Nothing Special   »   [go: up one dir, main page]

JP2001046096A - PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION - Google Patents

PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION

Info

Publication number
JP2001046096A
JP2001046096A JP11225840A JP22584099A JP2001046096A JP 2001046096 A JP2001046096 A JP 2001046096A JP 11225840 A JP11225840 A JP 11225840A JP 22584099 A JP22584099 A JP 22584099A JP 2001046096 A JP2001046096 A JP 2001046096A
Authority
JP
Japan
Prior art keywords
glucosidase
glycoside
reaction
enzyme
maltose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11225840A
Other languages
Japanese (ja)
Inventor
Shoji Usami
昭次 宇佐美
Kuniki Kino
邦器 木野
Kotaro Kirimura
光太郎 桐村
Hiroyuki Nakagawa
博之 中川
Keishiro Yoshida
圭司郎 吉田
Takanori Tsugane
貴則 津金
Susumu Shimura
進 志村
Yoshio Itou
禧男 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotte Co Ltd
Original Assignee
Lotte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotte Co Ltd filed Critical Lotte Co Ltd
Priority to JP11225840A priority Critical patent/JP2001046096A/en
Priority to IDP20000664A priority patent/ID26883A/en
Priority to BR0003463-0A priority patent/BR0003463A/en
Publication of JP2001046096A publication Critical patent/JP2001046096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a conventionally unknown glycoside at a low cost, to produce an α-glucosidase capable of efficiently producing the glycoside and to provide a method for producing the α-glucosidase. SOLUTION: A transglycosylating reaction with an α-glucosidase can be utilized to thereby effectively produce an α-anomeric selective glycoside which is capsaicin, dihydrocapsaicin, nonylic acid vanillylamide catechin, epicatechin vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol or 5-nonyl alcohol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α−グルコシダー
ゼを利用した配糖体の効率的な製造方法及び様々な受容
体に対して効率よく糖転移反応が行える新規なα−グル
コシダーゼ並びにその製造方法に関する。
The present invention relates to a method for efficiently producing glycosides using α-glucosidase, a novel α-glucosidase capable of efficiently performing a transglycosylation reaction with various receptors, and a method for producing the same. About.

【0002】[0002]

【従来技術】α−グルコシド結合を有する化合物をその
非還元性末端から加水分解してα−D−グルコースを遊
離させる酵素は、α−グルコシダーゼ(EC3.2.
1.20)と呼ばれ、様々な微生物、動物、植物に存在
している。α−グルコシダーゼに分類される酵素には、
加水分解反応のみではなく加水分解反応とともに糖転移
反応を触媒できるものもあり、オリゴ糖や各種配糖体の
製造に有用である。
BACKGROUND ART An enzyme which hydrolyzes a compound having an α-glucoside bond from its non-reducing end to release α-D-glucose is α-glucosidase (EC 3.2.
1.20) and is present in various microorganisms, animals and plants. Enzymes classified as α-glucosidase include:
Not only the hydrolysis reaction, but also those capable of catalyzing the glycosyl transfer reaction together with the hydrolysis reaction are useful for the production of oligosaccharides and various glycosides.

【0003】例えば、α−グルコシダーゼによるオリゴ
糖の合成では、糖を受容体とした糖転移反応が利用され
ている(J. Jpn. Soc. Starch S
ci.,35,69−77(1988))。一方、受容
体として糖以外の化合物を用いたα−グルコシダーゼに
よる配糖体の合成については、「α−グリコシルフラボ
ン類とその製造方法並びに用途」(特開平4−3125
97号公報)、「エチル−α−グルコシドの製造方法」
(特公平6−30608号公報)、「酵素反応によるl
−メンチル−α−D−グルコピラノシドの製造方法」
(特開平9−224693号公報)、「固定化酵素によ
る配糖体の製造方法」(特開平9−313196号公
報)、「α−グルコシダーゼによるアスコルビン酸配糖
体の合成」(Chem. Pharm. Bull.,
38,3020−3023(1990))、「配糖体の
酵素合成」(J. Jpn. Soc. Starch
Sci.,35,93−102(1988))が報告
されている。しかしながら、これらの配糖体の製造方法
は、酵素の基質特異性、受容体特異性等のために個々に
相違しており、種々の配糖体を効率よく製造する方法に
ついては、いまだ明らかにされていない。
For example, in the synthesis of oligosaccharides using α-glucosidase, a transglycosylation reaction using a sugar as an acceptor is used (J. Jpn. Soc. Starch S).
ci. , 35, 69-77 (1988)). On the other hand, regarding the synthesis of glycosides by α-glucosidase using a compound other than sugar as a receptor, “α-Glycosylflavones, their production methods and applications” (JP-A-4-3125)
No. 97), “Method for producing ethyl-α-glucoside”
(Japanese Patent Publication No. 6-30608).
-Method for producing menthyl-α-D-glucopyranoside ”
(Japanese Unexamined Patent Publication No. 9-224693), "Method for producing glycoside using immobilized enzyme" (Japanese Unexamined Patent Publication No. 9-313196), "Synthesis of ascorbic acid glycoside using α-glucosidase" (Chem. Pharm. Bull.,
38, 3020-3023 (1990)), "Enzymatic synthesis of glycosides" (J. Jpn. Soc. Starch).
Sci. , 35, 93-102 (1988)). However, methods for producing these glycosides are individually different due to enzyme substrate specificity, receptor specificity, and the like, and methods for efficiently producing various glycosides are still clearly evident. It has not been.

【0004】カプサイシン、ジヒドロカプサイシンは、
トウガラシの辛味の主成分であり、様々な生理活性を示
すことが明らかになっている。例えば、β−アドレナリ
ン分泌亢進とそれによる脂肪組織における脂質代謝の増
進やエネルギー代謝促進、コレステロール低下作用、食
欲増進、唾液・胃酸の分泌促進などが報告されている
(日本栄養・食糧学会誌,45,303−312(19
92))。また、ノニル酸バニリルアミドもトウガラシ
中に微量含まれ、カプサイシンと化学構造が類似してお
り、カプサイシンと同様の生理活性を示すことが知られ
ている。このようなカプサイシン類の様々な生理活性を
生かして、食品、化粧品、医薬品への応用が期待される
いるが、それ自体に強烈な辛味や刺激性があり、応用分
野並びにその使用量は限られていた。このような問題を
解決するためにカプサイシンの配糖化による辛味や刺激
性の低下が検討されている(特開平7−82289号公
報、特開平10−25237号公報)が、これまでに報
告されているカプサイシン類の配糖体の製造方法は、化
学合成による方法(J. Agric. FoodCh
em.,40,2057−2059(1992)、特開
平10−25237号公報)や植物培養細胞を用いた方
法(特開平7−82289号公報)であり、前者は高価
な試薬を必要とし、多段階の反応工程が必要となるとい
った問題点があり、後者では生成する配糖体がβ型に限
られており、収率が低い等の問題点があった。また、従
来から配糖体の酵素による製造に用いられているサイク
ロデキストリングルコシルトランスフェラーゼ(CGT
ase)、α−アミラーゼ、α−グルコシダーゼ、スク
ロースホスホリラーゼによるカプサイシン配糖体の製造
方法についてはいまだ報告されていない。
[0004] Capsaicin, dihydrocapsaicin,
It is the main component of the pungency of pepper and has been shown to exhibit various physiological activities. For example, it has been reported that β-adrenergic secretion is enhanced and the resulting increase in lipid metabolism and energy metabolism in adipose tissue, cholesterol-lowering effect, appetite enhancement, and salivary and gastric acid secretion are promoted (Japanese Journal of Nutrition and Food Science, 45). , 303-312 (19
92)). It is also known that nonyl acid vanillylamide is contained in a small amount in pepper, has a similar chemical structure to capsaicin, and exhibits the same physiological activity as capsaicin. Utilizing the various physiological activities of such capsaicins, they are expected to be applied to foods, cosmetics, and pharmaceuticals.However, they themselves have intense pungency and irritation, and their application fields and their usage are limited. I was In order to solve such a problem, reduction in pungency and irritation due to glycosylation of capsaicin has been studied (Japanese Patent Application Laid-Open Nos. 7-82289 and 10-25237). A method for producing glycosides of capsaicins is a method by chemical synthesis (J. Agric. FoodCh).
em. , 40, 2057-2059 (1992), JP-A-10-25237) and a method using plant cultured cells (JP-A-7-82289). The former requires expensive reagents and involves multiple steps. There is a problem that a reaction step is required, and in the latter case, the glycoside produced is limited to β-form, and there are problems such as a low yield. In addition, cyclodextrin glucosyltransferase (CGT) conventionally used for glycoside enzyme production.
ase), α-amylase, α-glucosidase, and a method for producing capsaicin glycoside using sucrose phosphorylase have not yet been reported.

【0005】また、カテキン、エピカテキン、バニリ
ン、ハイドロキノン、カテコール、レゾルシノール、
3,4−ジメトキシフェノールの配糖体については、チ
ロシナーゼの阻害(Biosci. Biotech.
Biochem.,57,1666−1669(19
93))、抗変異原性(Biosci. Biotec
h. Biochem.,57,1290−1293
(1993))等の様々な生理活性が知られている。上
記配糖体の製造に関しては、CGTase(Biosc
i. Biotech. Biochem.,57,1
666−1669(1993))、α−アミラーゼ
(J. Ferment. Bioeng.,78,3
7−41(1994))、スクロースホスホリラーゼ
(Biosci. Biotech. Bioche
m.,58,38−42(1994))、配糖体合成酵
素(GSase)(Biosci. Biotech.
Biochem.,58,817−821(199
4))を用いた合成が報告されているが、これらは配糖
化の効率が低いといった点や配糖化反応により複数の配
糖化物が生成するために単一の配糖化物を得る為には煩
雑な精製工程が必要であるという点で問題があり、α−
グルコシダーゼを用いた製造方法に関する報告は見当た
らない。
Further, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol,
For glycosides of 3,4-dimethoxyphenol, tyrosinase inhibition (Biosci. Biotech.
Biochem. , 57, 1666-1669 (19)
93)), anti-mutagenic (Biosci. Biotec)
h. Biochem. , 57, 1290-1293.
(1993)). Regarding the production of the glycoside, CGTase (Biosc)
i. Biotech. Biochem. , 57,1
666-1669 (1993)), α-amylase (J. Ferment. Bioeng., 78, 3).
7-41 (1994)), sucrose phosphorylase (Biosci. Biotech. Bioche).
m. , 58, 38-42 (1994)), glycoside synthase (GSase) (Biosci. Biotech.
Biochem. , 58, 817-821 (199).
Although the synthesis using 4)) has been reported, these methods are inferior in that glycosylation efficiency is low, and in order to obtain a single glycoside because a plurality of glycosides are produced by the glycosylation reaction. There is a problem in that a complicated purification step is required, and α-
There is no report on a production method using glucosidase.

