Nothing Special   »   [go: up one dir, main page]

JP2000327424A - Aluminum nitride base sintered compact, its production and susceptor using the same - Google Patents

Aluminum nitride base sintered compact, its production and susceptor using the same

Info

Publication number
JP2000327424A
JP2000327424A JP11132004A JP13200499A JP2000327424A JP 2000327424 A JP2000327424 A JP 2000327424A JP 11132004 A JP11132004 A JP 11132004A JP 13200499 A JP13200499 A JP 13200499A JP 2000327424 A JP2000327424 A JP 2000327424A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
based sintered
aln
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11132004A
Other languages
Japanese (ja)
Other versions
JP3756345B2 (en
Inventor
Takaro Kitagawa
高郎 北川
Takashi Otsuka
剛史 大塚
Hiroshi Inazumachi
浩 稲妻地
Yoshiki Yoshioka
良樹 吉岡
Masayuki Ishizuka
雅之 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP13200499A priority Critical patent/JP3756345B2/en
Publication of JP2000327424A publication Critical patent/JP2000327424A/en
Application granted granted Critical
Publication of JP3756345B2 publication Critical patent/JP3756345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact, containing silicon carbide of a specific ratio and the balance aluminum nitride and inevitable impurities, excellent in plasma resistance after used for a long period of time and high in radiation absorptivity and coefficient of thermal conductivity by limiting the average crystal particle size and CIE 1976 lightness L* of the sintered compact to specific values or low. SOLUTION: This aluminum nitride(AlN) base sintered compact contains 0.1-20 wt.% silicon carbide and the balance aluminum nitride and inevitable impurities and has <=20 μm average crystal particle size and <=30 CIE 1976 lightness L*. It is preferably obtained by sintering AlN powder containing 0.1-20 wt.% SiC powder synthesized in gas phase by a plasma CVD method to have 10-100 nm average particle size under >=10 MPa at 1,700-2,300 deg.C. One or more of yttria, calcia and magnecia can be added as a sintering aid by 1.0-10.0 wt.% in total to improve the sinterability. This sintered compact is suitable for a susceptor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
基焼結体とその製造方法及びそれを用いたサセプターに
関し、特に、耐プラズマ性に優れ、放射吸収率及び熱伝
導率が大きく、しかも、載置した被処理物上の薄膜の特
性を劣化させる虞がない窒化アルミニウム基焼結体とそ
の製造方法及びそれを用いたサセプターに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride-based sintered body, a method for producing the same, and a susceptor using the same, and more particularly, to a plasma-resistant, high radiation-absorbing and thermal-conducting material. The present invention relates to an aluminum nitride-based sintered body that does not have a risk of deteriorating the characteristics of a thin film on an object to be processed, a method of manufacturing the same, and a susceptor using the same.

【0002】[0002]

【従来の技術】従来、IC、LSI、VLSI等の半導
体装置の製造ラインにおいては、シリコンウエハ等の基
板の表面に、例えば、シリコン酸化膜(SiO2)やシ
リコン窒化膜(Si34)等の絶縁膜や、シリサイド膜
(WSi2)等の導体膜を形成するには、熱CVD法、
プラズマCVD法等が好適に用いられている。これらの
CVD法においては、被処理物であるシリコンウエハを
サセプターと称される試料台(台座)に載置し、所定の
処理を施している。
2. Description of the Related Art Conventionally, in a production line for semiconductor devices such as ICs, LSIs, and VLSIs, for example, a silicon oxide film (SiO 2 ) or a silicon nitride film (Si 3 N 4 ) is formed on a surface of a substrate such as a silicon wafer. In order to form an insulating film such as an insulating film or a conductor film such as a silicide film (WSi 2 ), a thermal CVD method,
A plasma CVD method or the like is preferably used. In these CVD methods, a silicon wafer as an object to be processed is placed on a sample table (pedestal) called a susceptor and subjected to a predetermined process.

【0003】このサセプターは、プラズマ中での使用に
耐え、かつ、全体を均熱に保つ必要があることから、耐
プラズマ性に優れているとともに、熱伝導率が大きいこ
とが要求される。この様な特性を備えたサセプターの一
種に、窒化アルミニウム焼結体を用いたものがある。
The susceptor is required to have excellent plasma resistance and high thermal conductivity because it needs to withstand use in plasma and keep the whole heat uniform. One type of susceptor having such characteristics is one using an aluminum nitride sintered body.

【0004】しかしながら、この窒化アルミニウム焼結
体を用いたサセプターでは、材料である窒化アルミニウ
ム焼結体自体の色調が白いために、吸収する放射熱の量
が少なく、したがって、放射エネルギーの熱変換効率が
不十分であるという問題点があった。例えば、このサセ
プターに外部の抵抗発熱体や赤外線ランプ等から赤外線
を照射した場合、赤外線の吸収率が低いために熱変換効
率が低くなってしまう。
However, in a susceptor using this aluminum nitride sintered body, the amount of radiant heat absorbed is small because the color tone of the aluminum nitride sintered body itself, which is a material, is white, and therefore, the heat conversion efficiency of radiant energy is high. Was insufficient. For example, when the susceptor is irradiated with infrared rays from an external resistance heating element, an infrared lamp, or the like, the heat conversion efficiency is reduced due to a low absorption rate of the infrared rays.

