Nothing Special   »   [go: up one dir, main page]

JP2001066121A - Surface shape measuring device - Google Patents

Surface shape measuring device

Info

Publication number
JP2001066121A
JP2001066121A JP23927799A JP23927799A JP2001066121A JP 2001066121 A JP2001066121 A JP 2001066121A JP 23927799 A JP23927799 A JP 23927799A JP 23927799 A JP23927799 A JP 23927799A JP 2001066121 A JP2001066121 A JP 2001066121A
Authority
JP
Japan
Prior art keywords
light
measuring
measurement
measured
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23927799A
Other languages
Japanese (ja)
Inventor
Eiji Takahashi
英二 高橋
Tsutomu Morimoto
勉 森本
Hiroyuki Takamatsu
弘行 高松
Yasushi Yoneda
康司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23927799A priority Critical patent/JP2001066121A/en
Publication of JP2001066121A publication Critical patent/JP2001066121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the surface shape of a large-sized measuring object at high speed with a simple and low-cost formation, by providing optical interference measuring means on each partial region, and by installing the optical interference measuring means fixedly relative to the placed position of the measuring object. SOLUTION: Parallel light outputted from a light source 1 is trisected by a mirror 2, and enlarged by a floodlight lens system 3, and thereafter irradiated toward a measuring object P. A part of parallel light irradiated from the floodlight lens system 3 is transmitted through a reference plane 4 and reflected on the back the measuring object P, and two kinds of parallel light having different optical lengths is synthesized again, and interference fringes are generated at that time. Synthesized reflected light is reduced by a light-receiving lens system 5 and thereafter reaches a light-receiving part 7 through a mirror 6, and the interference fringes are observed thereon. This measuring device Z1 has only one light-receiving part 7, therefore at the time of actual measurement, an illumination switching means, such as a shutter or the like, is installed, for example, on a part of the floodlight lens system 3, and measurement of each partial region is executed successively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,干渉計を用いた表
面形状測定装置に係り,特に大面積の測定対象物を複数
の部分領域に分割して測定する表面形状測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring apparatus using an interferometer, and more particularly to a surface shape measuring apparatus for measuring a large-area measuring object by dividing it into a plurality of partial regions.

【0002】[0002]

