B axis. Here, the intersection of the three axes R, B, and T is referred to as a point P. The position of point P is S, L,
The rotation angle of the three axes U is determined, and the posture of the wrist portion 5 (or the posture of the welding torch 6) is determined by the three axes R, B, and T. Therefore, the three axes S, L and U are basic axes,
The three axes of R, B, and T are called wrist axes.

【0006】図2において、点Cは溶接トーチ6の先端
の点であり、この点Cを制御点と呼ぶ。また点F0 は溶
接線Jの始点、点F1 は溶接線Jの終点であり、ロボッ
トに対して教示した点である。溶接線Jは教示された軌
跡、すなわち教示線である。まず、ロボットは、始点F
0 から終点F1 までの軌跡を、指令クロック数で割り、
指令クロック毎の移動目標F(k)を求める。ウィービ
ング動作を行わない時は、溶接トーチ6はこの移動目標
F(k)を順次たどって移動する。この移動目標F
(k)をたどる動作を教示線倣い動作と呼ぶことにす
る。教示線倣い動作は溶接トーチ6の姿勢の如何を問わ
ないから、基本軸つまりS,L,Uの3軸の動作だけで
実現できる。
In FIG. 2, a point C is a point at the tip of the welding torch 6, and this point C is called a control point. Point F 0 is the starting point of welding line J, and point F 1 is the ending point of welding line J, which is the point taught to the robot. The welding line J is a taught trajectory, that is, a teaching line. First, the robot starts at F
The trajectory of from 0 to the end point F 1, divided by the instruction number of clocks,
A movement target F (k) for each command clock is obtained. When the weaving operation is not performed, the welding torch 6 moves by sequentially following the movement target F (k). This moving target F
The operation following (k) will be referred to as a teaching line copying operation. Since the teaching line copying operation is performed regardless of the posture of the welding torch 6, it can be realized only by the operation of three basic axes, that is, S, L, and U.

【0007】つぎに、手首軸つまりR,B,Tの3軸で
溶接トーチ6の先端の点Cを円動作させる制御方法を説
明する。ここで、始点F0 から終点F1 に向かうベクト
ルの単位ベクトルをfとする。また点Cが溶接線J上に
ある時の点Cから点Pに向かうベクトルの単位ベクトル
をAwとする。点Cは次の式で表されるベクトルOwお
よびNwで定義される平面内で円運動する。
Next, a control method for circularly moving the point C of the tip of the welding torch 6 on the wrist axis, that is, the three axes R, B and T will be described. Here, the unit vector of the vector from the start point F 0 to the end point F 1 and f. Also, let Aw be the unit vector of the vector from point C to point P when point C is on welding line J. Point C makes a circular motion in a plane defined by vectors Ow and Nw represented by the following equations.

【0008】Ow=f×Aw (式1)Ow = f × Aw (Equation 1)

【0009】Nw=Ow×Aw (式2)Nw = Ow × Aw (Equation 2)

【0010】次に、このOw、Nwベクトルで定義され
る平面上に、所定の半径の円の軌跡を所定の周期で描く
ように、指令クロック毎の目標位置Tw(k)を求め
る。図3はこの目標位置Tw(k)を説明する説明図で
ある。図においてTw(0)はは円運動の開始点であり
溶接線J上の点である。指令クロック毎にTw(1),
Tw(2),Tw(3),‥‥‥のように、所定の半径
rの円軌跡をたどって所定の周期で開始点にもどり円動
作を繰り返す。この回転動作の制御方法をさらに詳細に
説明する。制御点CがF(k)にある時の点Pの位置を
求め、この時のベクトルAw(k)を求める。この時の
Tw(k)から点Pに向かうベクトルの単位ベクトルA
w’(k)とする。次に、Aw(k)とAw' (k)の
垂直ベクトルb=Aw(k)×Aw' (k)を求め、こ
の垂直ベクトルb回りに、Aw(k)とAw' (k)の
なす角度θだけ、溶接トーチ6の姿勢を、点Pを回転中
心として、回転させる。角度θは次式により求まる。
Next, a target position Tw (k) for each command clock is determined so that a locus of a circle having a predetermined radius is drawn at a predetermined cycle on a plane defined by the Ow and Nw vectors. FIG. 3 is an explanatory diagram for explaining the target position Tw (k). In the figure, Tw (0) is the starting point of the circular motion and a point on the welding line J. Tw (1) for each command clock,
As shown in Tw (2), Tw (3), and ‥‥‥, a circular locus having a predetermined radius r is followed to return to the start point at a predetermined cycle, and the circular operation is repeated. The method of controlling the rotation operation will be described in more detail. The position of the point P when the control point C is at F (k) is obtained, and the vector Aw (k) at this time is obtained. At this time, the unit vector A of the vector from Tw (k) to the point P
Let w '(k). Next, a vertical vector b = Aw (k) × Aw ′ (k) of Aw (k) and Aw ′ (k) is obtained, and Aw (k) and Aw ′ (k) are formed around the vertical vector b. The posture of the welding torch 6 is rotated around the point P by the angle θ. The angle θ is obtained by the following equation.