【0005】また、窒化アルミニウム焼結体は、それ自
体が粒子、粒界、気孔等が三次元に連なった複雑な微細
構造を有するものであり、また、焼成プロセス中に粒成
長を伴うことから、結晶粒径の分布にある程度のひろが
りが生じるのは避けられない。したがって、この窒化ア
ルミニウム焼結体の表面に比較的大きな結晶粒子に起因
する色むらが生じ、その結果、放射吸収率にばらつきが
生じ、均熱性が低下するという問題点があった。
[0005] The aluminum nitride sintered body itself has a complicated microstructure in which particles, grain boundaries, pores, and the like are connected three-dimensionally, and is accompanied by grain growth during the firing process. However, it is inevitable that a certain degree of spread occurs in the distribution of the crystal grain size. Therefore, color unevenness due to relatively large crystal grains occurs on the surface of the aluminum nitride sintered body, and as a result, the radiation absorptivity varies, and the heat uniformity decreases.

【0006】さらに、耐プラズマ性が十分ではないため
に、プラズマが照射されることによってサセプターから
粗大な粒子が発生・飛散し、サセプター上の被処理物に
不具合が生じるという問題点があった。例えば、半導体
製造ラインにおいては、プラズマを照射した際に、窒化
アルミニウム焼結体からパーティクルが発生し、このパ
ーティクルがシリコンウエハ上や成膜される薄膜上に堆
積し、金属配線を断線させたり、半導体層の特性を劣化
させたり等の不具合が生じるという問題点があった。
Furthermore, since the plasma resistance is not sufficient, coarse particles are generated and scattered from the susceptor by plasma irradiation, and there is a problem that an object to be processed on the susceptor has a problem. For example, in a semiconductor manufacturing line, when plasma is irradiated, particles are generated from an aluminum nitride sintered body, and the particles are deposited on a silicon wafer or a thin film to be formed, thereby breaking a metal wiring, There has been a problem that a problem such as deterioration of the characteristics of the semiconductor layer occurs.

【0007】そこで、この窒化アルミニウム焼結体に、
例えば、タングステン(W)、ニッケル(Ni)、パラ
ジウム(Pd)等の金属元素を添加したり、あるいは、
この窒化アルミニウム焼結体の表面にAlON相やC相
等の第2層を形成することにより、窒化アルミニウム焼
結体を黒色化する試みが行われている。また、窒化アル
ミニウム焼結体の耐プラズマ性を向上させるために、こ
の窒化アルミニウム焼結体の表面に、気相合成法により
高純度で組織が均一な窒化アルミニウム薄膜や、耐プラ
ズマ性に優れた金属フッ化物やイットリウム・アルミニ
ウム・ガーネット(YAG)等の薄膜を形成したサセプ
ターが提案されている。
Therefore, this aluminum nitride sintered body is
For example, a metal element such as tungsten (W), nickel (Ni), palladium (Pd) is added, or
Attempts have been made to blacken the aluminum nitride sintered body by forming a second layer such as an AlON phase or a C phase on the surface of the aluminum nitride sintered body. In addition, in order to improve the plasma resistance of the aluminum nitride sintered body, an aluminum nitride thin film having a high-purity and uniform structure by a gas-phase synthesis method and an excellent plasma-resistant A susceptor having a thin film formed of a metal fluoride, yttrium aluminum garnet (YAG), or the like has been proposed.

【0008】[0008]

【発明が解決しようとする課題】ところで、焼結体に金
属元素を添加したサセプターでは、窒化アルミニウム焼
結体の放射吸収率は向上するものの、添加物の影響によ
り焼結体中の金属不純物濃度が高まるため、プラズマを
照射した際にこの金属不純物がエネルギーを得て飛散
し、被処理物や薄膜を汚染するという問題点があった。
特に、このサセプターを半導体装置の製造ラインで使用
した場合、焼結体中の金属不純物によりシリコンウエハ
や半導体層が汚染され、得られた半導体装置の特性が大
きく劣化してしまうこととなる。
In a susceptor obtained by adding a metal element to a sintered body, the radiant absorptivity of the aluminum nitride sintered body is improved, but the metal impurity concentration in the sintered body is affected by the additive. Therefore, when plasma is irradiated, there is a problem that the metal impurities obtain energy and are scattered to contaminate an object to be processed and a thin film.
In particular, when this susceptor is used in a semiconductor device manufacturing line, the silicon wafer and the semiconductor layer are contaminated by metal impurities in the sintered body, and the characteristics of the obtained semiconductor device are greatly deteriorated.

【0009】また、表面に第2層を形成したサセプター
では、第2層の熱伝導率が低いために、サセプターとし
ての熱伝導率が低下し、シリコンウエハ等の被処理物に
おける均熱性が低下するという問題点があった。さら
に、これらのサセプターにおいては、結晶粒径に起因す
る色むらを改善するまでには至っていない。
In the susceptor having the second layer formed on the surface, the thermal conductivity of the susceptor is reduced due to the low thermal conductivity of the second layer. There was a problem of doing. Furthermore, these susceptors have not yet been improved in improving color unevenness due to crystal grain size.