【従来の技術】平面や球面などの測定対象物の表面形状
を測定する場合には,従来から,参照平面からの反射光
などの参照光と測定対象物の表面からの反射光とを干渉
させて得られる干渉縞に基づいて上記測定対象物の表面
形状を測定する,いわゆる干渉計が広く用いられてい
る。ところで,近年では上記測定対象物が大型化する傾
向にあり,それら大型の測定対象物に対しては大型の干
渉計を用いることで対応してきたが,それもそろそろ限
界となってきている。干渉計の投光部は,照明光線の平
行度,強度ムラ,可干渉性などについての厳しい要求を
満たす必要があるが,それらの要求を満たすことはレン
ズが大口径になるほど困難であり,またコストも膨大と
なるからである。そこで,大型の測定対象物を対象とす
る場合に,測定領域を互いに重複部分を有する複数の部
分領域に分割して小型の干渉計で各々測定し,各部分領
域毎に得られた形状データを,互いの重複部分を一致さ
せるように合成して測定領域全体の形状を得る方法が行
われるようになってきた。例えば,特開平10−160
428号公報には,測定対象物若しくは干渉計を駆動機
構としての多軸ステージ上に固定し,測定対象物に対し
て干渉計を移動さながら各部分領域毎の測定を行い,ス
テージの並進・回転成分などをパラメータとして各部分
領域毎の形状データをフィッティングすることによって
合成処理を行う方法が提案されている。
2. Description of the Related Art Conventionally, when measuring the surface shape of a measuring object such as a plane or a spherical surface, a reference light such as a light reflected from a reference plane and a light reflected from the surface of the measuring object interfere with each other. A so-called interferometer, which measures the surface shape of the object to be measured based on the interference fringes obtained by the measurement, is widely used. By the way, in recent years, the size of the above-mentioned measuring object has been increasing, and the use of a large-sized interferometer has been used for such a large measuring object. The projecting part of the interferometer must meet strict requirements for the parallelism, intensity unevenness, and coherence of the illuminating beam, but it is more difficult to meet those requirements as the lens diameter increases. This is because the cost becomes enormous. Therefore, when targeting a large measurement object, the measurement area is divided into a plurality of partial areas having overlapping parts, and each is measured with a small interferometer, and the shape data obtained for each partial area is obtained. Then, a method of obtaining the shape of the entire measurement region by synthesizing the overlapping portions so as to match each other has been performed. For example, JP-A-10-160
No. 428 discloses a method in which a measurement object or an interferometer is fixed on a multi-axis stage as a driving mechanism, and measurement is performed for each partial area while moving the interferometer with respect to the measurement object. There has been proposed a method of performing a combining process by fitting shape data of each partial region using components and the like as parameters.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記の
ように駆動機構を用いた測定装置では,最終的な画像合
成の精度は駆動機構の持つ繰り返し誤差に依存している
ため,高精度の画像合成を行うためには高精度な駆動機
構を有するステージを用いる必要がある。ところが,こ
のような高精度のステージの製作は技術的に困難であ
り,また非常にコストがかかるという問題点があった。
また,測定時に上記駆動機構による機械的な動作を伴う
ため,測定に時間がかかるという問題点もあった。更
に,駆動機構を用いて干渉計を移動させながら各部分領
域の測定を行うことから,画像合成時には毎回,駆動機
構に関する誤差を補正するための高精度のフィッティン
グ処理を行う必要があるため,測定時間が更に長くなっ
たり,或いは大規模演算を高速に行うための高性能の計
算機を用いる必要があるなどの問題点もあった。本発明
は上記事情に鑑みてなされたものであり,その目的とす
るところは,簡単で且つ低コストの装置構成で,大型の
測定対象物の表面形状を高速に測定することが可能な表
面形状測定装置を提供することである。
However, in a measuring apparatus using a driving mechanism as described above, the final accuracy of image synthesis depends on the repetition error of the driving mechanism. In order to perform the above, it is necessary to use a stage having a high-precision driving mechanism. However, there has been a problem that the production of such a high-precision stage is technically difficult and very expensive.
In addition, there is also a problem that it takes a long time to perform the measurement due to the mechanical operation by the drive mechanism during the measurement. Furthermore, since each partial area is measured while moving the interferometer using the drive mechanism, it is necessary to perform high-precision fitting processing to correct errors related to the drive mechanism every time image synthesis is performed. There are also problems such as the time being longer and the need for using a high-performance computer for performing large-scale operations at high speed. The present invention has been made in view of the above circumstances, and has as its object to provide a simple and low-cost apparatus configuration and a surface shape capable of measuring the surface shape of a large measuring object at high speed. It is to provide a measuring device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,測定対象物の表面からの反射光と所定の
参照光とを干渉させて得られる干渉縞に基づいて上記測
定対象物の表面形状を測定する光干渉測定手段により,
上記測定対象物の表面形状を互いに重複部分を有する複
数の部分領域毎に測定し,得られた上記部分領域毎の表
面形状情報を合成することによって上記測定対象物全体
の表面形状を取得する表面形状測定装置において,上記
部分領域毎にそれぞれ1つの上記光干渉測定手段を具備
すると共に,上記各光干渉測定手段が,上記測定対象物
の載置位置に対して固定的に設置されてなることを特徴
とする表面形状測定装置として構成されている。このよ
うな構成とすることにより,高精度の駆動機構などの高
価な装備は必要なく,装置構成を簡素化できる。更に,
測定時に機械的な動作を伴わないため,従来技術に比べ
て測定時間の短縮が可能である。また,従来の駆動機構
を用いた測定装置における繰り返し誤差のような測定毎
の誤差が生じないため,部分領域毎の表面形状データの
合成処理時には,装置設置時や調整時に求めておいた各
部分形状データの移動/回転などの空間的変換処理を用
いて少ない演算量で合成処理を行うことができ,一般的
な性能の計算機を用いても迅速な測定を行うことが可能
である。
In order to achieve the above object, the present invention provides a method for measuring an object to be measured based on interference fringes obtained by interfering reflected light from the surface of the object to be measured with a predetermined reference light. By means of optical interference measurement means for measuring the surface shape of an object,
A surface for measuring the surface shape of the object to be measured for each of a plurality of partial regions having overlapping portions and synthesizing the obtained surface shape information for each of the partial regions to obtain the surface shape of the entire object to be measured In the shape measuring device, each of the partial areas is provided with one of the optical interference measuring means, and each of the optical interference measuring means is fixedly installed with respect to the mounting position of the object to be measured. The surface shape measuring apparatus is characterized by the following. With such a configuration, expensive equipment such as a high-precision drive mechanism is not required, and the device configuration can be simplified. Furthermore,
Since no mechanical operation is involved in the measurement, the measurement time can be reduced as compared with the conventional technology. In addition, since there is no error for each measurement such as a repetition error in a measuring device using a conventional drive mechanism, when combining the surface shape data for each partial area, each part determined at the time of installation or adjustment of the device is used. Combination processing can be performed with a small amount of computation using spatial transformation processing such as movement / rotation of shape data, and quick measurement can be performed using a computer with general performance.

