Nothing Special   »   [go: up one dir, main page]

JP2001044443A - Manufacture of semiconductor and semiconductor device - Google Patents

Manufacture of semiconductor and semiconductor device

Info

Publication number
JP2001044443A
JP2001044443A JP11219120A JP21912099A JP2001044443A JP 2001044443 A JP2001044443 A JP 2001044443A JP 11219120 A JP11219120 A JP 11219120A JP 21912099 A JP21912099 A JP 21912099A JP 2001044443 A JP2001044443 A JP 2001044443A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
substrate
film
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11219120A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
光市 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11219120A priority Critical patent/JP2001044443A/en
Publication of JP2001044443A publication Critical patent/JP2001044443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce parasitic capacitance, such as fringe junction capacitance by etching the semiconductor layer in an element isolation region, an insulating layer, and a semiconductor substrate, forming an insulating film on the semiconductor substrate, removing the insulating film from the activation region in the semiconductor layer, and implanting impurities. SOLUTION: An SOI layer in a trench region, a BOX layer 2, and a Si substrate 1 are etched. Thereafter, SiO2 is formed, and after planarization and etching, a SiN film and a pad oxide film are removed. Subsequently, a gate oxide film SiO2 is formed on the surface of an element activation region, and then a NMOS formation region, the Si layer in a PMOS formation region, and a polycrystalline Si film are implanted with ions in high dose. Thereafter, a layer insulating film is deposited. Since isolation is thus provided by a thick trench layer 7, extending to the Si substrate 1 under the buried oxide film 2, parasitic capacitances, such as fringe junction capacitance Cf2, a gate pad capacitance Cg2, and a junction capacitance Cj, are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SOI基板上に形
成されるMOS型半導体装置などに係り、寄生容量を減
少させる半導体製造方法および半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS type semiconductor device formed on an SOI substrate, and more particularly to a semiconductor manufacturing method and a semiconductor device for reducing parasitic capacitance.

【0002】[0002]

【従来の技術】近年、従来からの半導体装置が持つ接合
容量を減少させて性能を向上させることのできる、SO
I(Silicon On Insulator)基板上に形成された半導体
装置(デバイス)がますます重要になってきている。
2. Description of the Related Art In recent years, a SOI device capable of improving the performance by reducing the junction capacitance of a conventional semiconductor device has been developed.
Semiconductor devices formed on an I (Silicon On Insulator) substrate are becoming more and more important.

【0003】ここで、図3は、従来技術による半導体装
置の製造工程(一部)を示す断面図である。図示する半
導体装置は、いわゆるメサ型で形成される。まず、シリ
コン基板1上にBOX層2、SOI層3が形成されたS
OI半導体基板4を用意する(図3(a))。次に、リ
ソグラフィ技術を用いて、レジスト膜によりパターンを
形成し、SOI層3をエッチングする(図3(b))。
FIG. 3 is a cross-sectional view showing a manufacturing process (part) of a conventional semiconductor device. The illustrated semiconductor device is formed in a so-called mesa type. First, an S in which a BOX layer 2 and an SOI layer 3 are formed on a silicon substrate 1
An OI semiconductor substrate 4 is prepared (FIG. 3A). Next, a pattern is formed by a resist film using a lithography technique, and the SOI layer 3 is etched (FIG. 3B).

【0004】その後、周知の方法で、ゲート電極5の形
成や、ドーズ・イオン注入などにより、半導体素子6を
形成し、層間絶縁膜(SiO2など)を堆積後、コンタ
クト孔をRIE(Reactive Ion Etching)法などにより
形成する。さらに、金属配線を形成し、半導体装置を完
成させる。
Thereafter, a semiconductor element 6 is formed by a well-known method such as formation of a gate electrode 5 or dose ion implantation, an interlayer insulating film (eg, SiO 2) is deposited, and a contact hole is formed by RIE (Reactive Ion Etching). ) Method. Further, metal wiring is formed to complete the semiconductor device.