【0010】一方、耐プラズマ性の向上のために表面に
薄膜を形成したサセプターでは、プラズマに対して耐食
性を示すのは表面の薄膜部分のみであるため、短期的な
耐プラズマ性の向上は認められるものの、長期に使用し
た場合、表面の薄膜はプラズマ照射によって消失してし
まうために、当初の耐プラズマ性を長期間維持すること
は難しい。さらに、薄膜と窒化アルミニウム焼結体との
間で組成、結晶構造、熱膨張率等が異なる場合には、温
度の上昇と下降のサイクルを繰り返すことにより、薄膜
に剥離、断裂等が生じる虞がある。
On the other hand, in the case of a susceptor having a thin film formed on the surface for the purpose of improving plasma resistance, only the thin film portion on the surface shows corrosion resistance against plasma, and therefore, a short-term improvement in plasma resistance is recognized. However, when used for a long time, the thin film on the surface disappears due to plasma irradiation, and it is difficult to maintain the initial plasma resistance for a long time. Further, when the composition, crystal structure, coefficient of thermal expansion, and the like are different between the thin film and the aluminum nitride sintered body, there is a possibility that peeling, tearing, and the like may occur in the thin film by repeating a cycle of increasing and decreasing the temperature. is there.

【0011】本発明は、上記の事情に鑑みてなされたも
のであって、長期使用時の耐プラズマ性に優れ、放射吸
収率及び熱伝導率が大きく、しかも、載置した被処理物
上の薄膜の特性を劣化させる虞がない窒化アルミニウム
基焼結体とその製造方法及びそれを用いたサセプターを
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has excellent plasma resistance during long-term use, high radiation absorption and thermal conductivity, and also has a large An object of the present invention is to provide an aluminum nitride-based sintered body having no risk of deteriorating the properties of a thin film, a method for producing the same, and a susceptor using the same.

【0012】[0012]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意検討した結果、次の様な知見を得
た。気相合成された炭化珪素粉末を所定量窒化アルミニ
ウム粉末に添加し、この混合粉末を結晶粒径が所定の値
以下となるような条件下で加圧焼成することにより、金
属元素を添加したり、あるいは第2相を形成したり等を
行うことなく焼結体の黒色化を可能とし、また結晶粒界
に起因する色むらの発生が無く、プラズマに対する耐食
性に優れた素材が得られた。そして、この素材をサセプ
ターに用いることにより、従来のサセプターにおける問
題点を解決し得ることが明かとなった。本発明者等は、
以上の知見に基づき本発明を完成したのである。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have obtained the following knowledge. A predetermined amount of the silicon carbide powder synthesized in the gas phase is added to the aluminum nitride powder, and the mixed powder is subjected to pressure sintering under conditions such that the crystal grain size is equal to or smaller than a predetermined value, thereby adding a metal element. Alternatively, the sintered body could be blackened without forming a second phase or the like, and there was no color unevenness due to crystal grain boundaries, and a material excellent in corrosion resistance to plasma was obtained. And it became clear that the problem in the conventional susceptor can be solved by using this material for the susceptor. The present inventors,
The present invention has been completed based on the above findings.

【0013】すなわち、本発明の請求項1記載の窒化ア
ルミニウム基焼結体は、炭化珪素を0.1〜20重量%
含有し、残部を窒化アルミニウム及び不可避不純物とし
た組成からなり、平均結晶粒径が20μm以下であり、
かつ、CIE 1976明度L*が30以下であること
を特徴としている。
That is, the aluminum nitride-based sintered body according to the first aspect of the present invention comprises silicon carbide in an amount of 0.1 to 20% by weight.
Containing, with the balance being aluminum nitride and inevitable impurities, having an average crystal grain size of 20 μm or less,
Further, the CIE 1976 lightness L * is 30 or less.

【0014】請求項2記載の窒化アルミニウム基焼結体
は、請求項1記載の窒化アルミニウム基焼結体におい
て、イットリア(Y23)、カルシア(CaO)、マグ
ネシア(MgO)から選択された1種または2種以上を
合計で1.0〜10.0重量%含有することを特徴とし
ている。
According to a second aspect of the present invention, there is provided an aluminum nitride-based sintered body selected from the group consisting of the yttria (Y 2 O 3 ), calcia (CaO), and magnesia (MgO). It is characterized in that one or more kinds are contained in a total of 1.0 to 10.0% by weight.

【0015】請求項3記載の窒化アルミニウム基焼結体
の製造方法は、平均粒子径が10〜100nmの炭化珪
素粉末を0.1〜20重量%含有する窒化アルミニウム
粉末を、10MPa以上の圧力下、1700〜2300
℃の温度で焼成することを特徴としている。
According to a third aspect of the present invention, there is provided a method for producing an aluminum nitride-based sintered body, comprising: applying an aluminum nitride powder containing 0.1 to 20% by weight of silicon carbide powder having an average particle diameter of 10 to 100 nm under a pressure of 10 MPa or more. , 1700-2300
It is characterized by firing at a temperature of ° C.