【0005】また,上記光干渉測定手段を,斜入射干渉
計で構成すれば,測定対象物に対して比較的自由な方
向,角度で投光することが可能であり,各測定手段を物
理的な干渉を避けて配置することが容易である。また,
複数の上記斜入射干渉計の受光側光学系を1つに集約
し,上記各斜入射干渉計の投光側光学系を上記集約され
た1つの受光側光学系に向けて配置すれば,受光側光学
系を1つにすることによるコストダウンが可能であると
共に,受光側光学系の機差などの影響を取り除くことが
可能である。また,各投光側光学系の投光方向が異なる
ため,物理的干渉なく測定対象物に対する入射角度を全
て同じにして光学系毎の縞感度をそろえることが可能で
ある。一方,上記複数の斜入射干渉計を,上記測定対象
物を囲むように配置しても,物理的干渉なく測定対象物
に対する入射角度を全て同じにして光学系毎の縞感度を
そろえることが可能である。またこの時,例えば測定対
象物が円形の場合,各干渉計を測定対象物周りに等角度
で配置すれば,各部分領域の重複部分を広く確保するこ
とができ,また複数個の部分領域が同じ位置で重複する
ため,部分領域毎の表面形状データの合成処理を高精度
に行うことが可能となる。
Further, if the optical interference measuring means is constituted by an oblique incidence interferometer, it is possible to project light in a relatively free direction and at an angle to an object to be measured. It is easy to dispose them while avoiding excessive interference. Also,
If the light receiving side optical systems of the plurality of grazing incidence interferometers are integrated into one, and the light projecting side optical systems of the respective grazing incidence interferometers are arranged toward the integrated one light receiving side optical system, the light receiving It is possible to reduce the cost by using only one side optical system, and to remove the influence of the difference in the optical system on the light receiving side and the like. Further, since the light projecting directions of the respective light projecting side optical systems are different, it is possible to make the incident angles to the object to be measured the same without physical interference, thereby making the fringe sensitivity of each optical system uniform. On the other hand, even if the plurality of grazing incidence interferometers are arranged so as to surround the measurement object, the fringe sensitivity of each optical system can be made uniform by making all the incident angles to the measurement object the same without physical interference. It is. At this time, for example, when the measurement object is circular, if the interferometers are arranged at an equal angle around the measurement object, the overlapping portion of each partial region can be widely secured, and a plurality of partial regions can be secured. Since they overlap at the same position, it is possible to perform the processing of synthesizing the surface shape data for each partial area with high accuracy.

【0006】[0006]

【発明の実施の形態】以下,添付図面を参照して本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係る表面形状測定装置Z1の概略構成図,図2は
部分領域毎の形状データの合成処理の説明図,図3は本
発明の実施例に係る表面形状測定装置Z2の概略構成
図,図4は本発明の実施例に係る表面形状測定装置Z3
の概略構成図である。
Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic configuration diagram of a surface shape measuring apparatus Z1 according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a shape data synthesizing process for each partial area, and FIG. 3 is an example of the present invention. FIG. 4 is a schematic configuration diagram of a surface profile measuring device Z2, and FIG. 4 is a surface profile measuring device Z3 according to an embodiment of the present invention.
FIG.