【0005】ところで、Full-DepletionタイプのSOI
デバイスのしきい値電圧Vthは、フロント・ゲートの
仕事関数、SOI層内の不純物濃度、基板バイアス等に
よって制御される。基板バイアスでしきい値電圧Vth
を制御する場合、埋め込み酸化膜を薄くしてボディ・フ
ァクタを大きくし、比較的小さな基板バイアス値を用い
る方法がある。
[0005] By the way, Full-Depletion type SOI
The threshold voltage Vth of the device is controlled by the work function of the front gate, the impurity concentration in the SOI layer, the substrate bias, and the like. Threshold voltage Vth with substrate bias
Is controlled by thinning the buried oxide film to increase the body factor and using a relatively small substrate bias value.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来技
術では、埋め込み酸化膜2を薄くすることにより、図4
(a)および図4(d)に示すように、SOI層3が埋
め込み酸化膜3下のシリコン基板1に対する接合/ボデ
ィ容量Cj(バルクデバイスの接合容量に相当)、フリ
ンジング容量Cf1、ゲート・パッド容量Cg1が増加
してしまうため、SOIデバイスの接合容量メリットが
小さくなるという問題があった。
However, in the prior art, the thickness of the buried oxide film 2 is reduced by reducing the thickness of the buried oxide film 2 as shown in FIG.
As shown in FIG. 4A and FIG. 4D, the SOI layer 3 has a junction / body capacitance Cj (corresponding to a junction capacitance of a bulk device) with respect to the silicon substrate 1 under the buried oxide film 3, a fringing capacitance Cf1, and a gate electrode. Since the pad capacitance Cg1 increases, there is a problem that the advantage of the junction capacitance of the SOI device is reduced.

【0007】そこで本発明は、フリンジング接合容量、
ゲート・パッド容量、接合容量などの寄生容量を減少さ
せることができる半導体製造方法および半導体装置を提
供することを目的とする。
Accordingly, the present invention provides a fringing junction capacitance,
It is an object of the present invention to provide a semiconductor manufacturing method and a semiconductor device capable of reducing parasitic capacitance such as gate pad capacitance and junction capacitance.

【0008】[0008]

【課題を解決するための手段】上記目的達成のため、請
求項1記載の発明による半導体製造方法は、絶縁層によ
り電気的に分離された半導体層を有する半導体基板に半
導体装置を形成する半導体製造方法において、素子分離
領域の半導体層、絶縁層および半導体基板をエッチング
する工程と、前記半導体基板上に絶縁膜を堆積させる工
程と、前記半導体層内の活性化領域から前記絶縁膜を取
り除く工程と、前記半導体基板内に入り込むように少な
くとも1種類以上の不純物を打ち込む工程とを有するこ
とを特徴とする。
In order to achieve the above object, a semiconductor manufacturing method according to the first aspect of the present invention provides a semiconductor manufacturing method for forming a semiconductor device on a semiconductor substrate having a semiconductor layer electrically separated by an insulating layer. Etching a semiconductor layer, an insulating layer, and a semiconductor substrate in an element isolation region, depositing an insulating film on the semiconductor substrate, and removing the insulating film from an activated region in the semiconductor layer. Implanting at least one or more impurities into the semiconductor substrate.

【0009】また、好ましい態様として、例えば請求項
2記載のように、請求項1記載の半導体製造方法におい
て、少なくとも周辺部が前記素子分離領域上に位置する
ようにゲート電極を作成する工程を有してもよい。
In a preferred embodiment, the method for manufacturing a semiconductor device according to claim 1 further includes a step of forming a gate electrode such that at least a peripheral portion is located on the element isolation region. May be.

【0010】また、上記目的達成のため、請求項3記載
の発明による半導体装置は、絶縁層により電気的に分離
された半導体層を有する半導体基板に形成された半導体
装置において、前記絶縁層を越えて前記半導体基板内に
達し、絶縁層からなる素子分離層と、前記半導体層内に
形成された2種類の極性を持つ導電層とを具備すること
を特徴とする。
According to another aspect of the present invention, there is provided a semiconductor device formed on a semiconductor substrate having a semiconductor layer electrically separated by an insulating layer. And an element isolation layer formed of an insulating layer and reaching the inside of the semiconductor substrate, and a conductive layer having two kinds of polarities formed in the semiconductor layer.

【0011】また、好ましい態様として、例えば請求項
4記載のように、請求項3記載の半導体装置において、
前記導電層上部に絶縁層を介して形成されたゲート電極
を具備し、前記ゲート電極の少なくとも周辺部は、前記
素子分離層上に位置するようにしてもよい。
In a preferred embodiment, for example, in the semiconductor device according to the third aspect,
A gate electrode may be provided on the conductive layer via an insulating layer, and at least a peripheral portion of the gate electrode may be located on the element isolation layer.