【0016】請求項4記載の窒化アルミニウム基焼結体
の製造方法は、請求項3記載の窒化アルミニウム基焼結
体の製造方法において、前記炭化珪素粉末を、気相反応
法により気相合成したことを特徴としている。
According to a fourth aspect of the present invention, in the method for manufacturing an aluminum nitride-based sintered body according to the third aspect, the silicon carbide powder is synthesized in a gas phase by a gas phase reaction method. It is characterized by:

【0017】請求項5記載の窒化アルミニウム基焼結体
の製造方法は、請求項4記載の窒化アルミニウム基焼結
体の製造方法において、前記気相反応法は、プラズマC
VD法であることを特徴としている。
According to a fifth aspect of the present invention, there is provided a method of manufacturing an aluminum nitride-based sintered body according to the fourth aspect of the present invention, wherein the gas phase reaction method comprises a plasma CVD method.
It is characterized by the VD method.

【0018】請求項6記載のサセプターは、基体が請求
項1または2記載の窒化アルミニウム基焼結体により構
成されていることを特徴としている。
A susceptor according to a sixth aspect is characterized in that the substrate is made of the aluminum nitride-based sintered body according to the first or second aspect.

【0019】本発明の窒化アルミニウム基焼結体では、
炭化珪素を0.1〜20重量%含有し、残部を窒化アル
ミニウム及び不可避不純物とした組成の焼結体の平均結
晶粒径を20μm以下としたことにより、該焼結体にお
ける結晶粒径の分布がシャープになり、均一化される。
これにより、結晶粒径に起因する色むらが無くなり、そ
の結果、放射吸収率のばらつきが極めて小さくなり、均
熱性が向上する。また、CIE 1976明度L*を3
0以下としたことにより、該焼結体が黒色化され、放射
吸収率が高まる。しかも、従来の様にAlON相やC相
等の第2成分が無いので、熱伝導率が低下する虞が無
く、均一性が低下することが無い。
In the aluminum nitride-based sintered body of the present invention,
By setting the average crystal grain size of a sintered body having a composition containing 0.1 to 20% by weight of silicon carbide and the remainder being aluminum nitride and unavoidable impurities to 20 μm or less, distribution of the crystal grain size in the sintered body Becomes sharp and uniform.
Thereby, color unevenness due to the crystal grain size is eliminated, and as a result, the variation in the radiation absorptivity becomes extremely small, and the heat uniformity is improved. Also, the CIE 1976 lightness L * is set to 3
By setting the value to 0 or less, the sintered body is blackened, and the radiation absorptivity is increased. Moreover, since there is no second component such as the AlON phase and the C phase as in the conventional case, there is no possibility that the thermal conductivity is reduced, and the uniformity is not reduced.

【0020】本発明の窒化アルミニウム基焼結体の製造
方法では、平均粒子径が10〜100nmの炭化珪素粉
末を0.1〜20重量%含有する窒化アルミニウム粉末
を、10MPa以上の圧力下、1700〜2300℃の
温度で焼成することにより、黒色化されることで放射吸
収率が高く、結晶粒径に起因する色むらが無く均熱性に
優れ、しかも気孔の無い緻密な焼結体が得られる。
In the method for producing an aluminum nitride-based sintered body according to the present invention, an aluminum nitride powder containing 0.1 to 20% by weight of silicon carbide powder having an average particle diameter of 10 to 100 nm is subjected to a pressure of 1 MPa or more under 1700 MPa. By firing at a temperature of 2300 ° C., a black sintered body is obtained, which has a high radiation absorptance, has excellent color uniformity due to crystal grain size, has excellent heat uniformity, and has no pores. .

【0021】本発明のサセプターでは、基体を請求項1
または2記載の窒化アルミニウム基焼結体により構成し
たことにより、長期間プラズマ照射された場合において
も、該焼結体は消失してしまう虞が無く、当初の耐プラ
ズマ性を長期間維持することが可能になる。さらに、基
体が単一の窒化アルミニウム基焼結体により構成されて
いるので、温度の上昇と下降のサイクルを繰り返した場
合においても、該焼結体に剥離、断裂等が生じる虞が無
く、サセプターとしての信頼性が高まる。
[0021] In the susceptor of the present invention, the substrate is made of the following.
Or, by using the aluminum nitride-based sintered body described in 2, the sintered body does not disappear even when plasma irradiation is performed for a long time, and the initial plasma resistance is maintained for a long time. Becomes possible. Further, since the base is made of a single aluminum nitride-based sintered body, even if the cycle of temperature rise and fall is repeated, there is no possibility that the sintered body will be peeled, broken, etc. As the reliability increases.

【0022】[0022]

【発明の実施の形態】本発明の窒化アルミニウム基焼結
体とその製造方法及びそれを用いたサセプターの一実施
形態について説明する。ただし、この実施の形態は、特
に指定のない限り、発明内容を限定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the aluminum nitride-based sintered body of the present invention, a method for producing the same, and a susceptor using the same will be described. However, this embodiment does not limit the contents of the invention unless otherwise specified.