【0007】本実施の形態に係る表面形状測定装置Z1
は,図1に示すように,光源1,ミラー2a ,2b ,2
c (2a ,2b はハーフミラー,2c は全反射ミラ
ー),投光レンズ系3,基準平面4,受光レンズ系5,
ミラー6a ,6b ,6c (6a ,6b はハーフミラー,
c は全反射ミラー),受光部7を具備する複数系統
(図1では3系統)の斜入射干渉計(光干渉測定手段の
一例。尚,光源1及び受光部7は各干渉計に共通)を具
備しており,互いに投光側光学系から受光側光学系への
光路が平面視で平行となり,且つそれぞれの視野A,
B,Cが測定対象物P上でそれぞれ互いに重複部分を有
するように固定的に設置されている。ここで,上記各視
野と測定対象物Pとの重なり部分が,各干渉計によって
測定される部分領域となる。尚,図1上図では,3系統
の干渉計における投光レンズ系3及び受光レンズ系6が
互いに物理的に干渉しているように見えるが,本測定装
置Z1では斜入射干渉計を用いているため,例えば視野
Bを有する干渉計の入射角を他の2つと異ならせること
で互いの物理的干渉を回避できる。
[0007] Surface profile measuring apparatus Z1 according to the present embodiment.
Are, as shown in FIG. 1, a light source 1, mirrors 2a , 2b , 2
c (2 a and 2 b are half mirrors, 2 c is a total reflection mirror), light projecting lens system 3, reference plane 4, light receiving lens system 5
Mirrors 6a , 6b , 6c ( 6a , 6b are half mirrors,
Reference numeral 6c denotes a total reflection mirror, and a plurality of (three in FIG. 1) oblique incidence interferometers (an example of optical interference measuring means) including a light receiving unit 7. The light source 1 and the light receiving unit 7 are common to each interferometer. ), The optical paths from the light projecting side optical system to the light receiving side optical system are parallel to each other in plan view, and the respective visual fields A,
B and C are fixedly installed on the measurement object P such that they have overlapping portions. Here, the overlapping portion between each of the visual fields and the measurement object P is a partial region measured by each interferometer. In the upper part of FIG. 1, the light projecting lens system 3 and the light receiving lens system 6 in the three interferometers seem to physically interfere with each other. However, in this measuring apparatus Z1, an oblique incidence interferometer is used. Therefore, for example, by making the angle of incidence of the interferometer having the field of view B different from that of the other two, physical interference with each other can be avoided.

【0008】光源1から出力された平行光は,ミラー2
によって3分割され,投光レンズ系3によって拡大され
た後,測定対象物Pに向けて照射される。上記投光レン
ズ系3から照射された平行光の一部は基準平面4を透過
して測定対象物Pの表面で反射され,また他の一部は上
記基準平面4にて反射され(所定の参照光に相当),光
学的距離の異なる2種類の平行光は再び合成され,この
とき干渉縞が発生する。合成された反射光は,受光レン
ズ系5によって縮小された後,ミラー6を介して受光部
7に到達し,ここで干渉縞が観測される。本測定装置Z
1では,受光部7が1つのため,実際の測定に際して
は,例えば投光レンズ系3の部分にシャッターなどの照
明切り換え手段を設け,各部分領域の測定を順次行う。
もちろん,受光部7を3つ設置して3つの部分領域の形
状測定を同時に行うようにしてもよい。上記のようにし
て各部分領域の形状データが得られると,図示しない画
像合成処理部において,上記各部分領域毎の形状データ
の合成を行う。図2は,部分領域毎の形状データの合成
処理の説明図である。図2上図は,測定対象物Pの縦方
向(図1上図における上下方向)のあるライン上におけ
る部分形状データを示している。重複領域にはそれぞれ
2種類の形状データが存在するので,それら2種類の形
状データを例えば最小二乗法を用いてフィッティングを
行い,上記重複領域において上記2種類の形状データが
一致するように部分形状データを移動/回転させて合成
すれば,図2下図のような全体形状データが得られる。
The parallel light output from the light source 1 is reflected by a mirror 2
After being divided into three parts and enlarged by the light projecting lens system 3, the light is irradiated toward the measurement object P. A part of the parallel light emitted from the light projecting lens system 3 passes through the reference plane 4 and is reflected on the surface of the measuring object P, and another part is reflected on the reference plane 4 (predetermined part). Reference light) and two types of parallel light having different optical distances are combined again, and at this time, interference fringes are generated. The combined reflected light is reduced by the light receiving lens system 5 and reaches the light receiving unit 7 via the mirror 6, where interference fringes are observed. Main measuring device Z
In 1, since there is only one light receiving unit 7, in actual measurement, for example, an illumination switching unit such as a shutter is provided in a part of the light projecting lens system 3, and measurement of each partial area is sequentially performed.
Of course, three light receiving sections 7 may be provided to simultaneously measure the shapes of three partial areas. When the shape data of each partial area is obtained as described above, an image combining processing unit (not shown) combines the shape data of each partial area. FIG. 2 is an explanatory diagram of the synthesis processing of the shape data for each partial area. The upper diagram in FIG. 2 shows partial shape data on a certain line in the vertical direction (the vertical direction in the upper diagram in FIG. 1) of the measurement target P. Since there are two types of shape data in each of the overlapping regions, fitting is performed on the two types of shape data using, for example, the least squares method, and the partial shape is set so that the two types of shape data match in the overlapping region. If the data is moved / rotated and synthesized, the entire shape data as shown in the lower diagram of FIG. 2 can be obtained.