【0006】さらに、アルキルグルコシドは、界面活性
剤や高分子材料の合成中間体等に利用され産業上有用で
あるが、その製造方法については、水分含量の少ない有
機溶媒中でグルコースと各種アルコールを原料として酵
母由来のα−グルコシダーゼを用いて、糖転移反応では
なく加水分解反応の逆反応により合成したという報告が
ある(Acta Alimentaria.,27,2
65−275(1998))のみで、反応効率の点で満
足できるものではなく、反応系に有機溶媒を用いるとい
う点で安全性の問題も考えられた。
[0006] Furthermore, alkyl glucosides are used industrially as surfactants and synthetic intermediates for polymer materials. However, the production method thereof involves the production of glucose and various alcohols in an organic solvent having a low water content. There is a report that a yeast-derived α-glucosidase was used as a raw material for synthesis by a reverse reaction of a hydrolysis reaction instead of a sugar transfer reaction (Acta Alimentaria., 27, 2).
65-275 (1998)) alone was not satisfactory in terms of reaction efficiency, and a safety problem was considered in that an organic solvent was used in the reaction system.

【0007】一方、本発明者等は、既にXanthomonas
属、Stenotrophomonas属及びArthrobacter属の微生物を
用いることによってメントールへの糖転移反応を効率よ
く行うことができること、さらにそれらの中でも本発明
者等が分離したXanthomonas campestris WU−970
1(FERM BP−6578)が最も反応効率の点で
優れていることを見出した(特開平11−155591
号公報)。しかしながら、特開平11−155591号
公報では、メントールにグルコースを転移させる酵素に
ついては単離されておらず、その諸性質も明らかにされ
ていなかった。また、α−グルコシダーゼ、α−アミラ
ーゼ、CGTase等の糖質関連酵素の受容体特異性は
酵素の種類によって様々に異なるので、本酵素のメント
ール以外の受容体に対する作用も明らかではなかった。
On the other hand, the present inventors have already reported that Xanthomonas
That the glycosyltransfer reaction to menthol can be efficiently carried out by using microorganisms of the genera, Stenotrophomonas and Arthrobacter, and among them, Xanthomonas campestris WU-970 isolated by the present inventors.
1 (FERM BP-6578) was found to be the most excellent in terms of reaction efficiency (JP-A-11-155591).
No.). However, in Japanese Patent Application Laid-Open No. H11-155591, an enzyme that transfers glucose to menthol has not been isolated, and its properties have not been clarified. In addition, since the receptor specificity of carbohydrate-related enzymes such as α-glucosidase, α-amylase, and CGTase varies depending on the type of enzyme, the effect of this enzyme on receptors other than menthol was not clear.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術では反応効率が極めて低く、あるいは高価な試薬や多
段階の反応工程が必要になるといった問題点を解決する
ため、従来知られていない配糖体を効率よく安価に製造
する方法及びそれらを効率よく製造することのできる新
規なα−グルコシダーゼ並びにその製造方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has not been known so far in order to solve the problems that the above-mentioned prior arts have a very low reaction efficiency or require expensive reagents and multi-step reaction steps. It is an object of the present invention to provide a method for efficiently producing glycosides at low cost, a novel α-glucosidase capable of producing them efficiently, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、α−グルコシダ
ーゼによる糖転移反応を利用することにより、カプサイ
シン、ジヒドロカプサイシン、ノニル酸バニリルアミ
ド、カテキン、エピカテキン、バニリン、ハイドロキノ
ン、カテコール、レゾルシノール、3,4−ジメトキシ
フェノール、プロパノール、ブタノール、イソブチルア
ルコール、アミルアルコール、5−ノニルアルコールの
αアノマー選択的な配糖体が効率よく製造できることを
見出し本発明を完成させた。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, by utilizing the transglycosylation reaction by α-glucosidase, capsaicin, dihydrocapsaicin, nonylate vanillylamide, It has been found that α-anomer-selective glycosides of catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol, and 5-nonyl alcohol can be efficiently produced. The present invention has been completed.

【0010】さらに、α−グルコシダーゼが下記の理化
学的特性を有するα−グルコシダーゼであれば、上記化
合物に対して糖転移活性が優れており極めて容易に効率
よく配糖体が製造できること、また、本酵素を精製し、
その諸性質を明らかにしたところ、本酵素は新規なα−
グルコシダーゼであり、Xanthomonas属の細菌から得ら
れること、さらにまた本酵素の製造方法を見出し本発明
を完成させた。
[0010] Furthermore, if α-glucosidase is an α-glucosidase having the following physicochemical properties, it has excellent glycosyltransferase activity with respect to the above-mentioned compounds, and can produce glycosides very easily and efficiently. Purify the enzyme,
After clarifying its properties, this enzyme is a novel α-
A glucosidase that can be obtained from a bacterium belonging to the genus Xanthomonas and a method for producing the enzyme have been found, and the present invention has been completed.

【0011】先ず、作用として糖類のα−1,4−結合
を加水分解し、マルトースを供与体としてグルコースを
受容体に転移させ配糖体を合成する。
First, as an action, the α-1,4-bond of a saccharide is hydrolyzed, and glucose is transferred to an acceptor using maltose as a donor to synthesize a glycoside.

【0012】次に、加水分解反応の基質特異性としてマ
ルトース、p−ニトロフェニル−α−D−グルコピラノ
シドには作用するが、マルトトリオース、マルトヘキサ
オース、イソマルトース、トレハロース、スクロース、
溶性デンプン、メチル−α−D−グルコピラノシド、ラ
クトース、メリビオース、セロビオース、アミロース、
シクロデキストリン、イソマルトトリオース、ニゲロー
ス、コウジビオースにはほとんど作用しない。
Next, maltose and p-nitrophenyl-α-D-glucopyranoside act as substrate specificities in the hydrolysis reaction, but maltotriose, maltohexaose, isomaltose, trehalose, sucrose,
Soluble starch, methyl-α-D-glucopyranoside, lactose, melibiose, cellobiose, amylose,
It has little effect on cyclodextrin, isomalttriose, nigerose, and kojibiose.

【0013】受容体の基質特異性:メントール、エタノ
ール、1−プロパノール、1−ブタノール、2−ブタノ
ール、イソブチルアルコール、1−アミルアルコール、
2−アミルアルコール、5−ノニルアルコール等のアル
コール性水酸基を有する化合物やカプサイシン、ジヒド
ロカプサイシン、ノニル酸バニリルアミド、カテキン、
エピカテキン、バニリン、ハイドロキノン、カテコー
ル、レゾルシノール、3,4−ジメトキシフェノール等
のフェノール性水酸基を有する化合物を受容体として糖
転移反応を行え、また、これらの受容体に糖転移反応を
行い生成が認められる配糖体はモノグルコシドのみであ
る。
Receptor substrate specificity: menthol, ethanol, 1-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 1-amyl alcohol,
Compounds having an alcoholic hydroxyl group such as 2-amyl alcohol and 5-nonyl alcohol, capsaicin, dihydrocapsaicin, nonylate vanillylamide, catechin,
Glycosyltransfer reaction can be performed by using a compound having a phenolic hydroxyl group such as epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol as an acceptor. The glycosides used are only monoglucosides.

【0014】また、分子量は、約57,000で、N末
端アミノ酸配列として次に記載の配列を有する。 配列の長さ:20 配列の型 :アミノ酸 鎖の数 :1本鎖 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型:N末端フラグメント
It has a molecular weight of about 57,000 and has the following sequence as the N-terminal amino acid sequence. Sequence length: 20 Sequence type: amino acid Number of chains: 1 chain Topology: linear Sequence type: peptide Fragment type: N-terminal fragment

【0015】[0015]

【発明の実施の形態】本発明におけるα−グルコシダー
ゼによる糖転移反応を利用することを特徴とするカプサ
イシン、ジヒドロカプサイシン、ノニル酸バニリルアミ
ド、カテキン、エピカテキン、バニリン、ハイドロキノ
ン、カテコール、レゾルシノール、3,4−ジメトキシ
フェノール、プロパノール、ブタノール、イソブチルア
ルコール、アミルアルコール、5−ノニルアルコールの
αアノマー選択的な配糖体の製造方法において、糖転移
反応の供与体として使用する糖としては、マルトオリゴ
糖等が使用できるが、好ましくはマルト−スを使用す
る。反応条件としては、供与体を5〜60%(W/
V)、好ましくは15〜40%(W/V)の濃度で、p
H5.0〜9.0の溶液に調整し、その溶液に本発明の
配糖体を製造するための受容体としてカプサイシン、ジ
ヒドロカプサイシン、ノニル酸バニリルアミド、カテキ
ン、エピカテキン、バニリン、ハイドロキノン、カテコ
ール、レゾルシノール、3,4−ジメトキシフェノー
ル、プロパノール、ブタノール、イソブチルアルコー
ル、アミルアルコール、5−ノニルアルコールのいずれ
か一つを0.01〜10%(W/V)、好ましくは0.
1〜1%(W/V)を加え、さらに反応液1ml当りマ
ルトースの加水分解活性で0.01〜10ユニット、好
ましくは0.1〜1ユニットのα−グルコシダーゼを加
えて、20〜60℃、好ましくは30〜50℃で2〜1
00時間、好ましくは20〜50時間反応させる。尚、
ここでいうマルトース加水分解活性の測定法及び活性単
位の定義については、実施例1に記載する。このように
して製造された配糖体を反応液からの回収及び精製する
方法としては、遠心分離、各種溶媒による抽出、各種ク
ロマトグラフィー、再結晶等を適宜選択または組み合わ
せることによって行い、これらにより本発明の配糖体を
製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Capsaicin, dihydrocapsaicin, vanillyl amide nonylate, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4 characterized by utilizing the transglycosylation reaction with α-glucosidase in the present invention In the method for producing an α-anomer-selective glycoside of dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol, or 5-nonyl alcohol, maltooligosaccharide or the like is used as a sugar used as a donor for the transglycosylation reaction. Preferably, maltose is used. As the reaction conditions, the donor is 5 to 60% (W /
V), preferably at a concentration of 15-40% (W / V), p
H5.0-9.0 solution, and capsaicin, dihydrocapsaicin, nonylate vanillylamide, catechin, epicatechin, vanillin, hydroquinone, catechol as a receptor for producing the glycoside of the present invention in the solution. Resorcinol, 3,4-dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol, or 5-nonyl alcohol is used in an amount of 0.01 to 10% (W / V), preferably 0.1 to 10% (W / V).
1 to 1% (W / V), and 0.01 to 10 units, preferably 0.1 to 1 unit of α-glucosidase in terms of maltose hydrolysis activity per 1 ml of the reaction solution, and then add 20 to 60 ° C. , Preferably at 30 to 50 ° C for 2 to 1
The reaction is carried out for 00 hours, preferably for 20 to 50 hours. still,
The method for measuring the maltose hydrolysis activity and the definition of the activity unit are described in Example 1. The method for recovering and purifying the glycoside thus produced from the reaction solution is performed by appropriately selecting or combining centrifugation, extraction with various solvents, various chromatography, recrystallization, etc. The glycoside of the invention can be produced.