【0023】本発明の窒化アルミニウム(AlN)基焼
結体は、炭化珪素(SiC)を0.1〜20重量%含有
し、残部を窒化アルミニウム(AlN)及び不可避不純
物とした組成のもので、平均結晶粒径を20μm以下、
かつ、CIE 1976明度L*を30以下とすること
で黒色化が図られているものである。
The aluminum nitride (AlN) -based sintered body of the present invention has a composition containing 0.1 to 20% by weight of silicon carbide (SiC), with the balance being aluminum nitride (AlN) and unavoidable impurities. Average crystal grain size of 20 μm or less,
Further, blackening is achieved by setting the CIE 1976 lightness L * to 30 or less.

【0024】SiCは、AlN基焼結体の明度を調節
し、耐プラズマ性を向上させる上で重要な化合物であ
り、その含有量は0.1〜20重量%の範囲である。そ
の理由は、含有量が0.1重量%未満では白色化してし
まうために十分な明度が得られず、耐プラズマ性の向上
も認められないからであり、また、含有量が20重量%
を越えると、緻密な焼結体が得られ難くなると共に、耐
プラズマ性が大きく低下するからである。
SiC is an important compound for adjusting the brightness of the AlN-based sintered body and improving the plasma resistance, and its content is in the range of 0.1 to 20% by weight. The reason is that if the content is less than 0.1% by weight, sufficient brightness is not obtained due to whitening and no improvement in plasma resistance is observed, and the content is 20% by weight.
This is because, if it exceeds, it becomes difficult to obtain a dense sintered body, and the plasma resistance is greatly reduced.

【0025】このSiCは、α−SiC、β−SiC、
a−SiC(非晶質SiC)またはこれらの混合相のい
ずれでもよいが、中でも、β−SiCはアスペクト比が
小さく、また分散性にも優れているので、AlN基焼結
体中に少量存在するだけで、AlN基焼結体の色調をC
IE 1976明度L*が30以下の黒色とすることが
でき、耐プラズマ性を向上させることができる。
The SiC is α-SiC, β-SiC,
a-SiC (amorphous SiC) or a mixed phase thereof may be used. Among them, β-SiC has a small aspect ratio and is excellent in dispersibility. The color tone of the AlN-based sintered body
IE 1976 Blackness with a lightness L * of 30 or less can be obtained, and plasma resistance can be improved.

【0026】また、このAlN基焼結体の平均結晶粒径
は20μm以下であることが必要である。その理由は、
平均結晶粒径が20μmを越えると目視で確認できる色
むらが発生し、熱効率の不均一の原因になると共に、耐
プラズマ性が大きく低下するからである。平均結晶粒径
が20μmを越えるAlN基焼結体をサセプターに適用
した場合、プラズマ照射により発生するパーティクルの
粒子径が増加し、得られた半導体に配線の断線等の不具
合が発生する虞がある。
The average crystal grain size of the AlN-based sintered body needs to be 20 μm or less. The reason is,
If the average crystal grain size exceeds 20 μm, color unevenness which can be visually confirmed is generated, which causes non-uniformity of thermal efficiency and greatly reduces plasma resistance. When an AlN-based sintered body having an average crystal grain size exceeding 20 μm is applied to a susceptor, the particle size of particles generated by plasma irradiation increases, and there is a possibility that a defect such as disconnection of wiring may occur in the obtained semiconductor. .

【0027】また、このAlN基焼結体のCIE 19
76明度L*は30以下とする必要がある。この明度L*
はAlN基焼結体の表面における放射吸収の程度を表し
たものであり、その値が30以下とすることで外部から
の放射エネルギーを熱として吸収する性能に優れたもの
となる。
The CIE 19 of this AlN-based sintered body was
The 76 lightness L * needs to be 30 or less. This lightness L *
Represents the degree of radiation absorption on the surface of the AlN-based sintered body. When the value is 30 or less, excellent performance of absorbing external radiant energy as heat is obtained.

【0028】このCIE 1976明度L*は、日本工
業規格 JIS Z8729「色の表示方法」に規定さ
れているもので、国際照明委員会(CIE)が推奨した
CIE1976(L***色空間)(CIE LAB
と略記)の中で明度として定義される値で、完全拡散反
射面を100、完全黒体を0として、その間の度合いを
色の三刺激値の中のYの値に関連した式によって表すも
のである。この明度L *は、その値が小さいほど放射を
100%吸収する完全黒体に近く、外部の発熱体やラン
プなどから放射されるエネルギーを熱として吸収する性
能に優れている。
This CIE 1976 lightness L*Is Nippon Kogyo
Industry Standards Specified in JIS Z8729 “Color Display Method”
And recommended by the International Commission on Lighting (CIE)
CIE1976 (L*a*b*Color space) (CIE LAB
Abbreviation) is the value defined as lightness,
The launch surface is 100, the perfect black body is 0, and the degree between them is
Expressed by an expression related to the value of Y in the tristimulus values of color
It is. This lightness L *Means that the smaller the value, the more radiation
It is close to a perfect black body that absorbs 100%, and has an external heating element and run
Absorbs energy radiated from pumps as heat
Excellent ability.