【0009】ここで,本測定装置Z1では,部分領域毎
の形状測定を,測定対象物Pに対して固定的に設置され
た複数の干渉計によって行うため,従来の駆動機構を用
いた測定装置における繰り返し誤差のような測定毎の誤
差は生じない。従って,上述した部分領域毎の形状デー
タのフィッティング処理は,装置設置時や調整時にのみ
行えばよく,通常の測定時には上記フィッティング処理
で得られた各部分形状データの移動/回転などの空間的
変換処理を用いて少ない演算量で合成処理を行うことが
できるため,一般的な性能の計算機を用いても迅速な測
定を行うことが可能である。また,本測定装置Z1は,
測定対象物上の3つの部分領域毎の形状測定を,測定対
象物に対して固定的に設置された3系統の斜入射干渉計
によってそれぞれ個別に行うように構成されているた
め,高精度の駆動機構などの高価な装備は必要なく,ま
た装置構成も簡素化できる。更に,測定時に機械的な動
作を伴わないため,従来技術に比べて測定時間の更なる
短縮が可能である。
Here, in the present measuring apparatus Z1, since the shape measurement for each partial area is performed by a plurality of interferometers fixedly mounted on the measuring object P, a measuring apparatus using a conventional driving mechanism is used. Does not occur for each measurement, such as the repetition error in. Therefore, the fitting processing of the shape data for each partial area described above need only be performed at the time of installation or adjustment of the apparatus. At the time of normal measurement, spatial conversion such as movement / rotation of each partial shape data obtained by the fitting processing is performed. Since the synthesis processing can be performed with a small amount of calculation using the processing, quick measurement can be performed even with a computer having general performance. In addition, this measuring device Z1
The configuration is such that the shape measurement for each of the three partial areas on the measurement object is performed individually by three systems of grazing incidence interferometers that are fixedly installed on the measurement object. No expensive equipment such as a drive mechanism is required, and the device configuration can be simplified. Furthermore, since no mechanical operation is involved in the measurement, the measurement time can be further reduced as compared with the prior art.

【0010】[0010]

【実施例】上記実施の形態に係る表面形状測定装置Z1
のように斜入射干渉計を用いると,投光側光学系と受光
側光学系の配置の自由度が高いため,装置構成について
は様々な変形例が考えられる。それら変形例の中でも特
に有効な2つのケースについて説明する。図3に示す表
面形状測定装置Z2では,投光側光学系については上記
測定装置Z1と同じく複数組(図3では3組)用意さ
れ,それぞれ異なる方向から測定対象物Pに対して投光
するように設置される。上記複数の投光側光学系に対し
て,受光側光学系は1つに集約されている。上記複数の
投光側光学系から測定対象物Pに向けて照射され,反射
された各平行光は,半透明のスクリーン11上に投影さ
れ,干渉縞を形成する。この干渉縞は上記スクリーン1
1の裏面側からレンズ5にて縮小され,受光部7にて観
測される。本測定装置Z2の場合も,実際の測定に際し
ては,例えば投光レンズ系3の部分にシャッターなどの
照明切り換え手段を設け,各部分領域の測定を順次行
う。上記のような構成とすることで,受光側のレンズ系
を1つにすることができるため,コストダウンが可能で
あると共に,受光側光学系の機差などの影響を取り除く
ことが可能である。また,各投光側光学系の投光方向が
異なるため,物理的干渉なく測定対象物Pに対する入射
角度を全て同じにして光学系毎の縞感度をそろえること
が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Surface profile measuring apparatus Z1 according to the above embodiment
When the oblique incidence interferometer is used as described above, the degree of freedom in the arrangement of the light-emitting side optical system and the light-receiving side optical system is high, and therefore, various modifications of the device configuration are possible. Two cases that are particularly effective among the modifications will be described. In the surface shape measuring device Z2 shown in FIG. 3, a plurality of sets (three sets in FIG. 3) of the light projecting side optical system are prepared similarly to the measuring device Z1, and light is projected onto the measuring object P from different directions. Is installed as follows. The light receiving side optical system is integrated into one for the plurality of light projecting side optical systems. Each of the parallel light beams emitted and reflected from the plurality of light projecting side optical systems toward the measurement object P is projected onto a translucent screen 11 to form interference fringes. This interference fringe is reflected on the screen 1
1 is reduced by the lens 5 from the back side and is observed by the light receiving unit 7. Also in the case of the present measuring apparatus Z2, in actual measurement, for example, an illumination switching means such as a shutter is provided in a part of the light projecting lens system 3, and measurement of each partial area is sequentially performed. With the above-described configuration, the number of lens systems on the light receiving side can be reduced to one, so that the cost can be reduced and the influence of the difference in the optical systems on the light receiving side can be eliminated. . In addition, since the light projecting directions of the light projecting side optical systems are different, it is possible to make the incident angles to the measurement object P all the same without physical interference, and to make the fringe sensitivity of each optical system uniform.