【0016】上記糖転移反応において、本発明で使用す
るα−グルコシダーゼとしては、従来一般に使用されて
いるα−グルコシダーゼを適宜選択して使用することが
できるが、特に下記の理化学的特性を有するα−グルコ
シダーゼを使用することが好ましい。
In the above-mentioned glycosyltransfer reaction, as the α-glucosidase used in the present invention, a conventionally used α-glucosidase can be appropriately selected and used. In particular, α-glucosidase having the following physicochemical properties is used. -It is preferred to use glucosidases.

【0017】本酵素は、本発明において初めて明らかに
されたα−グルコシダーゼであり、本酵素を使用すこと
により極めて効率よく上記配糖体を製造することができ
る。
The present enzyme is an α-glucosidase identified for the first time in the present invention, and the glycoside can be produced very efficiently by using the present enzyme.

【0018】本酵素の理化学的特性は、 (1)作用 糖類のα−1,4−結合を加水分解する。マルトースを
供与体としてグルコースを受容体に転移させ配糖体を合
成する。
The physicochemical properties of this enzyme are as follows: (1) Action It hydrolyzes the α-1,4-bond of saccharide. Glucose is synthesized by transferring glucose to an acceptor using maltose as a donor.

【0019】(2)加水分解反応の基質特異性 0.5%の基質を含む10mMホウ酸・塩化カリウム−
水酸化ナトリウム緩衝液(以下、ホウ酸緩衝液という)
に本酵素を加え、30℃で20分間反応の後、反応液中
のグルコース濃度をグルコースCII−テストワコーを用
いて測定した結果、表1に示すように本酵素はマルトー
ス、p−ニトロフェニル−α−D−グルコピラノシドに
は作用するが、マルトトリオース、マルトヘキサオー
ス、イソマルトース、トレハロース、溶性デンプン、シ
ュークロース、ラクトース、メチル−α−D−グルコピ
ラノシド、メリビオース、セロビオースにはほとんど作
用しない。また、薄層クロマトグラフィーによりグルコ
ースの生成を検出した結果、本酵素はアミロース、シク
ロデキストリン、イソマルトトリオース、ニゲロース、
コウジビオースにも作用しなかった。
(2) Substrate specificity of hydrolysis reaction 10 mM boric acid / potassium chloride containing 0.5% of substrate
Sodium hydroxide buffer (hereinafter referred to as borate buffer)
After reacting at 30 ° C. for 20 minutes, the glucose concentration in the reaction solution was measured using glucose CII-Test Wako. As shown in Table 1, this enzyme was found to be maltose and p-nitrophenyl- It acts on α-D-glucopyranoside, but has little effect on maltotriose, maltohexaose, isomaltose, trehalose, soluble starch, sucrose, lactose, methyl-α-D-glucopyranoside, melibiose and cellobiose. In addition, as a result of detecting the production of glucose by thin-layer chromatography, this enzyme was found to be amylose, cyclodextrin, isomalttriose, nigerose,
No effect on kojibiose.

【0020】[0020]

【表1】 [Table 1]

【0021】(3)糖転移反応の受容体特異性 メントール、エタノール、1−プロパノール、1−ブタ
ノール、2−ブタノール、イソブチルアルコール、1−
アミルアルコール、2−アミルアルコール、5−ノニル
アルコール等のアルコール性水酸基を有する化合物及び
カプサイシン、ジヒドロカプサイシン、ノニル酸バニリ
ルアミド、カテキン、エピカテキン、バニリン、ハイド
ロキノン、カテコール、レゾルシノール、3,4−ジメ
トキシフェノール等のフェノール性水酸基を有する化合
物に効率よく糖転移反応を行える(表2)。また、これ
らの受容体に糖転移反応を行い生成が認められる配糖体
はモノグルコシドのみである。
(3) Receptor specificity of glycosyl transfer reaction Menthol, ethanol, 1-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 1-
Compounds having an alcoholic hydroxyl group such as amyl alcohol, 2-amyl alcohol, and 5-nonyl alcohol, and capsaicin, dihydrocapsaicin, nonylate vanillylamide, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, and the like The compound having a phenolic hydroxyl group can efficiently undergo a glycosyl transfer reaction (Table 2). Glycosides that undergo glycosylation on these receptors and are produced are only monoglucosides.

【0022】[0022]

【表2】 [Table 2]

【0023】(4)反応至適pH 図1に示すように、マルトースを加水分解する場合の至
適pHは約pH7〜8であり、また図2に示すように、
メントールに糖転移を行う場合の至適pHは約pH7.
0〜8.5であり、図3に示すように、カテキンに糖転
移を行う場合の至適pHは約pH6〜7であって、図4
に示すように、エピカテキンに糖転移を行う場合の至適
pHは約pH5.5〜6.5である。
(4) Optimum pH for Reaction As shown in FIG. 1, the optimum pH for hydrolyzing maltose is about pH 7 to 8, and as shown in FIG.
The optimum pH for saccharide transfer to menthol is about pH7.
0 to 8.5, and as shown in FIG. 3, the optimal pH for performing glycation to catechin is about pH 6 to 7, and FIG.
As shown in (1), the optimal pH for transglycosylation of epicatechin is about pH 5.5 to 6.5.

【0024】(5)糖転移反応の最適温度 図5に示すように、メントールに糖転移を行う場合のp
H8.5における最適温度は35℃〜45℃であり、ま
た図6に示すように、カテキンに糖転移を行う場合のp
H6.5における最適温度は40℃〜50℃であり、さ
らに図7に示すように、エピカテキンに糖転移を行う場
合のpH6.0における最適温度は35℃〜45℃であ
る。
(5) Optimal temperature of glycosyltransfer reaction As shown in FIG.
The optimum temperature at H8.5 is 35 ° C. to 45 ° C., and as shown in FIG.
The optimum temperature at H6.5 is 40 ° C to 50 ° C, and as shown in Fig. 7, the optimum temperature at pH 6.0 when transglycosylating epicatechin is 35 ° C to 45 ° C.

【0025】(6)阻害剤の影響 表3に示すように、本酵素の糖転移活性はCu2+、H
2+によりほぼ完全に阻害され、Zn2+、EDTA
によりある程度阻害されるが、Mn2+、Mg 2+、C
2+ではほとんど阻害されない性質も有することがわ
かった。尚、阻害剤の濃度は2mMとした。
(6) Effect of inhibitor As shown in Table 3, the glycosyltransfer activity of this enzyme is Cu2+, H
g2+Is almost completely inhibited by Zn2+, EDTA
To some extent by Mn2+, Mg 2+, C
a2+Have properties that are hardly inhibited.
won. The concentration of the inhibitor was 2 mM.

【0026】[0026]

【表3】 [Table 3]

【0027】(7)分子量 SDS−ポリアクリルアミドゲル電気泳動の結果、分子
量は約57,000であった。
(7) Molecular weight As a result of SDS-polyacrylamide gel electrophoresis, the molecular weight was about 57,000.

【0028】(8)N末端アミノ酸配列 本酵素は次に示すアミノ酸配列をN末端に有する。 配列の長さ:20 配列の型 :アミノ酸 鎖の数 :1本鎖 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型:N末端フラグメント (8) N-terminal amino acid sequence This enzyme has the following amino acid sequence at the N-terminal. Sequence length: 20 Sequence type: amino acid Number of chains: 1 chain Topology: linear Sequence type: peptide Fragment type: N-terminal fragment

【0029】本発明の酵素、すなわち新規なα−グルコ
シダーゼを製造するには、使用する菌株としては、本発
明者らが先に出願した特開平11−155591号公報
に記載されているXanthomonas属の細菌、例えばXanthom
onas campestris WU−9701 (FERM BP
−6578)を使用することができる。使用する培地と
しては、一般に細菌を培養するために用いられる培地で
あれば特に限定されないが、α−1,4結合を持つグル
カン(マルトースや澱粉など)を培地に加える方が好ま
しい。例えば、菌株としてXanthomonas campestris W
U−9701(FERM BP−6578)を使用する
場合には、マルトース 50g/L、酵母エキス 2.
0g/L、ペプトン 10g/L、硫酸マグネシウム7
水和物1.0g/Lからなり、pH7に調整された培地
を使用することができ、これを25〜30℃の培養温度
で、15〜48時間培養するのが好ましい。培養は、攪
拌あるいは振盪しながら好気的に行う。次に、本酵素
は、菌株の菌体内に大部分が存在しているので、本菌株
の培養液から遠心分離あるいは濾過により菌体を採取す
る。得られた菌体を、物理的破壊法(流体せん断、固体
せん断、フレンチプレス、超音波破砕、凍結融解など)
や化学的破壊法(界面活性剤処理、アルカリ処理、酵素
処理など)を適宜選択して単独あるいは組み合わせるこ
とにより破壊する。この細胞破砕液から遠心分離あるい
は濾過により不溶物を除き精製することにより、本発明
のα−グルコシダーゼである粗酵素が製造できる。得ら
れた粗酵素から酵素をさらに精製する方法としては、一
般的に酵素の精製法として用いられている硫安塩析、遠
心分離、透析、限外濾過、各種クロマトグラフィー、電
気泳動等を組み合わせて用いることができ、これらの処
理を行うことにより精製された本発明のα−グルコシダ
ーゼを製造することができる。
In order to produce the enzyme of the present invention, that is, a novel α-glucosidase, as a strain to be used, a strain of the genus Xanthomonas described in Japanese Patent Application Laid-Open No. H11-155591 filed earlier by the present inventors was used. Bacteria, such as Xanthom
onas campestris WU-9701 (FERM BP
-6578) can be used. The medium to be used is not particularly limited as long as it is a medium generally used for culturing bacteria, but it is preferable to add a glucan having α-1,4 bond (maltose, starch, etc.) to the medium. For example, as a strain, Xanthomonas campestris W
When U-9701 (FERM BP-6578) is used, maltose 50 g / L, yeast extract
0 g / L, peptone 10 g / L, magnesium sulfate 7
A medium consisting of hydrate 1.0 g / L and adjusted to pH 7 can be used, and it is preferable to culture this at a culture temperature of 25 to 30 ° C. for 15 to 48 hours. Culture is performed aerobically while stirring or shaking. Next, since most of the present enzyme is present in the cells of the strain, the cells are collected from the culture of the strain by centrifugation or filtration. The obtained cells are subjected to a physical disruption method (fluid shear, solid shear, French press, sonication, freeze-thaw, etc.)
And a chemical destruction method (surfactant treatment, alkali treatment, enzyme treatment, etc.) are appropriately selected and destroyed singly or in combination. The crude enzyme, which is the α-glucosidase of the present invention, can be produced by purifying the cell lysate by removing insolubles by centrifugation or filtration. As a method for further purifying the enzyme from the obtained crude enzyme, a combination of ammonium sulfate salting out, centrifugation, dialysis, ultrafiltration, various types of chromatography, electrophoresis, etc., which are generally used as a method for purifying the enzyme, is used. The purified α-glucosidase of the present invention can be produced by performing these treatments.