【0029】このAlN基焼結体は、平均粒子径が10
〜100nmのSiC粉末を0.1〜20重量%含有す
るAlN粉末を、10MPa以上の圧力下、1700〜
2300℃の温度で焼成することにより得ることができ
る。SiC粉末としては、例えば、プラズマCVD法に
より気相合成された平均粒子径が10〜100nmの微
粉末を用いる。これにより、プラズマに対する耐食性、
特にフッ素系プラズマに対する耐食性に優れたものとな
る。プラズマCVD法としては、高純度化を図ることが
可能な高周波プラズマ(RFプラズマ)を用いたものが
好適である。この高周波プラズマは、無電極であること
により、例えば、不純物濃度が1ppm以下のような超
高純度SiC微粉末を得ることができる。
This AlN-based sintered body has an average particle diameter of 10
AlN powder containing 0.1 to 20% by weight of SiC powder having a thickness of 100
It can be obtained by firing at a temperature of 2300 ° C. As the SiC powder, for example, a fine powder having an average particle diameter of 10 to 100 nm synthesized by a gas phase using a plasma CVD method is used. Due to this, corrosion resistance to plasma,
In particular, it has excellent corrosion resistance to fluorine-based plasma. As the plasma CVD method, a method using high-frequency plasma (RF plasma) capable of achieving high purity is preferable. Since this high-frequency plasma has no electrodes, it is possible to obtain, for example, ultra-high-purity SiC fine powder having an impurity concentration of 1 ppm or less.

【0030】プラズマCVD法により気相合成されたS
iC粉末は、気相合成条件やその結晶相を特に限定する
ものではないが、AlN基焼結体の焼結性向上、及びそ
の熱的および機械的特性の向上の点から、特に、β−S
iC微粉末、非晶質SiC微粉末、もしくはこれらの混
合相からなるSiC微粉末が好ましい。中でも、β−S
iC微粉末は、アスペクト比が小さく、分散性も優れて
いるので、AlN粉末に少量混合するだけで、得られた
AlN基焼結体の色調を黒色化することができ、耐プラ
ズマ性も向上させることができる。
S synthesized in a gas phase by a plasma CVD method
The iC powder is not particularly limited in terms of the vapor phase synthesis conditions and its crystal phase, but from the viewpoint of improving the sinterability of the AlN-based sintered body and improving its thermal and mechanical properties, in particular, β- S
Preferred are iC fine powder, amorphous SiC fine powder, or SiC fine powder composed of a mixed phase thereof. Above all, β-S
Since the iC fine powder has a small aspect ratio and excellent dispersibility, the color tone of the obtained AlN-based sintered body can be blackened by simply mixing a small amount with the AlN powder, and the plasma resistance is also improved. Can be done.

【0031】このSiC微粉末は、非酸化性雰囲気のプ
ラズマ中に、シラン化合物またはハロゲン化珪素と炭化
水素との混合ガスからなる原料ガスを導入し、反応系の
圧力を1気圧未満から0.1Torrの範囲で制御しつ
つ気相反応させることにより得ることができる。
The SiC fine powder is prepared by introducing a raw material gas composed of a mixed gas of a silane compound or a silicon halide and a hydrocarbon into plasma in a non-oxidizing atmosphere, and reducing the pressure of the reaction system from less than 1 atm to 0.1. It can be obtained by performing a gas phase reaction while controlling within a range of 1 Torr.

【0032】このSiC粉末の平均粒子径は10〜10
0nm(0.1μm)とする。平均粒子径の上限のより
好ましい値は30nm以下である。この平均粒子径のS
iC粉末を使用することにより、焼成時にSiCは容易
にAlNに固溶することとなり、組成が均一なAlN基
焼結体が得られる。このAlN基焼結体は、粒界層中に
組成の異なる物質、例えば未反応のSiC等の偏析がな
いため、耐プラズマ性に優れている。また、このAlN
基焼結体をサセプターに適用すると、プラズマ照射時に
パーティクルが発生する虞が無い。なお、平均粒子径を
10nm以上とした理由は、10nm未満では微細すぎ
るために取り扱いが難しく、またコスト的にも不利とな
るからである。
The average particle size of the SiC powder is 10 to 10
0 nm (0.1 μm). A more preferred value of the upper limit of the average particle size is 30 nm or less. S of this average particle diameter
By using iC powder, SiC easily dissolves into AlN during firing, and an AlN-based sintered body having a uniform composition can be obtained. This AlN-based sintered body is excellent in plasma resistance because there is no segregation of substances having different compositions in the grain boundary layer, for example, unreacted SiC or the like. In addition, this AlN
When the base sintered body is applied to the susceptor, there is no possibility that particles are generated during plasma irradiation. The reason for setting the average particle diameter to 10 nm or more is that if the average particle diameter is less than 10 nm, it is too fine to handle, and the cost is disadvantageous.

【0033】このSiC粉末の含有量は、SiC粉末と
AlN粉末を含む混合粉末に対して0.1〜20重量%
であることが必要である。その理由は、含有量が0.1
重量%未満では、充分な明度が得られず、かつ耐プラズ
マ性の向上が認められず、また、含有量が20重量%を
越えると、焼成時に粒成長が進み過ぎて緻密な焼結体が
得られにくくなると共に、耐プラズマ性が大きく低下す
るからである。
The content of the SiC powder is 0.1 to 20% by weight based on the mixed powder including the SiC powder and the AlN powder.
It is necessary to be. The reason is that the content is 0.1
If the content is less than 20% by weight, sufficient brightness cannot be obtained, and no improvement in plasma resistance is observed. If the content exceeds 20% by weight, grain growth proceeds too much during firing, resulting in a dense sintered body. This is because it becomes difficult to obtain, and the plasma resistance is greatly reduced.