【0011】また,図4に示す表面形状測定装置Z3で
は,それぞれ1組の投光側光学系と受光側光学系を個別
に有した斜入射干渉計が複数組(図4では4組)用意さ
れ,測定対象物Pを囲むように配置され,更に各光学系
が等角度で配置されている。この構成によれば,図3に
示す測定装置Z2に比べて光学系の数は多くなるが,各
部分領域の重複部分を広く確保することができ,また複
数個の部分領域が同じ位置で重複するため,形状データ
の合成処理を高精度に行うことが可能となる。また,上
記測定装置Z2と同様,物理的干渉なく測定対象物Pに
対する入射角度を全て同じにして光学系毎の縞感度をそ
ろえることが可能である。
In the surface profile measuring apparatus Z3 shown in FIG. 4, a plurality of oblique incidence interferometers (four in FIG. 4) each having a single projecting side optical system and a single light receiving side optical system are prepared. The optical system is arranged so as to surround the measurement object P, and the optical systems are arranged at equal angles. According to this configuration, although the number of optical systems is increased as compared with the measuring apparatus Z2 shown in FIG. 3, a wide overlapping portion of each partial region can be secured, and a plurality of partial regions overlap at the same position. Therefore, it is possible to perform the shape data synthesizing process with high accuracy. Further, similarly to the measuring apparatus Z2, it is possible to equalize the fringe sensitivities of the respective optical systems by making all incident angles to the measuring object P the same without physical interference.

【0012】尚,以上の例では,装置を構成する上で最
も現実的である斜入射干渉計を用いたが,もちろんその
他の干渉計を用いて,各干渉計を物理的に干渉しない形
で配置してもよいことはいうまでもない。
In the above example, the grazing incidence interferometer, which is the most practical in constructing the apparatus, is used. Of course, other interferometers are used so that each interferometer does not physically interfere. It goes without saying that they may be arranged.

【0013】[0013]

【発明の効果】以上説明したように,本発明は,測定対
象物の表面からの反射光と所定の参照光とを干渉させて
得られる干渉縞に基づいて上記測定対象物の表面形状を
測定する光干渉測定手段により,上記測定対象物の表面
形状を互いに重複部分を有する複数の部分領域毎に測定
し,得られた上記部分領域毎の表面形状情報を合成する
ことによって上記測定対象物全体の表面形状を取得する
表面形状測定装置において,上記部分領域毎にそれぞれ
1つの上記光干渉測定手段を具備すると共に,上記各光
干渉測定手段が,上記測定対象物の載置位置に対して固
定的に設置されてなることを特徴とする表面形状測定装
置として構成されているため,高精度の駆動機構などの
高価な装備は必要なく,装置構成を簡素化できる。更
に,測定時に機械的な動作を伴わないため,従来技術に
比べて測定時間の短縮が可能である。また,従来の駆動
機構を用いた測定装置における繰り返し誤差のような測
定毎の誤差が生じないため,部分領域毎の表面形状デー
タの合成処理時には,装置設置時や調整時に求めておい
た各部分形状データの移動/回転などの空間的変換処理
を用いて少ない演算量で合成処理を行うことができ,一
般的な性能の計算機を用いても迅速な測定を行うことが
可能である。
As described above, according to the present invention, the surface shape of the object to be measured is measured based on the interference fringes obtained by causing the reflected light from the surface of the object to interfere with the predetermined reference light. Measuring the surface shape of the object to be measured for each of a plurality of partial regions having overlapping portions with each other, and synthesizing the obtained surface shape information for each of the partial regions, thereby obtaining the entire object to be measured. A surface shape measuring device for acquiring the surface shape of the object, wherein each of the partial areas is provided with one of the optical interference measuring means, and each of the optical interference measuring means is fixed to a mounting position of the object to be measured. Since it is configured as a surface shape measuring device characterized by being installed in a special manner, expensive equipment such as a high-precision driving mechanism is not required, and the device configuration can be simplified. Further, since no mechanical operation is involved in the measurement, the measurement time can be reduced as compared with the conventional technology. In addition, since there is no error for each measurement such as a repetition error in a measuring device using a conventional drive mechanism, when combining the surface shape data for each partial area, each part determined at the time of installation or adjustment of the device is used. Combination processing can be performed with a small amount of computation using spatial transformation processing such as movement / rotation of shape data, and quick measurement can be performed using a computer with general performance.