【0030】[0030]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0031】 [実施例1]本発明のα−グルコシダーゼの製造方法 マルトース50g/L、ペプトン10g/L、酵母エキ
ス2.0g/L、硫酸マグネシウム7水和物1.0g/
Lから成り、pH7に調整された培地にXanthomonas ca
mpestris WU−9701を接種し、好気的に30℃で
培養した。菌の増殖が定常期に達した時点で遠心分離に
より培養液から菌体を回収し、10mMクエン酸−10
mMリン酸緩衝液(以下、クエン酸−リン酸緩衝液とい
う)(pH7.0)に菌体を懸濁させた。超音波破砕に
より菌を破砕し、遠心分離により不溶物を除き粗酵素を
得た。得られた粗酵素に硫酸アンモニウムの粉末を50
%飽和となるまで加え、4℃で15時間静置した。生じ
た沈澱を遠心分離によって回収し、10mMクエン酸−
リン酸緩衝液(pH7.0)に溶解し、同緩衝液に対し
て透析を行った。得られた透析内液を同緩衝液で平衡化
したDEAE−トヨパール650M(東ソー)カラムに
供し酵素を吸着させ、ホウ酸緩衝液中の塩化ナトリウム
濃度を0から0.5Mに直線的に増加させて溶出を行っ
た。活性画分を回収し、0.1M塩化ナトリウムを含む
ホウ酸緩衝液に対して透析した。透析内液を同緩衝液で
平衡化したDEAE−トヨパール650M(東ソー)カ
ラムに供し酵素を吸着させ、ホウ酸緩衝液中の塩化ナト
リウム濃度を0.1Mから0.3Mに直線的に増加させ
て溶出を行った。活性画分を回収し限外濾過で濃縮の
後、0.15Mの塩化ナトリウムを含むホウ酸緩衝液で
平衡化したトヨパールHW−55(東ソー)カラムに供
し、同緩衝液で溶出した。活性画分を回収し限外濾過で
濃縮の後、0.15Mの塩化ナトリウムを含むホウ酸緩
衝液で平衡化したセファクリルS−200(ファルマシ
ア)カラムに供し、同緩衝液で溶出した。このようにし
て精製した酵素は粗酵素と比べて比活性で108倍に精
製されており、SDS−ポリアクリルアミド電気泳動を
行ったところほぼ単一のバンドに精製されていた。
Example 1 Method for Producing α-Glucosidase of the Present Invention Maltose 50 g / L, Peptone 10 g / L, Yeast Extract 2.0 g / L, Magnesium sulfate heptahydrate 1.0 g / L
Xanthomonas ca in medium adjusted to pH 7
mpestris WU-9701 was inoculated and cultured aerobically at 30 ° C. When the growth of the bacteria reached the stationary phase, the cells were recovered from the culture by centrifugation, and 10 mM citric acid-10
The cells were suspended in an mM phosphate buffer (hereinafter, referred to as citrate-phosphate buffer) (pH 7.0). The bacteria were disrupted by sonication, and the insoluble matter was removed by centrifugation to obtain a crude enzyme. Add 50 mg of ammonium sulfate powder to the obtained crude enzyme.
% Saturation and allowed to stand at 4 ° C. for 15 hours. The resulting precipitate was collected by centrifugation and 10 mM citric acid-
It was dissolved in a phosphate buffer (pH 7.0) and dialyzed against the same buffer. The obtained inner dialysis solution is applied to a DEAE-Toyopearl 650M (Tosoh) column equilibrated with the same buffer to adsorb the enzyme, and the sodium chloride concentration in the borate buffer is linearly increased from 0 to 0.5M. To elute. The active fraction was collected and dialyzed against borate buffer containing 0.1 M sodium chloride. The inner dialysis solution was applied to a DEAE-Toyopearl 650M (Tosoh) column equilibrated with the same buffer to adsorb the enzyme, and the sodium chloride concentration in the borate buffer was linearly increased from 0.1M to 0.3M. Elution was performed. The active fraction was collected, concentrated by ultrafiltration, applied to a Toyopearl HW-55 (Tosoh) column equilibrated with a borate buffer containing 0.15 M sodium chloride, and eluted with the same buffer. The active fraction was collected, concentrated by ultrafiltration, applied to a Sephacryl S-200 (Pharmacia) column equilibrated with a borate buffer containing 0.15 M sodium chloride, and eluted with the same buffer. The enzyme purified in this manner was purified 108 times in specific activity as compared with the crude enzyme, and was subjected to SDS-polyacrylamide electrophoresis to be purified into a substantially single band.

【0032】尚、本発明においては、特に記載がなけれ
ばα−グルコシダーゼの酵素活性の測定方法として、マ
ルトース加水分解活性測定法については、50mMマル
トース水溶液0.2ml、50mMホウ酸・塩化カリウ
ム−水酸化ナトリウム緩衝液(以下、ホウ酸緩衝液とい
う)(pH8.0)0.2mlと蒸留水0.5mlを混
合し、30℃でプレインキュベートの後、この溶液に
0.1mlの酵素溶液を加え30℃で10分間反応させ
た。反応液を沸騰浴中に5分間インキュベートすること
により反応を停止させた。加水分解反応によって反応液
中に生じたグルコースの濃度を市販のグルコース定量用
キット(グルコースCII−テストワコー、和光純薬)を
用いて測定し、1分間に1μmolのマルトースを加水
分解し2μmolのグルコースを生成する活性を1単位
と定義した。糖転移活性測定法については、所定濃度の
マルトース(反応系における終濃度が1.0Mとなるよ
うに設定した)を含む緩衝液に各種受容体(終濃度で
0.3〜1.0%(W/V))、酵素を加え、所定温度
で24時間振盪した。反応液中に生成した配糖体の量を
HPLCによって定量し、その生成量から糖転移活性を
相対活性として算出した。
In the present invention, unless otherwise specified, as a method for measuring the enzyme activity of α-glucosidase, the method for measuring maltose hydrolysis activity is as follows: 0.2 ml of a 50 mM maltose aqueous solution, 50 mM boric acid / potassium chloride-water. 0.2 ml of sodium oxide buffer (hereinafter referred to as borate buffer) (pH 8.0) and 0.5 ml of distilled water are mixed, and after preincubation at 30 ° C., 0.1 ml of the enzyme solution is added to this solution. The reaction was performed at 30 ° C. for 10 minutes. The reaction was stopped by incubating the reaction in a boiling bath for 5 minutes. The concentration of glucose generated in the reaction solution by the hydrolysis reaction was measured using a commercially available glucose determination kit (Glucose CII-Test Wako, Wako Pure Chemical Industries, Ltd.), and 1 μmol of maltose was hydrolyzed in 1 minute to obtain 2 μmol of glucose. Is defined as one unit. Regarding the method for measuring glycosyltransferase activity, various receptors (0.3 to 1.0% in final concentration) were added to a buffer containing a predetermined concentration of maltose (the final concentration in the reaction system was set to 1.0 M). W / V)), the enzyme was added, and the mixture was shaken at a predetermined temperature for 24 hours. The amount of glycoside produced in the reaction solution was quantified by HPLC, and the transglycosylation activity was calculated from the amount produced as a relative activity.

【0033】また、HPLCの分析方法については、メ
ントール配糖体のHPLC分析はBiosci. Bi
otech. Biochem.,60(11),19
14〜1915 (1996)に記載されている方法で
行った。カプサイシン配糖体、ノニル酸バニリルアミド
についてもメントール配糖体と同様の条件で分析を行っ
た。カテキン配糖体及びエピカテキン配糖体のHPLC
分析はカラムにTSK−GEL ODS80−Ts(φ
4.6×250mm、東ソー)を用い、カラム温度40
℃、20%メタノールを移動相として流速1.0ml/
minで行った。オリゴ糖のHPLC分析はカラムにA
sahipak NH2P−50 4E(φ4.6×2
50mm、昭和電工)を用い、カラム温度30℃、アセ
トニトリル:10mMテトラ−n−プロピルアンモニウ
ム=7:3(V/V)を移動相として流速1.0ml/
minで行った。
Regarding the HPLC analysis method, HPLC analysis of menthol glycoside is described in Biosci. Bi
otech. Biochem. , 60 (11), 19
14-1915 (1996). The capsaicin glycoside and nonylate vanillylamide were also analyzed under the same conditions as for the menthol glycoside. HPLC of catechin glycosides and epicatechin glycosides
Analysis was performed using TSK-GEL ODS80-Ts (φ
4.6 × 250 mm, Tosoh), column temperature 40
And 20% methanol as a mobile phase at a flow rate of 1.0 ml /
min. HPLC analysis of oligosaccharides
sahipak NH2P-50 4E (φ4.6 × 2
50 mm, Showa Denko), column temperature 30 ° C., acetonitrile: 10 mM tetra-n-propylammonium = 7: 3 (V / V) as a mobile phase, flow rate 1.0 ml /
min.

【0034】[実施例2]本発明のα−グルコシダーゼ
の各種受容体に対する糖転移活性及び本発明の各種配糖
体の製造方法 1.0Mのマルトースを含むホウ酸緩衝液(pH8.
0)9mlに各種受容体50mg、マルトース加水分解
活性10単位を有する本酵素1mlを加え、40℃で2
4時間振盪し反応させた。反応液10mlとメタノール
40mlを混合して反応を停止させ、不溶物を遠心分離
で除き上清を薄層クロマトグラフィーで分析し配糖体生
成の有無を確認した。薄層クロマトグラフィーはTLC
アルミシートシリカゲル60F254(Merck社)
を用い、展開溶媒としてクロロホルム:メタノール:水
=6:4:1を用いた。スポットの検出は2%の硫酸セ
リウム(IV)四水和物を含む10%硫酸を噴霧した後、
ホットプレート上で加熱して発色させた。スポットの大
きさから配糖体の生成量を比較した結果を表2に示し
た。
Example 2 Glycosyltransferase Activity of α-Glucosidase of the Present Invention to Various Receptors and Method for Producing Various Glycosides of the Present Invention A borate buffer containing 1.0 M maltose (pH 8.
0) To 9 ml, add 50 mg of various receptors and 1 ml of the present enzyme having 10 units of maltose hydrolysis activity,
The mixture was shaken for 4 hours to react. The reaction was stopped by mixing 10 ml of the reaction solution and 40 ml of methanol, the insolubles were removed by centrifugation, and the supernatant was analyzed by thin layer chromatography to confirm the presence or absence of glycoside formation. TLC for thin layer chromatography
Aluminum sheet silica gel 60F 254 (Merck)
And chloroform: methanol: water = 6: 4: 1 as a developing solvent. Spots were detected after spraying 10% sulfuric acid containing 2% cerium (IV) sulfate tetrahydrate,
The color was developed by heating on a hot plate. Table 2 shows the results of comparison of the amount of glycoside produced based on the spot size.