【0012】本発明では、素子分離領域の半導体層、絶
縁層および半導体基板をエッチングし、前記半導体基板
上に絶縁膜を堆積させることにより、前記絶縁層を越え
て前記半導体基板内に達する素子分離層、いわゆる厚い
トレンチ層を形成するようにしたので、フリンジング接
合容量、ゲート・パッド容量、接合容量などの寄生容量
を減少させることができる。
In the present invention, the semiconductor layer, the insulating layer, and the semiconductor substrate in the element isolation region are etched and an insulating film is deposited on the semiconductor substrate, so that the element isolation reaches the inside of the semiconductor substrate beyond the insulating layer. Since a layer, a so-called thick trench layer, is formed, parasitic capacitance such as fringing junction capacitance, gate pad capacitance, and junction capacitance can be reduced.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1は、本発明の実施形態によ
る半導体装置の製造工程(一部)を示す断面図である。
なお、図2に対応する部分には同一の符号を付けて説明
を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a manufacturing process (part) of a semiconductor device according to an embodiment of the present invention.
The same reference numerals are given to the portions corresponding to FIG.

【0014】まず、例えば、シリコン(Si)基板1上
に50nm厚のBOX層2、30nm厚のSOI層3が
形成されたSOI半導体基板4を用意する(図1
(a))。次に、Si基板1に例えば5nm厚のパッド
酸化膜、100nm厚のSiN膜、100nm厚の多結
晶Si膜を形成する(図示略)。その後、リソグラフィ
技術を用いて、トレンチ(Trench)パターンをレジスト
膜により形成し(図示略)、トレンチ領域のSOI層3
/BOX層2/Si基板1をドライエッチングする。例
えば、SOI層3/BOX層2/Si基板1を、各々、
30/50/100nm厚程度エッチングする。
First, for example, an SOI semiconductor substrate 4 having a 50 nm thick BOX layer 2 and a 30 nm thick SOI layer 3 formed on a silicon (Si) substrate 1 is prepared (FIG. 1).
(A)). Next, for example, a pad oxide film having a thickness of 5 nm, a SiN film having a thickness of 100 nm, and a polycrystalline Si film having a thickness of 100 nm are formed on the Si substrate 1 (not shown). Thereafter, a trench (Trench) pattern is formed by a resist film using a lithography technique (not shown), and the SOI layer 3 in the trench region is formed.
/ BOX layer 2 / Si substrate 1 is dry-etched. For example, the SOI layer 3 / BOX layer 2 / Si substrate 1
Etch about 30/50/100 nm thick.

【0015】その後、HDP(High-Density Plasma en
hanced deposition)法などにより、SiO2絶縁膜を形
成する(図示略)。続いて、CMP(Chemical/Mechani
calPolishing)法などにより平坦化ならびにエッチング
を行った後、ホット燐酸等により上記SiN膜を除去
し、DHF(希フッ酸)等により上記パッド酸化膜を除
去する(図1(b))。
Thereafter, HDP (High-Density Plasma en)
An SiO 2 insulating film is formed by a hanced deposition method (not shown). Then, CMP (Chemical / Mechani
After performing planarization and etching by a cal polishing method or the like, the SiN film is removed by hot phosphoric acid or the like, and the pad oxide film is removed by DHF (dilute hydrofluoric acid) or the like (FIG. 1B).

【0016】次に、素子活性領域の表面にゲート酸化膜
としてのSiO2を形成し、例えば、不純物を含有しな
い多結晶Si膜を、SiO2上でゲート電極のパターン
に加工する(図示略)。そして、NMOS形成領域、P
MOS形成領域のSi層(絶縁膜上と基板)および多結
晶Si膜に、例えば、3×1015/cm2で、各々、A
sおよびBF2を高ドーズ・イオン注入する。
Next, SiO 2 as a gate oxide film is formed on the surface of the element active region. For example, a polycrystalline Si film containing no impurities is processed into a gate electrode pattern on the SiO 2 (not shown). Then, the NMOS formation region, P
In the Si layer (on the insulating film and the substrate) and the polycrystalline Si film in the MOS formation region, for example, 3 × 10 15 / cm 2,
s and BF2 are implanted at a high dose.