【0011】 COS θ=Aw( k) ・Aw'(k) /(|Aw( k) |・|Aw’( k) |) (式3)COS θ = Aw (k) · Aw ′ (k) / (| Aw (k) | · | Aw ′ (k) |) (Equation 3)

【0012】溶接トーチ6の移動目標F(k)が、終点
1 に到達した時は、強制的にθを0として、回転動作
を中止する。このことにより、常に教示した終点で溶接
を終了させることができる。以上説明した円動作は溶接
トーチ6の姿勢の変更だけ実現できるので、手首軸つま
りR,B,Tの3軸の動作だけで実行できる。また、こ
の円動作を教示線倣い動作に重畳すれば、円弧状の軌跡
によるウィービング動作が、6軸の多関節産業用ロボッ
トだけで、他の付加装置なしに実行できる。
[0012] moving target F of the welding torch 6 (k) is, when it reaches the end point F 1 is forced to θ 0, stops the rotation. Thus, welding can be always terminated at the end point taught. Since the above-described circular motion can be realized only by changing the posture of the welding torch 6, it can be executed only by the motion of the wrist axis, that is, the three axes of R, B, and T. Further, if this circular motion is superimposed on the teaching line copying operation, the weaving operation based on the arc-shaped trajectory can be executed only by the six-axis multi-joint industrial robot without any additional device.

【0013】円動作の半径rは、ロボットのプログラム
に定義されているため、溶接線の始点または溶接線の途
中において自在に変更することが可能である。例えば、
図4に示すように、溶接線の始点F0 では半径r=0つ
まりウィービング幅=0で溶接を開始して、その後徐々
に半径rを大きくして、半径rが所定の値になったらそ
の値を維持して一定幅のウィービングを続け、終端に近
づいたら逆に半径rを徐々に小さくして終点F1 ではウ
ィービング幅=0とすることもできる。
Since the radius r of the circular motion is defined in the program of the robot, it can be freely changed at the starting point of the welding line or in the middle of the welding line. For example,
As shown in FIG. 4, the start of the welding radius r = 0, i.e. weaving width = 0, the starting point F 0 of the weld line, the subsequently gradually increasing the radius r, When the radius r becomes a predetermined value It maintains the value continued to weaving with a constant width, gradually decreasing the radius r in the reverse When approaching the end may be the end point F 1 in the weaving width = 0.

【0014】薄板の重ね隅肉溶接を施工する時は、溶接
トーチを上板から下板に掻き下ろすように動かすと良い
結果が得られる。そこで図5に示すように、溶接トーチ
の先端が上板から下板に向かう時は、前記円動作の方向
が教示点倣い動作と同方向をになるように前記円動作の
回転方向を選べば良い。つまり、このように前記回転方
向を選べば、上板から下板に向かう時は溶接線の最先端
を溶接し、逆に、下板から上板に向かう時は、先に溶接
した部分に戻って溶接することになる。また、厚板のT
字隅肉溶接の場合は、溶接線の先端で下から上に溶接ト
ーチを動かしたい場合もある。この時は前記円動作の回
転方向を逆にすれば良い。また、以上の実施例では円動
作の軌跡を真円として、円動作を半径と周期で定義した
が、円動作の軌跡は真円に限られるものではなく、楕円
であってもよい。この場合、円動作は長径と短径と周期
で定義される。例えば、ウィービングによる溶接ビード
の重なりを大きくしたい時は、溶接線方向に長い楕円形
の軌跡を選ぶこともできる。なお、実施例はアーク溶接
を例に取り上げたが、本発明のウィービング方法はアー
ク溶接のためのものに限られるものではなく、例えば溶
射、塗装、研磨などの各種の用途に適用できるものであ
る。
When performing fillet welding of thin plates, a good result can be obtained by moving the welding torch so as to scrape down from the upper plate to the lower plate. Therefore, as shown in FIG. 5, when the tip of the welding torch moves from the upper plate to the lower plate, if the rotation direction of the circular operation is selected so that the direction of the circular operation is the same as the teaching point copying operation. good. In other words, if the rotation direction is selected in this manner, when heading from the upper plate to the lower plate, the forefront of the welding line is welded, and when going from the lower plate to the upper plate, the welding line returns to the previously welded portion. Will be welded. In addition, T
In the case of the fillet welding, it may be desired to move the welding torch from bottom to top at the end of the welding line. At this time, the rotation direction of the circular motion may be reversed. In the above embodiment, the trajectory of the circular motion is defined as a perfect circle, and the circular motion is defined by the radius and the period. However, the trajectory of the circular motion is not limited to a perfect circle, and may be an ellipse. In this case, the circular motion is defined by the major axis, minor axis, and period. For example, when it is desired to increase the overlap of the weld beads due to weaving, an elliptical locus that is long in the weld line direction can be selected. Although the embodiment has been described by taking arc welding as an example, the weaving method of the present invention is not limited to the one for arc welding, and can be applied to various applications such as, for example, thermal spraying, painting, and polishing. .