【0035】表中の配糖体生成量は+++>++>+>
−の順で配糖体生成量が多いことを示している。
Glycoside production in the table is +++>++>+>
-Indicates that the amount of glycoside produced is large.

【0036】このようにして、本発明のカプサイシン、
ジヒドロカプサイシン、ノニル酸バニリルアミド、カテ
キン、エピカテキン、バニリン、ハイドロキノン、カテ
コール、レゾルシノール、3,4−ジメトキシフェノー
ル、プロパノール、ブタノール、イソブチルアルコー
ル、アミルアルコール、5−ノニルアルコールのαアノ
マー選択的な配糖体を製造した。
Thus, the capsaicin of the present invention,
Α-anomer selective glycoside of dihydrocapsaicin, nonylate vanillylamide, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol, 5-nonyl alcohol Was manufactured.

【0037】[実施例3]本発明のα−グルコシダーゼ
によるメントールの配糖化にpHが及ぼす影響 1.1Mのマルトースを含む所定pHのホウ酸緩衝液あ
るいは酸混合液−水酸化カリウム広域緩衝液(以下、広
域緩衝液という)10mlにメントール0.1g、マル
トース加水分解活性10単位を有する本酵素1mlを加
え、40℃で24時間180rpm往復振盪反応を行っ
た。生成したメントール配糖体の量をHPLCで定量し
た。結果を図2に示す。各緩衝液で配糖体の生成量が最
も多かったpHにおける活性を100として相対活性で
表した。図2からわかるように、本酵素によるメントー
ル配糖化の最適pHはpH7.0〜8.5であった。
Example 3 Influence of pH on Glycosylation of Menthol by α-Glucosidase of the Present Invention A borate buffer containing 1.1 M maltose at a predetermined pH or an acid mixture-potassium hydroxide wide area buffer ( 0.1 g of menthol and 1 ml of the present enzyme having 10 units of maltose hydrolyzing activity were added to 10 ml of a wide area buffer (hereinafter referred to as a wide area buffer), and a 180 rpm reciprocal shaking reaction was performed at 40 ° C. for 24 hours. The amount of menthol glycoside produced was quantified by HPLC. The results are shown in FIG. The activity at the pH at which the amount of glycosides produced was the highest in each buffer was defined as 100 and expressed as a relative activity. As can be seen from FIG. 2, the optimum pH for menthol glycosylation by the present enzyme was pH 7.0 to 8.5.

【0038】[実施例4]本発明のα−グルコシダーゼ
によるメントールの配糖化に温度が及ぼす影響 1.1Mのマルトースを含むホウ酸緩衝液(pH8.
5)10mlにメントール0.1g、マルトース加水分
解活性10単位を有する本酵素1mlを加え、所定温度
で24時間180rpm往復振盪反応を行い、生成した
メントール配糖体の量をHPLCで定量した。結果を図
5に示す。配糖体の生成量が最も多かった40℃におけ
る活性を100として相対活性で表した。図5からわか
るように、本酵素によるメントール配糖化の最適温度は
35〜45℃であった。
Example 4 Effect of Temperature on Glycosylation of Menthol with α-Glucosidase of the Present Invention A borate buffer containing 1.1 M maltose (pH 8.
5) 0.1 g of menthol and 1 ml of the present enzyme having 10 units of maltose hydrolyzing activity were added to 10 ml, and a reciprocal shaking reaction at 180 rpm for 24 hours was performed at a predetermined temperature, and the amount of menthol glycoside produced was quantified by HPLC. FIG. 5 shows the results. The activity at 40 ° C., where the amount of glycosides produced was the largest, was expressed as a relative activity, taking the activity as 100. As can be seen from FIG. 5, the optimum temperature of menthol glycosylation by the present enzyme was 35 to 45 ° C.

【0039】[実施例5]本発明のα−グルコシダーゼ
によるメントールの配糖化 1.0Mのマルトースを含む10mMホウ酸緩衝液(p
H8.0)10mlにメントール50mg、マルトース
加水分解活性10単位を有する本酵素1.0mlを加
え、40℃で24時間振盪し反応させた。反応液中のメ
ントールは本酵素により配糖化されたために完全に消失
し、約100mgのメントール配糖体の生成が確認され
た。
[Example 5] Glycosylation of menthol with α-glucosidase of the present invention 10 mM borate buffer containing 1.0 M maltose (p
H8.0) was added to 10 ml of menthol, and 1.0 ml of the present enzyme having 10 units of maltose hydrolysis activity was shaken at 40 ° C. for 24 hours to react. Menthol in the reaction solution was completely disappeared due to glycosylation by the present enzyme, and formation of about 100 mg of menthol glycoside was confirmed.

【0040】[実施例6]本発明のα−グルコシダーゼ
によるカテキンの配糖化 1.0Mのマルトースを含む10mMクエン酸−リン酸
緩衝液(pH6.5)にカテキンと本酵素を加え、40
℃で24時間振盪し反応させた。酢酸エチル抽出により
反応液から未反応のカテキンを除いた後、水層をn−ブ
タノールで抽出した。ブタノール抽出物をワコーゲルC
200(和光純薬)カラムに供し、溶出溶媒(n−ブタ
ノール:1−プロパノール:水=10:5:4)で溶出
し、反応生成物が溶出した画分から溶媒を留去し、n−
ヘキサンで洗浄の後、完全に溶媒を除き反応生成物を得
た。反応生成物を重水に溶かし、2,2−ジメチル−2
−シラペンタン−5−スルホン酸ナトリウム(DSS)
を内部標準として核磁気共鳴(NMR)スペクトルを測
定した。その結果、既に報告されている(+)カテキン
−α−グルコシドのケミカルシフト値(Biosci.
Biotech.Biochem.,57(10),1
666〜1669(1993))とほぼ一致し、本酵素
による生成物を(+)カテキン−α−グルコシドと同定
した。図8に 13C−NMRスペクトルの結果を示す。
Example 6 α-Glucosidase of the present invention
Of catechin by 10 mM citric acid-phosphate containing 1.0 M maltose
Add catechin and this enzyme to a buffer (pH 6.5), and add
The reaction was carried out by shaking at 24 ° C. for 24 hours. By extraction with ethyl acetate
After removing unreacted catechin from the reaction solution, the aqueous layer was separated into n-butane.
Extracted with ethanol. Butanol extract was added to Wakogel C
200 (Wako Pure Chemical Industries) column, elution solvent (n-porcine
Nol: 1-propanol: water = 10: 5: 4)
The solvent was distilled off from the fraction from which the reaction product eluted,
After washing with hexane, the solvent was completely removed to obtain the reaction product.
Was. The reaction product is dissolved in heavy water and 2,2-dimethyl-2
-Silapentane-5-sodium sulfonate (DSS)
A nuclear magnetic resonance (NMR) spectrum using
Specified. As a result, (+) catechin already reported
Chemical shift value of -α-glucoside (Biosci.
Biotech. Biochem. , 57 (10), 1
666 to 1669 (1993)).
Product identified as (+) catechin-α-glucoside
did. In FIG. 13The result of a C-NMR spectrum is shown.

【0041】[実施例7]本発明のα−グルコシダーゼ
によるカテキンの配糖化にpHが及ぼす影響 1.2Mのマルトースを含む所定pHのクエン酸−リン
酸緩衝液10mlにカテキン60mg、マルトース加水
分解活性5単位を有する本酵素50mgを加え、45℃
で24時間180rpm往復振盪反応を行った。生成し
たカテキン配糖体の量をHPLCで定量した。結果を図
3に示す。配糖体の生成量が最も多かったpH6.5に
おける活性を100として相対活性で表した。図3から
わかるように、本酵素によるカテキン配糖化の最適pH
はpH6.0〜7.0であった。
Example 7 Effect of pH on Glycosylation of Catechin by α-Glucosidase of the Present Invention 60 mg of catechin was added to 10 ml of a citrate-phosphate buffer containing 1.2 M maltose at a predetermined pH, and maltose hydrolyzing activity was obtained. Add 50 mg of the enzyme having 5 units, and add
At 180 rpm for 24 hours. The amount of the produced catechin glycoside was quantified by HPLC. The results are shown in FIG. The activity at pH 6.5, at which the amount of glycosides produced was the largest, was expressed as a relative activity, taking 100 as the activity. As can be seen from Fig. 3, the optimal pH for catechin glycosylation by this enzyme
Had a pH of 6.0 to 7.0.

【0042】[実施例8]本発明のα−グルコシダーゼ
によるカテキンの配糖化にマルトース濃度が及ぼす影響 所定濃度のマルトースを含むpH6.5の10mMクエ
ン酸−リン酸緩衝液10mlにカテキン60mg、マル
トース加水分解活性5単位を有する本酵素50mgを加
え、45℃で24時間180rpm往復振盪反応を行っ
た。生成したカテキン配糖体の量をHPLCで定量し
た。結果を図9に示す。配糖体の生成量が最も多かった
マルトース濃度1.2Mにおける活性を100として相
対活性で表した。図9からわかるように、本酵素による
カテキン配糖化の最適マルトース濃度は1.0〜1.6
Mであった。
Example 8 Influence of Maltose Concentration on Glycosylation of Catechin by α-Glucosidase of the Present Invention 60 mg of catechin was added to 10 ml of 10 mM citrate-phosphate buffer at pH 6.5 containing a predetermined concentration of maltose, and maltose hydrolyzed. 50 mg of the present enzyme having 5 units of decomposition activity was added, and a 180 rpm reciprocal shaking reaction was performed at 45 ° C for 24 hours. The amount of the produced catechin glycoside was quantified by HPLC. FIG. 9 shows the results. The activity at a maltose concentration of 1.2 M where the amount of glycosides produced was the largest was expressed as a relative activity with 100 as the activity. As can be seen from FIG. 9, the optimal maltose concentration for catechin glycosylation by the present enzyme is 1.0 to 1.6.
M.