【0034】AlN粉末としては、特に限定はされない
が、例えば、アルミナ還元法、アルミニウムの直接窒化
法等により得られた一般に市販されているものを使用す
ることが可能である。また、AlN粉末の平均粒子径
は、焼成後の平均結晶粒径が20μmを越えないような
範囲のものであればよく、例えば、0.1〜10nmの
範囲とされる。また、AlN基焼結体の焼結性を向上さ
せるために、焼結助剤として、イットリア(Y23)、
カルシア(CaO)、マグネシア(MgO)から選択さ
れた1種または2種以上を合計で1.0〜10.0重量
%添加してもよい。
The AlN powder is not particularly limited, but for example, a commercially available powder obtained by an alumina reduction method, a direct nitriding method of aluminum, or the like can be used. Further, the average particle size of the AlN powder may be any range as long as the average crystal grain size after firing does not exceed 20 μm, and is, for example, in the range of 0.1 to 10 nm. In order to improve the sinterability of the AlN-based sintered body, yttria (Y 2 O 3 ),
One or more selected from calcia (CaO) and magnesia (MgO) may be added in a total amount of 1.0 to 10.0% by weight.

【0035】このSiC粉末とAlN粉末を含む混合粉
末を、粉末成形機等で加圧成形して所定の形状の圧粉体
としてもよく、また、ホットプレス(HP)等の加圧焼
結機の加圧容器中に充填してもよい。なお、加圧成形の
方法は特に限定する必要はなく、公知の成形方法を用い
ればよい。また、成形に際しては、ポリビニルアルコー
ル(PVA)、ポリビニルピロリドン(PVP)、エチ
ルセルロース等の有機化合物をバインダーとして用いて
もよく、また、必要に応じてステアリン酸もしくはステ
アリン酸塩等の分散剤を添加しても良い。
The mixed powder containing the SiC powder and the AlN powder may be formed into a green compact having a predetermined shape by pressure molding with a powder molding machine or the like, or a pressure sintering machine such as a hot press (HP). May be filled in a pressurized container. The method of press molding is not particularly limited, and a known molding method may be used. Further, at the time of molding, an organic compound such as polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) or ethyl cellulose may be used as a binder, and if necessary, a dispersant such as stearic acid or a stearic acid salt may be added. May be.

【0036】加圧焼結法としては、短時間で高密度、高
強度の焼結体が得られるホットプレス(HP)、高温等
方加圧焼結(HIP)等が好適に用いられる。加圧焼結
の際の圧力は、10MPa以上とする必要がある。Al
N基焼結体は、加圧焼結時にSiCが拡散によりAlN
の結晶格子内へ侵入するが、加圧焼結時の一軸圧力が増
加するに従ってSiCの拡散量が増加し、該焼結体の色
調も、白色から灰白色へ、さらには黒色へと変化する。
特に、10MPa以上の一軸圧力下で焼結することによ
り、得られたAlN基焼結体の明度L*は、全てのもの
が30以下になる。したがって、このAlN基焼結体は
放射エネルギーの吸収量が多くなり、外部から放射され
たエネルギーを熱として吸収する効率が優れたものとな
る。
As the pressure sintering method, hot press (HP), high-temperature isotropic pressure sintering (HIP), etc., which can obtain a high-density and high-strength sintered body in a short time, are preferably used. The pressure during pressure sintering needs to be 10 MPa or more. Al
The N-based sintered body is made of AlN
However, as the uniaxial pressure during pressure sintering increases, the diffusion amount of SiC increases, and the color tone of the sintered body also changes from white to gray-white and further to black.
In particular, by sintering under a uniaxial pressure of 10 MPa or more, all the brightness L * of the obtained AlN-based sintered body becomes 30 or less. Therefore, the AlN-based sintered body has a large absorption amount of radiant energy, and has an excellent efficiency of absorbing externally radiated energy as heat.

【0037】加圧焼結の際の焼成温度は、1700〜2
300℃の温度範囲とする必要がある。その理由は、焼
成温度が1700℃未満では、SiCのAlN結晶格子
中への拡散が不十分で、得られたAlN基焼結体の色調
も黒色化せず、また焼結体の密度も高くならないからで
あり、一方、2300℃を越えると、加圧焼結の際にA
lNの分解反応が進行し、焼結体中の気孔数が増加して
焼結体の密度が大幅に低下し、緻密なAlN基焼結体が
得られないからである。また、加圧焼結の際の雰囲気
は、特に限定されるものではなく、真空雰囲気、N2
ス等の不活性雰囲気、COガス等の還元性雰囲気のいず
れの雰囲気も使用可能である。
The firing temperature during pressure sintering is 1700-2.
The temperature must be in the range of 300 ° C. The reason is that if the firing temperature is lower than 1700 ° C., the diffusion of SiC into the AlN crystal lattice is insufficient, the color tone of the obtained AlN-based sintered body does not turn black, and the density of the sintered body is high. On the other hand, if the temperature exceeds 2300 ° C., A
This is because the decomposition reaction of 1N proceeds, the number of pores in the sintered body increases, the density of the sintered body is significantly reduced, and a dense AlN-based sintered body cannot be obtained. The atmosphere during the pressure sintering is not particularly limited, and any of a vacuum atmosphere, an inert atmosphere such as N 2 gas, and a reducing atmosphere such as CO gas can be used.