【0014】また,上記光干渉測定手段を,斜入射干渉
計で構成すれば,測定対象物に対して比較的自由な方
向,角度で投光することが可能であり,各測定手段を物
理的な干渉を避けて配置することが容易である。また,
複数の上記斜入射干渉計の受光側光学系を1つに集約
し,上記各斜入射干渉計の投光側光学系を上記集約され
た1つの受光側光学系に向けて配置すれば,受光側光学
系を1つにすることによるコストダウンが可能であると
共に,受光側光学系の機差などの影響を取り除くことが
可能である。また,各投光側光学系の投光方向が異なる
ため,物理的干渉なく測定対象物に対する入射角度を全
て同じにして光学系毎の縞感度をそろえることが可能で
ある。一方,上記複数の斜入射干渉計を,上記測定対象
物を囲むように配置しても,物理的干渉なく測定対象物
に対する入射角度を全て同じにして光学系毎の縞感度を
そろえることが可能である。またこの時,例えば測定対
象物が円形の場合,各干渉計を測定対象物周りに等角度
で配置すれば,各部分領域の重複部分を広く確保するこ
とができ,また複数個の部分領域が同じ位置で重複する
ため,部分領域毎の表面形状データの合成処理を高精度
に行うことが可能となる。
Further, if the optical interference measuring means is constituted by an oblique incidence interferometer, it is possible to project light in a relatively free direction and at an angle to an object to be measured. It is easy to dispose them while avoiding excessive interference. Also,
If the light receiving side optical systems of the plurality of grazing incidence interferometers are integrated into one, and the light projecting side optical systems of the respective grazing incidence interferometers are arranged toward the integrated one light receiving side optical system, the light receiving It is possible to reduce the cost by using only one side optical system, and to remove the influence of the difference in the optical system on the light receiving side and the like. Further, since the light projecting directions of the respective light projecting side optical systems are different, it is possible to make the incident angles to the object to be measured the same without physical interference, thereby making the fringe sensitivity of each optical system uniform. On the other hand, even if the plurality of grazing incidence interferometers are arranged so as to surround the measurement object, the fringe sensitivity of each optical system can be made uniform by making all the incident angles to the measurement object the same without physical interference. It is. At this time, for example, when the measurement object is circular, if the interferometers are arranged at an equal angle around the measurement object, the overlapping portion of each partial region can be widely secured, and a plurality of partial regions can be secured. Since they overlap at the same position, it is possible to perform the processing of synthesizing the surface shape data for each partial area with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る表面形状測定装置
Z1の概略構成図。
FIG. 1 is a schematic configuration diagram of a surface shape measuring device Z1 according to an embodiment of the present invention.

【図2】 部分領域毎の形状データの合成処理の説明
図。
FIG. 2 is an explanatory diagram of a process of synthesizing shape data for each partial area.

【図3】 本発明の実施例に係る表面形状測定装置Z2
の概略構成図。
FIG. 3 is a surface profile measuring apparatus Z2 according to an embodiment of the present invention.
FIG.

【図4】 本発明の実施例に係る表面形状測定装置Z3
の概略構成図。
FIG. 4 is a surface profile measuring apparatus Z3 according to an embodiment of the present invention.
FIG.

【符号の説明】[Explanation of symbols]