【0043】[実施例9]本発明のα−グルコシダーゼ
によるカテキンの配糖化に温度が及ぼす影響 1.2Mのマルトースを含むpH6.5の10mMクエ
ン酸−リン酸緩衝液10mlにカテキン50mg、マル
トース加水分解活性5単位を有する本酵素50mgを加
え、所定温度で24時間180rpm往復振盪反応を行
い、生成したカテキン配糖体の量をHPLCで定量し
た。結果を図6に示す。配糖体の生成量が最も多かった
45℃における活性を100として相対活性で表した。
図6からわかるように、本酵素によるエピカテキン配糖
化の最適温度は40〜50℃であった。
Example 9 Effect of Temperature on Glycosylation of Catechin by α-Glucosidase of the Present Invention 50 mg of catechin and 10 ml of maltose water were added to 10 ml of 10 mM citrate-phosphate buffer at pH 6.5 containing 1.2 M maltose. 50 mg of the present enzyme having 5 units of decomposition activity was added, and a reciprocal shaking reaction at 180 rpm for 24 hours was performed at a predetermined temperature, and the amount of catechin glycoside produced was quantified by HPLC. FIG. 6 shows the results. The activity at 45 ° C., where the amount of glycosides produced was the largest, was expressed as a relative activity, taking the activity as 100.
As can be seen from FIG. 6, the optimal temperature for epicatechin glycosylation by this enzyme was 40 to 50 ° C.

【0044】[実施例10]最適条件での本発明のα−
グルコシダーゼによるカテキンの配糖化 1.2Mのマルトースを含む10mMクエン酸−リン酸
緩衝液(pH6.5)10mlにカテキン60mg、マ
ルトース加水分解活性5単位を有する本酵素50mgを
加え、45℃で36時間振盪し反応させた。反応液中の
カテキン配糖体の量をHPLCで定量した結果、54.
06mgのカテキン配糖体が生成しており、収率は5
7.8%(モル換算)であった。また、HPLC分析の
結果、生成したカテキン配糖体に由来すると考えられる
ピークは1本であり、カテキンにグルコースが2分子以
上結合した配糖体の生成は認められなかった。
[Example 10] Under the optimum conditions, the α-
Glycosylation of catechin with glucosidase 60 mg of catechin and 50 mg of the present enzyme having 5 units of maltose hydrolyzing activity are added to 10 ml of 10 mM citrate-phosphate buffer (pH 6.5) containing 1.2 M maltose, and the mixture is added at 45 ° C. for 36 hours. The reaction was performed by shaking. As a result of quantifying the amount of catechin glycoside in the reaction solution by HPLC, 54.
06 mg of catechin glycoside was produced, and the yield was 5
It was 7.8% (mole conversion). In addition, as a result of HPLC analysis, there was only one peak considered to be derived from the generated catechin glycoside, and generation of a glycoside in which two or more molecules of glucose were bonded to catechin was not recognized.

【0045】[実施例11]本発明のα−グルコシダー
ゼによるエピカテキンの配糖化にpHが及ぼす影響 1.0Mのマルトースを含む所定pHのクエン酸−リン
酸緩衝液10mlにエピカテキン50mg、マルトース
加水分解活性5単位を有する本酵素50mgを加え、4
0℃で24時間180rpm往復振盪反応を行った。生
成したエピカテキン配糖体の量をHPLCで定量した。
結果を図4に示す。配糖体の生成量が最も多かったpH
6における活性を100として相対活性で表した。図4
からわかるように、本酵素によるエピカテキン配糖化の
最適pHはpH5.5〜6.5であった。
Example 11 Effect of pH on Glycosylation of Epicatechin by α-Glucosidase of the Present Invention 50 mg of epicatechin, 10 mg of maltose and 10 ml of citrate-phosphate buffer containing 1.0 M maltose at a predetermined pH Add 50 mg of the present enzyme having 5 units of degrading activity and add 4 mg
A 180 rpm reciprocal shaking reaction was performed at 0 ° C. for 24 hours. The amount of produced epicatechin glycoside was quantified by HPLC.
FIG. 4 shows the results. PH at which glycosides were produced most
The activity in 6 was expressed as a relative activity with 100 as the activity. FIG.
As can be seen from the above, the optimal pH for epicatechin glycosylation by this enzyme was pH 5.5 to 6.5.

【0046】[実施例12]本発明のα−グルコシダー
ゼによるエピカテキンの配糖化に温度が及ぼす影響 0.4Mのマルトースを含むpH6.0の10mMクエ
ン酸−リン酸緩衝液10mlにエピカテキン50mg、
マルトース加水分解活性5単位を有する本酵素50mg
を加え、所定温度で24時間180rpm往復振盪反応
を行い、生成したエピカテキン配糖体の量をHPLCで
定量した。結果を図7に示す。配糖体の生成量が最も多
かった40℃における活性を100として相対活性で表
した。図7からわかるように、本酵素によるエピカテキ
ン配糖化の最適温度は35〜45℃であった。
Example 12 Effect of Temperature on Glycosylation of Epicatechin by α-Glucosidase of the Present Invention 50 mg of epicatechin was added to 10 ml of 10 mM citrate-phosphate buffer (pH 6.0) containing 0.4 M maltose.
50 mg of the present enzyme having 5 units of maltose hydrolysis activity
Was added and the mixture was subjected to a 180 rpm reciprocal shaking reaction at a predetermined temperature for 24 hours, and the amount of produced epicatechin glycoside was quantified by HPLC. FIG. 7 shows the results. The activity at 40 ° C., where the amount of glycosides produced was the largest, was expressed as a relative activity, taking the activity as 100. As can be seen from FIG. 7, the optimal temperature for epicatechin glycosylation by this enzyme was 35 to 45 ° C.

【0047】[実施例13]本発明のα−グルコシダー
ゼによるノニル酸バニリルアミドの配糖化 0.5gのノニル酸バニリルアミドと0.2gのTwe
en80を5mlの蒸留水に加え、70℃に加温しなが
ら懸濁状態にした。この懸濁液に1.0Mのマルトース
を含む10mMホウ酸緩衝液(pH8.0)85mlを
加え懸濁させた後、マルトース加水分解活性100単位
を有する本酵素10mlを加え、40℃で40時間振盪
反応を行った。反応終了後、反応液に400mlの蒸留
水を加え、500mlの酢酸エチルで2回抽出を行っ
た。酢酸エチル層を回収し、無水硫酸ナトリウムで脱水
した後、溶媒を減圧留去し乾固させた。得られた抽出物
をシリカゲルカラムに供し、クロロホルム:メタノール
=7:3(V/V)で溶出し分画した。薄層クロマトグ
ラフィーによりノニル酸バニリルアミド配糖体の溶出画
分を確認した。ノニル酸バニリルアミド配糖体の溶出画
分をまとめて溶媒を減圧留去し112mgのノニル酸バ
ニリルアミド配糖体を得た。この時の収率はモル換算で
約15%であった。得られた配糖体はHPLCで1本の
ピークを示した。
Example 13 Glycosylation of Nonylate Vanillylamide with α-Glucosidase of the Present Invention 0.5 g of nonylate vanillylamide and 0.2 g of Twe
en80 was added to 5 ml of distilled water, and suspended while heating to 70 ° C. After adding and suspending 85 ml of 10 mM borate buffer (pH 8.0) containing 1.0 M maltose to this suspension, 10 ml of the present enzyme having 100 units of maltose hydrolysis activity was added, and the mixture was added at 40 ° C. for 40 hours. A shaking reaction was performed. After completion of the reaction, 400 ml of distilled water was added to the reaction solution, and extraction was performed twice with 500 ml of ethyl acetate. The ethyl acetate layer was collected, dehydrated with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to dryness. The obtained extract was applied to a silica gel column, and eluted with chloroform: methanol = 7: 3 (V / V) to fractionate. The fraction eluted from nonylate vanillylamide glycoside was confirmed by thin-layer chromatography. The eluted fractions of nonylate vanillylamide glycoside were combined and the solvent was distilled off under reduced pressure to obtain 112 mg of nonylate vanillylamide glycoside. The yield at this time was about 15% in terms of mole. The obtained glycoside showed one peak by HPLC.

【0048】[実施例14]ノニル酸バニリルアミド配
糖体の構造の確認 実施例13で調製したノニル酸バニリルアミド配糖体1
mgを2mlの50mMリン酸緩衝液(pH6.8)に
懸濁させ、酵母由来のα−グルコシダーゼを作用させた
場合に配糖体は加水分解され、ノニル酸バニリルアミド
とグルコースが生成し、アーモンド由来のβ−グルコシ
ダーゼでは加水分解されなかった。加水分解によって生
成したノニル酸バニリルアミドの量をHPLC分析によ
り定量し、グルコースの量をグルコースCII−テストワ
コー(和光純薬)で定量した結果、生成量のモル比はグ
ルコース/ノニル酸バニリルアミド=1.1となり、生
成した配糖体はノニル酸バニリルアミド1分子にα−ア
ノマー体のグルコース1分子が結合した化合物であると
確認された。
Example 14 Confirmation of the Structure of Nonylate Vanillylamide Glycoside Nonylate Vanillylamide Glycoside 1 prepared in Example 13
mg was suspended in 2 ml of 50 mM phosphate buffer (pH 6.8), and when yeast-derived α-glucosidase was allowed to act, glycosides were hydrolyzed to produce nonylate vanillylamide and glucose, and almond-derived Was not hydrolyzed by β-glucosidase. The amount of nonylate vanillylamide produced by the hydrolysis was quantified by HPLC analysis, and the amount of glucose was quantified by glucose CII-Test Wako (Wako Pure Chemical Industries, Ltd.). As a result, the molar ratio of the amount produced was glucose / nonylate vanillylamide = 1. It was confirmed that the resulting glycoside was a compound in which one molecule of nonylate vanillylamide was bound to one molecule of glucose as an α-anomer.

【0049】[実施例15]本発明のα−グルコシダー
ゼによるカプサイシンの配糖化 実施例13と同様の方法でカプサイシンの配糖化を行っ
た。薄層クロマトグラフィー分析によりカプサイシン配
糖体の生成を確認した。
Example 15 Glycosylation of Capsaicin with α-Glucosidase of the Present Invention Glycosylation of capsaicin was performed in the same manner as in Example 13. The formation of capsaicin glycoside was confirmed by thin-layer chromatography analysis.