【0017】その後、層間絶縁膜(SiO2など)を堆
積後、コンタクト孔をRIE法などにより形成する。さ
らに、従来公知の技術により、金属配線を形成し、半導
体装置を完成させる(図示略)。
Thereafter, after depositing an interlayer insulating film (such as SiO 2), a contact hole is formed by RIE or the like. Further, metal wiring is formed by a conventionally known technique to complete a semiconductor device (not shown).

【0018】ここで、図2は、本実施形態による半導体
装置における寄生容量の発生状態を示す概念図である。
上述した工程により形成された半導体装置では、図2
(a)および図2(b)に示すように、埋め込み酸化膜
2下のSi基板1まで、厚いトレンチ層(酸化膜)7で
分離されるので、フリンジング接合容量Cf2、ゲート
・パッド容量Cg2、接合容量Cjなどの寄生容量が減
少する。
Here, FIG. 2 is a conceptual diagram showing a state of occurrence of parasitic capacitance in the semiconductor device according to the present embodiment.
In the semiconductor device formed by the above-described steps, FIG.
As shown in FIG. 2A and FIG. 2B, the silicon substrate 1 under the buried oxide film 2 is separated by a thick trench layer (oxide film) 7, so that a fringing junction capacitance Cf2 and a gate pad capacitance Cg2 are formed. , The parasitic capacitance such as the junction capacitance Cj decreases.

【0019】なお、上述した工程において、ゲート酸化
膜の形成前に、素子活性領域などの半導体領域にしきい
値等を調整するためのイオン注入を行ってもよい。ま
た、該高ドーズ・イオン注入の前に、低ドーズによるL
DD(Lightly Doped Drain)膜形成工程とその後のゲ
ート・サイド・ウォール形成工程とが含まれていてもよ
い。さらに、高ドーズ・イオン注入後に、従来公知のS
ALICIDE(Self-Aligned Silicide)化を行い、
ゲート、ソース、ドレイン領域にCoSi2、TiSi
2などのシリサイドを形成することによって低抵抗化を
図ってもよい。
In the above-described process, before forming the gate oxide film, ion implantation for adjusting a threshold value or the like may be performed on a semiconductor region such as an element active region. Prior to the high dose ion implantation, a low dose L
A DD (Lightly Doped Drain) film forming step and a subsequent gate side wall forming step may be included. Further, after the high dose ion implantation, the conventionally known S
ALICIDE (Self-Aligned Silicide)
CoSi2, TiSi for gate, source and drain regions
The resistance may be reduced by forming a silicide such as 2.

【0020】[0020]

【発明の効果】以上、説明したように請求項1記載の発
明によれば、素子分離領域の半導体層、絶縁層および半
導体基板をエッチングし、前記半導体基板上に絶縁膜を
堆積させることにより、前記絶縁層を越えて前記半導体
基板内に達する素子分離層、いわゆるトレンチ層を形成
し、前記半導体層内の活性化領域から前記絶縁膜を取り
除いた後、前記半導体基板内に入り込むように少なくと
も1種類以上の不純物を打ち込むことにより、半導体装
置を形成するようにしたので、フリンジング接合容量、
ゲート・パッド容量、接合容量などの寄生容量を減少さ
せることができるという利点が得られる。
As described above, according to the first aspect of the present invention, the semiconductor layer, the insulating layer, and the semiconductor substrate in the element isolation region are etched to deposit an insulating film on the semiconductor substrate. After forming an element isolation layer that extends into the semiconductor substrate beyond the insulating layer, that is, a so-called trench layer, and removing the insulating film from an active region in the semiconductor layer, at least one trench is formed so as to enter the semiconductor substrate. By implanting more types of impurities, a semiconductor device is formed, so that the fringing junction capacitance,
An advantage is obtained in that parasitic capacitance such as gate pad capacitance and junction capacitance can be reduced.

【0021】また、請求項2記載の発明によれば、ゲー
ト電極を作成する際に、該ゲート電極の少なくとも周辺
部が素子分離領域上に位置するようにようにしたので、
特に、フリンジング接合容量による寄生容量を減少させ
ることができるという利点が得られる。
According to the second aspect of the present invention, at the time of forming the gate electrode, at least the peripheral portion of the gate electrode is located on the element isolation region.
In particular, there is obtained an advantage that the parasitic capacitance due to the fringing junction capacitance can be reduced.