1…光源 2…ミラー 3…投光レンズ系 4…基準平面 5…受光レンズ系 6…ミラー 7…受光部 11…スクリーン P…測定対象物 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Mirror 3 ... Projection lens system 4 ... Reference plane 5 ... Light receiving lens system 6 ... Mirror 7 ... Light receiving part 11 ... Screen P ... Measurement object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高松 弘行 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 米田 康司 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 2F064 AA09 BB07 CC10 EE10 GG12 GG22 HH03 HH08 HH09 JJ00 2F065 AA49 AA54 DD06 FF01 FF52 FF61 HH03 HH12 HH14 JJ03 JJ26 LL04 LL12 LL30 LL46 LL49 QQ18 QQ31  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Takamatsu 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Koji Yoneda Takatsuka, Nishi-ku, Kobe City, Hyogo Prefecture 1-5-5 Kobe Steel Works, Ltd. Kobe Research Institute, Kobe Research Institute F-term (reference) QQ18 QQ31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物の表面からの反射光と所定の
参照光とを干渉させて得られる干渉縞に基づいて上記測
定対象物の表面形状を測定する光干渉測定手段により,
上記測定対象物の表面形状を互いに重複部分を有する複
数の部分領域毎に測定し,得られた上記部分領域毎の表
面形状情報を合成することによって上記測定対象物全体
の表面形状を取得する表面形状測定装置において,上記
部分領域毎にそれぞれ1つの上記光干渉測定手段を具備
すると共に,上記各光干渉測定手段が,上記測定対象物
の載置位置に対して固定的に設置されてなることを特徴
とする表面形状測定装置。
1. An optical interference measuring means for measuring the surface shape of the object to be measured based on interference fringes obtained by interfering reflected light from the surface of the object to be measured with a predetermined reference light,
A surface for measuring the surface shape of the object to be measured for each of a plurality of partial regions having overlapping portions and synthesizing the obtained surface shape information for each of the partial regions to obtain the surface shape of the entire object to be measured In the shape measuring device, each of the partial areas is provided with one of the optical interference measuring means, and each of the optical interference measuring means is fixedly installed with respect to the mounting position of the object to be measured. Surface profile measuring device characterized by the above-mentioned.
【請求項2】 上記光干渉測定手段が,斜入射干渉計で
ある請求項1記載の表面形状測定装置。
2. The surface profile measuring apparatus according to claim 1, wherein said optical interference measuring means is a grazing incidence interferometer.
【請求項3】 複数の上記斜入射干渉計の受光側光学系
が1つに集約され,上記各斜入射干渉計の投光側光学系
が上記集約された1つの受光側光学系系に向けて配置さ
れてなる請求項2記載の表面形状測定装置。
3. The light receiving side optical systems of the plurality of oblique incidence interferometers are integrated into one, and the light projecting side optical systems of each of the oblique incidence interferometers are directed toward the integrated one light receiving side optical system. 3. The surface profile measuring device according to claim 2, wherein the surface profile measuring device is arranged in an inclined manner.
【請求項4】 上記複数の斜入射干渉計が,上記測定対
象物を囲むように配置されてなる請求項2記載の表面形
状測定装置。
4. A surface profile measuring apparatus according to claim 2, wherein said plurality of oblique incidence interferometers are arranged so as to surround said object to be measured.
JP23927799A 1999-08-26 1999-08-26 Surface shape measuring device Pending JP2001066121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23927799A JP2001066121A (en) 1999-08-26 1999-08-26 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23927799A JP2001066121A (en) 1999-08-26 1999-08-26 Surface shape measuring device

Publications (1)

Publication Number Publication Date
JP2001066121A true JP2001066121A (en) 2001-03-16

Family

ID=17042371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23927799A Pending JP2001066121A (en) 1999-08-26 1999-08-26 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP2001066121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2009079933A (en) * 2007-09-25 2009-04-16 Fujinon Corp Interferometer device for measuring large-sized sample
JP2020115237A (en) * 2005-12-30 2020-07-30 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115237A (en) * 2005-12-30 2020-07-30 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP7193499B2 (en) 2005-12-30 2022-12-20 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2009079933A (en) * 2007-09-25 2009-04-16 Fujinon Corp Interferometer device for measuring large-sized sample

Similar Documents

Publication Publication Date Title
TWI784265B (en) Displacement measuring device, displacement measuring method and photolithography equipment
US9389065B2 (en) Position-measuring device and system having such a position-measuring device
JP4800730B2 (en) Interferometer system for displacement measurement and exposure apparatus using the same
JP5804899B2 (en) Optical angle measuring device
TWI546629B (en) Projection exposure tool for microlithography and method for microlithographic imaging
JP2011257394A (en) Position sensor and lithography device
JP6459082B2 (en) Measuring apparatus and measuring method, exposure apparatus and exposure method, and device manufacturing method
JP6489330B2 (en) Encoder apparatus, exposure apparatus, and device manufacturing method
KR20130089191A (en) Position-measuring device and system having a plurality of position-measuring devices
JP3977126B2 (en) Displacement information detector
JPH10512674A (en) Interferometric measurement of grazing incidence surface using diffractive optical element
JP5955375B2 (en) Optical device
JP2001066121A (en) Surface shape measuring device
US20200232786A1 (en) Measurement of a change in a geometrical characteristic and/or position of a workpiece
CN205991783U (en) Detection apparatus for cylinder and cylinder system of assembling
JP2009267064A (en) Measurement method and exposure apparatus
WO2003076872A1 (en) Shape measuring method, interference measuring device, porduction method for projection optical system, and porjectionj aligner
CN205957916U (en) Detection apparatus for concave cylinder face and cylinder disperse system
JPH07332923A (en) Measuring method for position and attitude of moving body
JP2014202589A (en) Surface interval measurement device
JP2022521573A (en) Stage system and lithography equipment
JP4007473B2 (en) Wavefront shape measurement method
JP5793355B2 (en) Oblique incidence interferometer
CN102692827A (en) Aligning device for photolithography equipment
JPH08233524A (en) Multiaxial positioning device