【0050】 [実施例16]カプサイシン配糖体の構造の確認 実施例15で取得したカプサイシン配糖体を酵母由来の
α−グルコシダーゼで処理した場合には加水分解されて
カプサイシンとグルコースが生成したが、アーモンド由
来のβ−グルコシダーゼで処理した場合には加水分解さ
れなかった。実施例14と同様の方法でカプサイシン配
糖体からα−グルコシダーゼ処理によって生成したカプ
サイシンとグルコースを定量した結果、生成量のモル比
はグルコース/カプサイシン=0.9となった。さら
に、本配糖体を重メタノールに溶解し、NMRスペクト
ルを測定し、本配糖体の構造はカプサイシン1分子にα
−アノマー体のグルコース1分子が結合した化合物であ
ると確認した。図10に13C−NMRスペクトルの結
果を示す。
Example 16 Confirmation of the Structure of Capsaicin Glycoside When the capsaicin glycoside obtained in Example 15 was treated with α-glucosidase derived from yeast, it was hydrolyzed to produce capsaicin and glucose. , Was not hydrolyzed when treated with β-glucosidase derived from almonds. As a result of quantifying capsaicin and glucose produced from the capsaicin glycoside by α-glucosidase treatment in the same manner as in Example 14, the molar ratio of the produced amounts was glucose / capsaicin = 0.9. Further, the present glycoside was dissolved in deuterated methanol, and the NMR spectrum was measured.
-It was confirmed that this was a compound to which one molecule of glucose of the anomeric form was bonded. FIG. 10 shows the result of the 13 C-NMR spectrum.

【0051】[0051]

【発明の効果】本発明によれば、α−グルコシダーゼを
用いてこれまで酵素による合成が報告されていないカプ
サイシン、ジヒドロカプサイシン、ノニル酸バニリルア
ミドのαアノマー選択的な配糖体を効率よく製造でき
た。さらに、カテキン、エピカテキン、バニリン、ハイ
ドロキノン、カテコール、レゾルシノール、3,4−ジ
メトキシフェノール、プロパノール、ブタノール、イソ
ブチルアルコール、アミルアルコール、5−ノニルアル
コールについても、α−グルコシダーゼを使用すること
により効率よくαアノマー選択的な配糖体が製造でき
る。
According to the present invention, an α-anomer-selective glycoside of capsaicin, dihydrocapsaicin, or nonylate vanillylamide, which has not been reported to be enzymatically synthesized, has been efficiently produced using α-glucosidase. . Further, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, propanol, butanol, isobutyl alcohol, amyl alcohol, and 5-nonyl alcohol are also efficiently used by using α-glucosidase to obtain α. Anomer-selective glycosides can be produced.

【0052】また、本発明の新規なα−グルコシダーゼ
は、糖転移反応が優れており、極めてめて容易に効率よ
く配糖体が製造できるので、αアノマー選択的な配糖体
の製造に有用である。さらに、本酵素は、従来のα−グ
ルコシダーゼでは受容体にグルコースが1〜数個結合し
た配糖体の混合物が生成するが、本酵素を用いれば受容
体にグルコースが1分子結合した配糖体のみを製造する
ことができる。
Further, the novel α-glucosidase of the present invention has an excellent glycosyltransfer reaction, and can produce glycosides very easily and efficiently. Therefore, it is useful for producing α-anomer-selective glycosides. It is. Furthermore, the present enzyme produces a mixture of glycosides in which one or several glucoses are bound to a receptor in the case of conventional α-glucosidase, but a glycoside in which one molecule of glucose is bound to the receptor by using the present enzyme. Only can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本酵素によるマルトースの加水分解活性と反応
pHの関係を示す特性線図であって、縦軸はpH7にお
ける本酵素の加水分解活性を100とした場合の相対活
性を示しており、横軸は反応pHを示している。
FIG. 1 is a characteristic diagram showing the relationship between the hydrolysis activity of maltose by the present enzyme and the reaction pH, wherein the vertical axis indicates the relative activity when the hydrolysis activity of the present enzyme at pH 7 is 100. The horizontal axis indicates the reaction pH.

【図2】本酵素によるメントールへの糖転移活性と反応
pHの関係を示す特性線図であって、縦軸は各緩衝液の
最適pHにおける糖転移活性を100とした場合の相対
活性を示しており、横軸は反応pHを示している。
FIG. 2 is a characteristic diagram showing the relationship between the glycosyltransferase activity to menthol and the reaction pH by the present enzyme, wherein the ordinate indicates the relative activity when the glycosyltransferase activity at the optimum pH of each buffer is set to 100. The horizontal axis shows the reaction pH.

【図3】本酵素によるカテキンへの糖転移活性と反応p
Hの関係を示す特性線図であって、縦軸はpH6.5に
おける糖転移活性を100とした場合の相対活性を示し
ており、横軸は反応pHを示している。
[FIG. 3] Glycosyltransferase activity to catechin by this enzyme and reaction p
In the characteristic diagram showing the relationship of H, the vertical axis indicates the relative activity when the glycosyltransferase activity at pH 6.5 is 100, and the horizontal axis indicates the reaction pH.

【図4】本酵素によるエピカテキンへの糖転移活性と反
応pHの関係を示す特性線図であって、縦軸はpH6.
0における糖転移活性を100とした場合の相対活性を
示しており、横軸は反応pHを示している。
FIG. 4 is a characteristic diagram showing a relationship between a glycosyl transfer activity to epicatechin by the present enzyme and a reaction pH.
The relative activity when the transglycosylation activity at 0 is 100 is shown, and the horizontal axis shows the reaction pH.

【図5】本酵素によるメントールへの糖転移活性と反応
温度の関係を示す特性線図であって、縦軸は40℃にお
ける本酵素の糖転移活性を100とした場合の相対活性
を示しており、横軸は反応温度を示している。
FIG. 5 is a characteristic diagram showing the relationship between the glycosyltransferase activity to menthol by the present enzyme and the reaction temperature, wherein the ordinate indicates the relative activity when the glycosyltransferase activity at 40 ° C. is set to 100. The horizontal axis indicates the reaction temperature.

【図6】本酵素によるカテキンへの糖転移活性と反応温
度の関係を示す特性線図であって、縦軸は45℃におけ
る本酵素の糖転移活性を100とした場合の相対活性を
示しており、横軸は反応温度を示している。
FIG. 6 is a characteristic diagram showing the relationship between the glycosyltransferase activity to catechin by the present enzyme and the reaction temperature, wherein the ordinate indicates the relative activity when the glycosyltransferase activity at 45 ° C. is set to 100. The horizontal axis indicates the reaction temperature.

【図7】本酵素によるエピカテキンへの糖転移活性と反
応温度の関係を示す特性線図であって、縦軸は40℃に
おける本酵素の糖転移活性を100とした場合の相対活
性を示しており、横軸は反応温度を示している。
FIG. 7 is a characteristic diagram showing the relationship between the glycosyltransferase activity to epicatechin by the present enzyme and the reaction temperature, and the vertical axis indicates the relative activity when the glycosyltransferase activity at 40 ° C. is set to 100. The horizontal axis shows the reaction temperature.

【図8】本酵素を用いて調製したカテキン配糖体の13
C−NMRスペクトルを示す説明図である。
FIG. 8: 13 of catechin glycoside prepared using this enzyme
It is explanatory drawing which shows a C-NMR spectrum.

【図9】本酵素によるカテキンへの糖転移活性とマルト
ース濃度の関係を示す特性線図であって、縦軸はマルト
ース濃度1.2Mにおける糖転移活性を100とした場
合の相対活性を示しており、横軸はマルトース濃度を示
している。
FIG. 9 is a characteristic diagram showing the relationship between glycosyltransferase activity to catechin and maltose concentration by the present enzyme, where the vertical axis indicates relative activity when the glycosyltransferase activity at a maltose concentration of 1.2 M is taken as 100. The abscissa indicates the maltose concentration.