【0022】また、請求項3記載の発明によれば、前記
絶縁層を越えて前記半導体基板内に達し、絶縁層からな
る素子分離層を、前記半導体層内に形成された2種類の
極性を持つ導電層の周囲に設けたので、フリンジング接
合容量、ゲート・パッド容量、寄生容量を減少させるこ
とができるという利点が得られる。
Further, according to the third aspect of the present invention, the element isolation layer which reaches the inside of the semiconductor substrate beyond the insulating layer and is made of the insulating layer has two kinds of polarities formed in the semiconductor layer. Since it is provided around the conductive layer, the fringing junction capacitance, the gate pad capacitance, and the parasitic capacitance can be reduced.

【0023】また、請求項4記載の発明によれば、前記
導電層上部に絶縁層を介して形成されたゲート電極の少
なくとも周辺部を、前記素子分離層の上部に位置するよ
うにしたので、特に、フリンジング接合容量による寄生
容量を減少させることができるという利点が得られる。
According to the fourth aspect of the present invention, at least the peripheral portion of the gate electrode formed above the conductive layer via the insulating layer is positioned above the element isolation layer. In particular, there is obtained an advantage that the parasitic capacitance due to the fringing junction capacitance can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による半導体装置の製造工程
(一部)および半導体装置における寄生容量の発生状態
を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process (part) of a semiconductor device according to an embodiment of the present invention and a state of occurrence of parasitic capacitance in the semiconductor device.

【図2】本実施形態による半導体装置における寄生容量
の発生状態を示す概念図である。
FIG. 2 is a conceptual diagram illustrating a state of occurrence of parasitic capacitance in the semiconductor device according to the present embodiment.

【図3】従来技術による半導体装置の製造工程(一部)
を示す断面図である。
FIG. 3 shows a manufacturing process (part) of a semiconductor device according to a conventional technique.
FIG.

【図4】従来技術による半導体装置における寄生容量の
発生状態を示す概念図である。
FIG. 4 is a conceptual diagram showing a state of occurrence of a parasitic capacitance in a semiconductor device according to the related art.

【符号の説明】[Explanation of symbols]

1……Si基板(半導体基板)、2……BOX層(絶縁
層)、3……SOI層(半導体層)、4……SOI基
板、5……ゲート電極、6……半導体素子、7……トレ
ンチ層(素子分離層)
1 ... Si substrate (semiconductor substrate), 2 ... BOX layer (insulating layer), 3 ... SOI layer (semiconductor layer), 4 ... SOI substrate, 5 ... gate electrode, 6 ... semiconductor element, 7 ... … Trench layer (element isolation layer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層により電気的に分離された半導体
層を有する半導体基板に半導体装置を形成する半導体製
造方法において、 素子分離領域の半導体層、絶縁層および半導体基板をエ
ッチングする工程と、 前記半導体基板上に絶縁膜を堆積させる工程と、 前記半導体層内の活性化領域から前記絶縁膜を取り除く
工程と、 前記半導体基板内に入り込むように少なくとも1種類以
上の不純物を打ち込む工程とを有することを特徴とする
半導体製造方法。
1. A semiconductor manufacturing method for forming a semiconductor device on a semiconductor substrate having a semiconductor layer electrically separated by an insulating layer, comprising: a step of etching the semiconductor layer, the insulating layer, and the semiconductor substrate in an element isolation region; A step of depositing an insulating film on a semiconductor substrate; a step of removing the insulating film from an active region in the semiconductor layer; and a step of implanting at least one or more impurities into the semiconductor substrate. A semiconductor manufacturing method characterized by the above-mentioned.
【請求項2】 少なくとも周辺部が前記素子分離領域上
に位置するようにゲート電極を作成する工程を有するこ
とを特徴とする請求項1記載の半導体製造方法。
2. The method according to claim 1, further comprising the step of forming a gate electrode so that at least a peripheral portion is located on the element isolation region.
【請求項3】 絶縁層により電気的に分離された半導体
層を有する半導体基板に形成された半導体装置におい
て、 前記絶縁層を越えて前記半導体基板内に達し、絶縁層か
らなる素子分離層と、 前記半導体層内に形成された2種類の極性を持つ導電層
とを具備することを特徴とする半導体装置。
3. A semiconductor device formed on a semiconductor substrate having a semiconductor layer electrically separated by an insulating layer, comprising: an element isolation layer that reaches the inside of the semiconductor substrate beyond the insulating layer and is formed of an insulating layer; A conductive layer having two kinds of polarities formed in the semiconductor layer.
【請求項4】 前記導電層上部に絶縁層を介して形成さ
れたゲート電極を具備し、 前記ゲート電極の少なくとも周辺部は、前記素子分離層
上に位置することを特徴とする請求項3記載の半導体装
置。
4. The semiconductor device according to claim 3, further comprising a gate electrode formed above the conductive layer via an insulating layer, wherein at least a peripheral portion of the gate electrode is located on the element isolation layer. Semiconductor device.
JP11219120A 1999-08-02 1999-08-02 Manufacture of semiconductor and semiconductor device Pending JP2001044443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11219120A JP2001044443A (en) 1999-08-02 1999-08-02 Manufacture of semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11219120A JP2001044443A (en) 1999-08-02 1999-08-02 Manufacture of semiconductor and semiconductor device