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、次
のような効果がある。 (1)単振動ウィービングに比べて、アンダーカットや
ブローホールなどの溶接欠陥の発生が少ない円運動ウィ
ービングが、6軸の多関節型産業用ロボットだけで、他
の装置を付加することなく実施できる。 (2)重ね隅肉溶接においては、上板から下板方向に回
転することにより、上板を確実に溶融させ、隙間をより
確実に埋めることが出来る。 (3)溶接線毎、または、溶接線の途中においても、ロ
ボットプログラムに記載されたデータにより、自在に円
の径を変更することができるため、ワークに発生した隙
間の大きさに応じて、円の大きさを変更し、隙間による
溶接欠陥を防止することができる。
As described above, according to the present invention, the following effects can be obtained. (1) Circular motion weaving with less occurrence of welding defects such as undercuts and blowholes compared to simple vibration weaving can be performed with only a 6-axis multi-joint industrial robot without additional equipment . (2) In lap fillet welding, by rotating from the upper plate to the lower plate, the upper plate can be reliably melted and the gap can be filled more reliably. (3) The diameter of the circle can be freely changed at each welding line or in the middle of the welding line according to the data described in the robot program. By changing the size of the circle, welding defects due to gaps can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる多関節産業用ロボットの側面
図。
FIG. 1 is a side view of an articulated industrial robot used in the present invention.

【図2】本発明の実施例を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the present invention.

【図3】本発明の実施例を示す円動作の説明図である。FIG. 3 is an explanatory diagram of a circular operation showing the embodiment of the present invention.

【図4】本発明の実施例をウィービング動作の説明図で
ある。
FIG. 4 is an explanatory diagram of a weaving operation of the embodiment of the present invention.

【図5】本発明の実施例を示す重ね隅肉溶接の説明図で
ある。
FIG. 5 is an explanatory view of lap fillet welding showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:基台 2:旋回胴部 3:垂直アーム 4:水平ア
ーム 5:手首部 6:溶接トーチ
1: Base 2: Revolving body 3: Vertical arm 4: Horizontal arm 5: Wrist 6: Welding torch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 9/127 507 B23K 9/127 507D 31/00 31/00 M G05B 19/4093 G05B 19/4093 M Fターム(参考) 3F059 AA05 AA06 AA07 BA03 BA10 FB08 FB21 FB22 4E081 AA02 AA09 AA12 BA02 BA40 BA41 CA07 DA12 DA17 DA62 DA66 DA71 EA12 EA51 EA54 EA56 FA08 FA11 YX03 YX07 YY14 YY19 5H269 AB12 AB33 BB08 CC09 DD06 QC10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 9/127 507 B23K 9/127 507D 31/00 31/00 M G05B 19/4093 G05B 19/4093 MF Term (Reference) 3F059 AA05 AA06 AA07 BA03 BA10 FB08 FB21 FB22 4E081 AA02 AA09 AA12 BA02 BA40 BA41 CA07 DA12 DA17 DA62 DA66 DA71 EA12 EA51 EA54 EA56 FA08 FA11 YX03 YX07 YY14 YY19 5H269AB12 DD33