【図10】本酵素を用いて調製したカプサイシン配糖体
13C−NMRスペクトルを示す説明図である。
FIG. 10 is an explanatory diagram showing a 13 C-NMR spectrum of capsaicin glycoside prepared using the present enzyme.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桐村 光太郎 東京都新宿区大久保3−4−1 早稲田大 学理工学部内 (72)発明者 中川 博之 東京都新宿区大久保3−4−1 早稲田大 学理工学部内 (72)発明者 吉田 圭司郎 埼玉県浦和市沼影1−5−13 (72)発明者 津金 貴則 東京都豊島区池袋3−70−17 (72)発明者 志村 進 東京都八王子市元八王子町3−2486 (72)発明者 伊東 禧男 東京都清瀬市野塩3−26−11 Fターム(参考) 4B050 DD02 FF04E FF05E FF09E LL05 4B064 AF41 CA02 CA21 CB30 CC03 CD06 CD09 CD12 DA01 DA10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kotaro Kirimura 3-4-1 Okubo, Shinjuku-ku, Tokyo Waseda University Faculty of Science and Technology (72) Inventor Hiroyuki Nakagawa 3-4-1 Okubo, Shinjuku-ku, Tokyo Gakusei Waseda Within the Faculty of Engineering 3-2486 Machi (72) Inventor Yoshio Ito 3-26-11 Noshio, Kiyose-shi, Tokyo F-term (reference) 4B050 DD02 FF04E FF05E FF09E LL05 4B064 AF41 CA02 CA21 CB30 CC03 CD06 CD09 CD12 DA01 DA10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 α−グルコシダーゼによる糖転移反応を
利用することを特徴とするカプサイシン、ジヒドロカプ
サイシン、ノニル酸バニリルアミド、カテキン、エピカ
テキン、バニリン、ハイドロキノン、カテコール、レゾ
ルシノール、3,4−ジメトキシフェノール、プロパノ
ール、ブタノール、イソブチルアルコール、アミルアル
コール、5−ノニルアルコールのαアノマー選択的な配
糖体の製造方法。
1. Capsaicin, dihydrocapsaicin, nonylate vanillylamide, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol, 3,4-dimethoxyphenol, propanol characterized by utilizing a glycosyltransfer reaction by α-glucosidase. , Butanol, isobutyl alcohol, amyl alcohol, and 5-nonyl alcohol.
【請求項2】 α−グルコシダーゼが、以下の理化学的
特性すなわち糖類のα−1,4−結合を加水分解し、マ
ルトースを供与体としてグルコースを受容体に転移させ
配糖体を合成する作用を有し、且つマルトース、p−ニ
トロフェニル−α−D−グルコピラノシドには作用する
が、マルトトリオース、マルトヘキサオース、イソマル
トース、トレハロース、スクロース、溶性デンプン、メ
チル−α−D−グルコピラノシド、ラクトース、メリビ
オース、セロビオース、アミロース、シクロデキストリ
ン、イソマルトトリオース、ニゲロース、コウジビオー
スにはほとんど作用しない加水分解反応の基質特異性を
有し、更にメントール、エタノール、1−プロパノー
ル、1−ブタノール、2−ブタノール、イソブチルアル
コール、1−アミルアルコール、2−アミルアルコー
ル、5−ノニルアルコール等のアルコール性水酸基を有
する化合物やカプサイシン、ジヒドロカプサイシン、ノ
ニル酸バニリルアミド、カテキン、エピカテキン、バニ
リン、ハイドロキノン、カテコール、レゾルシノール、
3,4−ジメトキシフェノール等のフェノール性水酸基
を有する化合物を受容体として糖転移反応を行う受容体
の基質特異性を有し、そしてこれらの受容体に糖転移反
応を行い生成が認められる配糖体はモノグルコシドのみ
であり、分子量が約57,000で、N末端アミノ酸配
列が次に示す配列を有するα−グルコシダーゼであるこ
とを特徴とする請求項1記載の配糖体の製造方法。 配列の長さ:20配列の型 :アミノ酸 鎖の数 :1本鎖 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型:N末端フラグメント
2. The α-glucosidase has the following physicochemical properties, ie, the action of hydrolyzing the α-1,4-bond of a saccharide and transferring glucose to an acceptor using maltose as a donor to synthesize a glycoside. Has and acts on maltose, p-nitrophenyl-α-D-glucopyranoside, but maltotriose, maltohexaose, isomaltose, trehalose, sucrose, soluble starch, methyl-α-D-glucopyranoside, lactose, Melibiose, cellobiose, amylose, cyclodextrin, isomalttriose, nigerose, has a substrate specificity of a hydrolysis reaction that hardly acts on kojibiose, and further has menthol, ethanol, 1-propanol, 1-butanol, 2-butanol, Isobutyl alcohol, 1-amyl alcohol Lumpur, 2-amyl alcohol, 5-compounds and capsaicin having an alcoholic hydroxyl group of the nonyl alcohol, dihydrocapsaicin, vanillylamide nonylate, catechin, epicatechin, vanillin, hydroquinone, catechol, resorcinol,
Glycosyl which has a substrate specificity of a receptor that performs a transglycosylation reaction using a compound having a phenolic hydroxyl group such as 3,4-dimethoxyphenol as a receptor, and is formed by performing a transglycosylation reaction with these receptors The method for producing a glycoside according to claim 1, wherein the body is a monoglucoside alone, has a molecular weight of about 57,000, and is an α-glucosidase having the following N-terminal amino acid sequence. Sequence length: 20 Sequence type: Amino acid Number of chains: Single chain Topology: Linear Sequence type: Peptide Fragment type: N-terminal fragment
【請求項3】 請求項2記載の理化学的特性を有するα
−グルコシダーゼ。
3. α having the physicochemical properties according to claim 2.
-Glucosidase.
【請求項4】 Xanthomonas属の細菌が生産する請求項
3記載のα−グルコシダーゼ。
4. The α-glucosidase according to claim 3, which is produced by a bacterium belonging to the genus Xanthomonas.
【請求項5】 Xanthomonas属細菌を培養し、得られた
培養物を精製処理することを特徴とするα−グルコシダ
ーゼの製造方法。
5. A method for producing α-glucosidase, comprising culturing a bacterium belonging to the genus Xanthomonas and purifying the resulting culture.
JP11225840A 1999-08-09 1999-08-09 PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION Pending JP2001046096A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11225840A JP2001046096A (en) 1999-08-09 1999-08-09 PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION
IDP20000664A ID26883A (en) 1999-08-09 2000-08-08 NEW α-GLUCOSIDATION AND PREPARATION METHODS AS ALSO THE GLICOSIDE PREPARATION METHOD WITH α-GLUCOSIDATION
BR0003463-0A BR0003463A (en) 1999-08-09 2000-08-09 Alpha-glucosidase and preparation process as well as glycoside preparation process using alpha-glucosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11225840A JP2001046096A (en) 1999-08-09 1999-08-09 PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION

Publications (1)

Publication Number Publication Date
JP2001046096A true JP2001046096A (en) 2001-02-20

Family

ID=16835659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11225840A Pending JP2001046096A (en) 1999-08-09 1999-08-09 PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION

Country Status (3)

Country Link
JP (1) JP2001046096A (en)
BR (1) BR0003463A (en)
ID (1) ID26883A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072776A1 (en) * 2002-02-28 2003-09-04 Waseda University Gene encoding novel enzyme catalyzing glycosyl transfer reaction and process for producing the enzyme
JP2006087363A (en) * 2004-09-24 2006-04-06 Meiji Milk Prod Co Ltd Method for producing glycosides of capsaicins by enzymatic method
WO2008088046A1 (en) 2007-01-19 2008-07-24 Suntory Holdings Limited Novel glycosyltransferase and polynucleotide encoding the same
US8003150B2 (en) 2006-05-19 2011-08-23 Kraft Foods R & D, Inc. Flavonoid sugar addition products, method for manufacture and use thereof
JP2011177118A (en) * 2010-03-02 2011-09-15 Showa Sangyo Co Ltd Transferase, method for producing saccharide, method for producing glucoside and method for producing transferase
WO2012124520A1 (en) 2011-03-16 2012-09-20 天野エンザイム株式会社 Modified αlpha-glucosidase and applications of same
EP2728008A1 (en) 2007-01-19 2014-05-07 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
FR3018821A1 (en) * 2014-03-24 2015-09-25 Agronomique Inst Nat Rech NOVEL O-ALPHA-GLUCOSYL FLAVONOIDS ON CYCLE B, PROCESS FOR OBTAINING AND USES
CN107400654A (en) * 2017-08-03 2017-11-28 浙江工业大学 A kind of recombination bacillus coli of alpha-glucosidase gene containing α and its application
WO2022092241A1 (en) 2020-10-30 2022-05-05 天野エンザイム株式会社 Method for producing vegetable protein-processed product having improved food texture

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072776A1 (en) * 2002-02-28 2003-09-04 Waseda University Gene encoding novel enzyme catalyzing glycosyl transfer reaction and process for producing the enzyme
JP2006087363A (en) * 2004-09-24 2006-04-06 Meiji Milk Prod Co Ltd Method for producing glycosides of capsaicins by enzymatic method
US8003150B2 (en) 2006-05-19 2011-08-23 Kraft Foods R & D, Inc. Flavonoid sugar addition products, method for manufacture and use thereof
US9364492B2 (en) 2007-01-19 2016-06-14 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
WO2008088046A1 (en) 2007-01-19 2008-07-24 Suntory Holdings Limited Novel glycosyltransferase and polynucleotide encoding the same
US8278088B2 (en) 2007-01-19 2012-10-02 Suntory Holdings Limited Polynucleotide encoding a polypeptide having glycosylation activity on a flavonoid
US8383384B2 (en) 2007-01-19 2013-02-26 Suntory Holdings Limited Polypeptide having glycosylation activity on a flavonoid
EP2728008A1 (en) 2007-01-19 2014-05-07 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
JP2011177118A (en) * 2010-03-02 2011-09-15 Showa Sangyo Co Ltd Transferase, method for producing saccharide, method for producing glucoside and method for producing transferase
US9493753B2 (en) 2011-03-16 2016-11-15 Amano Enzyme Inc. Modified α-glucosidase and applications of same
WO2012124520A1 (en) 2011-03-16 2012-09-20 天野エンザイム株式会社 Modified αlpha-glucosidase and applications of same
US9650619B2 (en) 2011-03-16 2017-05-16 Amano Enzyme Inc. Modified alpha-glucosidase and applications of same
FR3018822A1 (en) * 2014-03-24 2015-09-25 Agronomique Inst Nat Rech NOVEL O-ALPHA-GLUCOSYL FLAVONOIDS ON CYCLE B, PROCESS FOR OBTAINING AND USES
WO2015144731A1 (en) * 2014-03-24 2015-10-01 Institut National De La Recherche Agronomique Novel flavonoids o-α-glucosylated on the b cycle, method for the production thereof and uses
FR3018821A1 (en) * 2014-03-24 2015-09-25 Agronomique Inst Nat Rech NOVEL O-ALPHA-GLUCOSYL FLAVONOIDS ON CYCLE B, PROCESS FOR OBTAINING AND USES
CN107400654A (en) * 2017-08-03 2017-11-28 浙江工业大学 A kind of recombination bacillus coli of alpha-glucosidase gene containing α and its application
CN107400654B (en) * 2017-08-03 2020-10-09 浙江工业大学 A kind of recombinant Escherichia coli containing alpha-glucosidase gene and its application
WO2022092241A1 (en) 2020-10-30 2022-05-05 天野エンザイム株式会社 Method for producing vegetable protein-processed product having improved food texture

Also Published As

Publication number Publication date
ID26883A (en) 2001-02-15
BR0003463A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
Maruta et al. Formation of trehalose from maltooligosaccharides by a novel enzymatic system
Nishimoto et al. Purification and characterization of glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide in Bacillus globisporus C11
Park et al. Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953
WO2001073106A1 (en) Process for producing glycosyl transfer product
JP2001046096A (en) PRODUCTION OF GLYCOSIDE WITH alpha-GLUCOSIDASE AND NEW alpha- GLUCOSIDASE AND ITS PRODUCTION
Kirimura et al. Selective and high-yield production of ethyl α-d-glucopyranoside by the α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomerase
US20230295679A1 (en) Process for preparing alkyl polyglucosides, and alkyl polyglucosides obtained according to the process
Hiroyuki et al. Enzymatic synthesis of l-menthyl α-maltoside and l-menthyl α-maltooligosides from l-menthyl α-glucoside by cyclodextrin glucanotransferase
JP4473402B2 (en) Dextran production method
Murata et al. Enzymic synthesis of 3′-O-and 6′-ON-acetylglucosaminyl-N-acetyllactosaminide glycosides catalyzed by β-N-acetyl-D-hexosaminidase from Nocardia orientalis
US8580538B2 (en) Enzymatic production of an ethylenically unsaturated glycoside
Fujimoto et al. Syntheses of Alkyl β-d-Mannopyranosides and β-1, 4-Linked Oligosaccharides Using β-Mannosidase from Rhizopus niveus
Bousquet et al. Production, purification, and characterization of thermostable α-transglucosidase from Talaromyces duponti–application to α–alkylglucoside synthesis
JP6771756B2 (en) β-galactosidase
US6562600B1 (en) Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
JP5714241B2 (en) α-Glucosidase, production method and use thereof
EP0263955A2 (en) Process for the production of panosyl derivatives
JP4830031B2 (en) Transferase, sugar production method, glycoside production method, transferase production method
JP3916682B2 (en) Method for producing glycoside
JP4161181B2 (en) Novel process for producing carbohydrates including cordierigosaccharides and nigerooligosaccharides, and cells and enzymes used therefor, and processes for producing the same
JP2001292791A (en) Method for producing n-acetyllactosmine
EP0717047A1 (en) Process for producing disaccharides and novel saccharides
JP2688782B2 (en) Process for producing thermostable α-galactosidase with strong transglycosylation activity and its complex
JP3045509B2 (en) Method for producing mannose-containing oligosaccharides
JP4105873B2 (en) N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081210