Publications (1)

Publication Number Publication Date
JP2001044443A true JP2001044443A (en) 2001-02-16

Family

ID=16730569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11219120A Pending JP2001044443A (en) 1999-08-02 1999-08-02 Manufacture of semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JP2001044443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150018A (en) * 2005-11-29 2007-06-14 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
KR101003115B1 (en) 2007-12-12 2010-12-21 주식회사 하이닉스반도체 Semiconducotor Memory Device Having Floating Body Capacitor And Method Of Manufacturing The Same
JP2012169606A (en) * 2011-01-26 2012-09-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150018A (en) * 2005-11-29 2007-06-14 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
KR101003115B1 (en) 2007-12-12 2010-12-21 주식회사 하이닉스반도체 Semiconducotor Memory Device Having Floating Body Capacitor And Method Of Manufacturing The Same
JP2012169606A (en) * 2011-01-26 2012-09-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
US10069014B2 (en) 2011-01-26 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6200866B1 (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
US5599726A (en) Method of making a conductive spacer lightly doped drain (LDD) for hot carrier effect (HCE) control
US6566176B1 (en) SOI device with wrap-around contact to underside of body, and method of making
US6177303B1 (en) Method of manufacturing a semiconductor device with a field effect transistor
JP2745498B2 (en) Method for manufacturing semiconductor device
US5610083A (en) Method of making back gate contact for silicon on insulator technology
US6479866B1 (en) SOI device with self-aligned selective damage implant, and method
JP3965064B2 (en) Method for forming an integrated circuit having a body contact
US6174754B1 (en) Methods for formation of silicon-on-insulator (SOI) and source/drain-on-insulator(SDOI) transistors
EP0964447A1 (en) Self-aligned local interconnection for cmos and its manufacturing method
US20030203546A1 (en) SOI transistor element having an improved backside contact and method of forming the same
JP2003512724A (en) Field effect transistor with non-floating body and method for forming the transistor on a bulk silicon wafer
JPH11274496A (en) Field-effect transistor having improved implant and its manufacture
JP2000269441A (en) Deep divot mask for improving performance and reliability of buried channel pfet
US8680617B2 (en) Split level shallow trench isolation for area efficient body contacts in SOI MOSFETS
WO2007126488A2 (en) Method for fabricating a semiconductor component including a high capacitance per unit area capacitor
US6514809B1 (en) SOI field effect transistors with body contacts formed by selective etch and fill
JP2000216386A (en) Fabrication of semiconductor device having junction
US20040038461A1 (en) Semiconductor device on silicon-on-insulator and method for manufacturing the semiconductor device
JP2002506579A (en) Method of forming side dielectric insulated semiconductor device and MOS semiconductor device manufactured by this method
JP3744694B2 (en) Semiconductor device manufacturing method for improving transistor characteristics
KR100697894B1 (en) A method of manufacturing a semiconductor device
US20040155277A1 (en) Method for manufacturing a semiconductor device including a PIP capacitor and a MOS transistor
US7169676B1 (en) Semiconductor devices and methods for forming the same including contacting gate to source
JP2001044443A (en) Manufacture of semiconductor and semiconductor device