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多関節産業用ロボットのウィービング方
法において、教示線倣い動作を基本軸に、円動作または
楕円動作を手首軸に分担制御してウィービングさせるこ
とを特徴とする多関節産業用ロボットのウィービング方
法。
1. A weaving method for an articulated industrial robot, wherein the weaving is performed by controlling the teaching line tracing operation as a basic axis and the circular or elliptical operation as a wrist axis. Weaving method.
【請求項2】 前記円動作または前記楕円動作の径を、
前記教示線の始点で自在に変更することを特徴とする請
求項1に記載の多関節産業用ロボットのウィービング方
法。
2. The diameter of the circular motion or the elliptical motion,
2. The weaving method for an articulated industrial robot according to claim 1, wherein the starting point of the teaching line is freely changed.
【請求項3】 前記円動作または前記楕円動作の径を、
前記教示線の途中で自在に変更することを特徴とする請
求項1に記載の多関節産業用ロボットのウィービング方
法。
3. The diameter of the circular motion or the elliptical motion,
The weaving method for an articulated industrial robot according to claim 1, wherein the method is freely changed in the middle of the teaching line.
【請求項4】 前記円動作または楕円動作の終点を前記
教示線の終点に一致させることを特徴とする請求項1に
記載の多関節産業用ロボットのウィービング方法。
4. The weaving method for an articulated industrial robot according to claim 1, wherein an end point of the circular motion or the elliptical motion is made to coincide with an end point of the teaching line.
【請求項5】 前記円動作または前記楕円動作の径が所
定の大きさになるまで、前記教示線の始点から前記教示
線倣い動作の進行にしたがって前記径を徐々に拡大する
ことを特徴とする請求項1に記載の多関節産業用ロボッ
トのウィービング方法。
5. The method according to claim 5, wherein the diameter of the circular motion or the elliptical motion is gradually increased from the starting point of the teaching line as the teaching line copying operation progresses until the diameter of the circle movement or the elliptical movement becomes a predetermined size. The weaving method for an articulated industrial robot according to claim 1.
【請求項6】 前記円動作または前記楕円動作の径を前
記教示線の終点の手前の所定位置から前記教示線倣い動
作の進行にしたがって徐々に縮小することを特徴とする
請求項1に記載の多関節産業用ロボットのウィービング
方法。
6. The method according to claim 1, wherein the diameter of the circular motion or the elliptical motion is gradually reduced from a predetermined position before an end point of the teaching line as the teaching line copying operation progresses. Weaving method for articulated industrial robots.
【請求項7】 重ね隅肉アーク溶接において、溶接トー
チが上板から下板に向かう時に前記円動作または前記楕
円動作の方向が前記教示線倣い動作と同方向になるよう
に前記円動作または前記楕円動作の回転方向を決めるこ
とを特徴とする請求項1に記載の多関節産業用ロボット
のウィービング方法。
7. In the lap fillet arc welding, when the welding torch moves from the upper plate to the lower plate, the circular operation or the elliptical operation is performed in such a manner that the direction of the circular operation or the elliptical operation is the same as the teaching line copying operation. The weaving method for an articulated industrial robot according to claim 1, wherein the rotation direction of the elliptical motion is determined.
【請求項8】 前記円動作または前記楕円動作の回転方
向を任意に変更できることを特徴とする請求項1に記載
の多関節産業用ロボットのウィービング方法。
8. The weaving method for an articulated industrial robot according to claim 1, wherein the rotation direction of the circular motion or the elliptical motion can be arbitrarily changed.
JP25228399A 1999-09-06 1999-09-06 Weaving method of articulated industrial robot Pending JP2001071286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25228399A JP2001071286A (en) 1999-09-06 1999-09-06 Weaving method of articulated industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25228399A JP2001071286A (en) 1999-09-06 1999-09-06 Weaving method of articulated industrial robot

Publications (1)

Publication Number Publication Date
JP2001071286A true JP2001071286A (en) 2001-03-21

Family

ID=17235108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25228399A Pending JP2001071286A (en) 1999-09-06 1999-09-06 Weaving method of articulated industrial robot

Country Status (1)

Country Link
JP (1) JP2001071286A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021971A (en) * 2003-07-03 2005-01-27 Kobe Steel Ltd Arc welding robot and its weaving method and its weaving program
WO2005007352A1 (en) * 2003-07-23 2005-01-27 Youhua Yu Linear single-freedom joints and multi-freedom joints
JP2007229734A (en) * 2006-02-28 2007-09-13 Yaskawa Electric Corp Welding robot system
JP2007275969A (en) * 2006-04-11 2007-10-25 Yaskawa Electric Corp Robot controller and method for controlling trajectory of robot
US7291807B2 (en) 2002-05-13 2007-11-06 Honda Giken Kogyo Kabushiki Kaisha TIG welding equipment and TIG welding method
JP2009148801A (en) * 2007-12-21 2009-07-09 Daihen Corp Stitch pulse welding method
JP2012240102A (en) * 2011-05-23 2012-12-10 Yaskawa Electric Corp Robot system
WO2015146180A1 (en) * 2014-03-27 2015-10-01 パナソニックIpマネジメント株式会社 Robot control method
CN108941857A (en) * 2018-07-26 2018-12-07 中车青岛四方机车车辆股份有限公司 A kind of MAG horizontal position welding method and technique
JP2019000878A (en) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 Laser welding method and laser welding device
CN110355471A (en) * 2018-04-05 2019-10-22 丰田自动车株式会社 Welding method
CN113523545A (en) * 2021-06-25 2021-10-22 上海工程技术大学 Laser welding method for galvanized steel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291807B2 (en) 2002-05-13 2007-11-06 Honda Giken Kogyo Kabushiki Kaisha TIG welding equipment and TIG welding method
JP2005021971A (en) * 2003-07-03 2005-01-27 Kobe Steel Ltd Arc welding robot and its weaving method and its weaving program
WO2005007352A1 (en) * 2003-07-23 2005-01-27 Youhua Yu Linear single-freedom joints and multi-freedom joints
JP2007229734A (en) * 2006-02-28 2007-09-13 Yaskawa Electric Corp Welding robot system
JP2007275969A (en) * 2006-04-11 2007-10-25 Yaskawa Electric Corp Robot controller and method for controlling trajectory of robot
JP2009148801A (en) * 2007-12-21 2009-07-09 Daihen Corp Stitch pulse welding method
JP2012240102A (en) * 2011-05-23 2012-12-10 Yaskawa Electric Corp Robot system
US10152034B2 (en) 2014-03-27 2018-12-11 Panasonic Intellectual Property Management Co., Ltd. Robot control method for processing a workpiece on a processing line
WO2015146180A1 (en) * 2014-03-27 2015-10-01 パナソニックIpマネジメント株式会社 Robot control method
CN106103012A (en) * 2014-03-27 2016-11-09 松下知识产权经营株式会社 Robot control method
JPWO2015146180A1 (en) * 2014-03-27 2017-04-13 パナソニックIpマネジメント株式会社 Robot control method
US10857624B2 (en) 2017-06-15 2020-12-08 Toyota Jidosha Kabushiki Kaisha Laser-beam welding method and laser-beam welding apparatus
JP2019000878A (en) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 Laser welding method and laser welding device
JP2021142571A (en) * 2017-06-15 2021-09-24 トヨタ自動車株式会社 Laser welding method and laser welding device
CN110355471A (en) * 2018-04-05 2019-10-22 丰田自动车株式会社 Welding method
JP2019181496A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Welding method
US11229976B2 (en) 2018-04-05 2022-01-25 Toyota Jidosha Kabushiki Kaisha Welding method
JP7036651B2 (en) 2018-04-05 2022-03-15 トヨタ自動車株式会社 Welding method
CN108941857A (en) * 2018-07-26 2018-12-07 中车青岛四方机车车辆股份有限公司 A kind of MAG horizontal position welding method and technique
CN113523545A (en) * 2021-06-25 2021-10-22 上海工程技术大学 Laser welding method for galvanized steel

Similar Documents

Publication Publication Date Title
JP4922584B2 (en) Robot system
JP2001071286A (en) Weaving method of articulated industrial robot
US7047107B2 (en) Robot control apparatus
JP2010201592A (en) Method for generating operation route for robot
JP2017144468A (en) Welding device and control method of welding device
JP2020049611A (en) Robot control device for controlling arcuate operation of robot
JP5001817B2 (en) Stitch pulse welding method
JP2008130022A (en) Industrial robot control device
JP4859386B2 (en) Arc welding apparatus and weaving welding method for arc welding apparatus
JP5056241B2 (en) Robot system controller
JP2691985B2 (en) Robot trajectory control method
US20200238512A1 (en) Teaching Data Generation System For Vertical Multi-Joint Robot
KR101787865B1 (en) Inverse kinematic solution for multi-joint link mechanism, and device for creating instructional data by using inverse kinematic solution
JP2010240664A (en) Welding robot and method for controlling weaving operation in welding
JP4745921B2 (en) Control method of welding robot
JP4528577B2 (en) Industrial robot
JP3444313B2 (en) Industrial robot controller
JP2020019125A (en) Robot control method
JP3078202B2 (en) Painting posture control method for articulated robot
WO2021132632A1 (en) Multi-axis robot and control method therefor, and work tool
JPH11188686A (en) Robot controller
JPH0360866A (en) Welding robot
JPH06259119A (en) Industrial robot controller
JP2006159246A (en) Weaving device
JPS6115208A (en) Arc weaving control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081224