【0038】このようなAlN基焼結体にあっては、炭
化珪素を0.1〜20重量%含有し、残部を窒化アルミ
ニウム及び不可避不純物とした組成の焼結体の平均結晶
粒径を20μm以下とし、CIE 1976明度L*
30以下としたので、結晶粒径に起因する色むらが無
く、放射吸収率のばらつきが極めて小さく、均熱性が向
上する。また、色調が黒色となることから、外部から放
射として加えられたエネルギーを熱として吸収する効率
が高まる。
In such an AlN-based sintered body, the average crystal grain size of a sintered body containing 0.1 to 20% by weight of silicon carbide and the balance of aluminum nitride and unavoidable impurities is 20 μm. Since the CIE 1976 lightness L * is set to 30 or less, there is no color unevenness due to the crystal grain size, the variation in the radiation absorptivity is extremely small, and the heat uniformity is improved. Further, since the color tone is black, the efficiency of absorbing energy applied as radiation from the outside as heat is increased.

【0039】このようなAlN基焼結体の製造方法にあ
っては、平均粒子径が10〜100nmの炭化珪素粉末
を0.1〜20重量%含有する窒化アルミニウム粉末
を、10MPa以上の圧力下、1700〜2300℃の
温度で焼成するので、放射吸収率が高く、結晶粒径に起
因する色むらが無く均熱性に優れ、しかも気孔の無い緻
密な焼結体が得られる。
In such a method for producing an AlN-based sintered body, an aluminum nitride powder containing 0.1 to 20% by weight of a silicon carbide powder having an average particle diameter of 10 to 100 nm is placed under a pressure of 10 MPa or more. Since it is fired at a temperature of 1700 to 2300 ° C., a dense sintered body having a high radiation absorption rate, excellent color uniformity due to crystal grain size, excellent heat uniformity, and no pores can be obtained.

【0040】このようなAlN基焼結体を用いてサセプ
ターの基体を構成することにより、色調が黒色で色むら
がなく、高い熱伝導率、高い放射吸収性を備えたものと
なる。また、プラズマに対する耐食性、特にフッ素系プ
ラズマに対する耐食性に優れたものとなるので、このサ
セプターを熱CVD装置に用いた場合には、プラズマク
リーニングを行うことができ、更に、プラズマCVD装
置にも用いることができる。
By forming a susceptor base using such an AlN-based sintered body, the color tone is black, there is no color unevenness, and a high thermal conductivity and high radiation absorption are provided. In addition, since the susceptor is excellent in corrosion resistance to plasma, particularly to fluorine plasma, plasma cleaning can be performed when this susceptor is used in a thermal CVD apparatus. Can be.

【0041】以下、本発明の実施例及び比較例について
説明する。 (実施例1) 「AlN基焼結体の作製」プラズマCVD法により平均
粒子径が30nmのβ−SiC微粉末を気相合成した。
ここでは、原料ガスとしてSiH4とC24とを用い、
反応系の圧力を0.08Torrに制御した状態で、高
周波によりアルゴン熱プラズマを励起し、このアルゴン
熱プラズマ中で気相合成した。
Hereinafter, Examples and Comparative Examples of the present invention will be described. (Example 1) "Preparation of AlN-based sintered body" A? -SiC fine powder having an average particle diameter of 30 nm was synthesized in a gas phase by a plasma CVD method.
Here, SiH 4 and C 2 H 4 are used as source gases,
With the pressure of the reaction system controlled at 0.08 Torr, argon thermal plasma was excited by high frequency, and gas phase synthesis was performed in the argon thermal plasma.

【0042】次いで、このβ−SiC微粉末と、市販の
AlN粉末((株)トクヤマ製、平均粒径0.6μm)
を表1に示した比率で混合し、この混合粉末をイソプロ
ピルアルコール(溶媒)と共にボールミルにチャージ
し、このボールミルを所定時間ランニングさせてスラリ
ーとした。次いで、このスラリーをスプレードライヤー
等を用いて噴霧乾燥させ、造粒粉とした。次いで、この
造粒粉を黒鉛製のホットプレス容器に充填し、一軸加圧
力20MPa、窒素雰囲気中1気圧、1800℃の条件
下で2時間焼成し、円板状のAlN基焼結体を得た。
Next, this β-SiC fine powder and a commercially available AlN powder (manufactured by Tokuyama Corporation, average particle size: 0.6 μm)
Was mixed in the ratio shown in Table 1, and this mixed powder was charged into a ball mill together with isopropyl alcohol (solvent), and the ball mill was run for a predetermined time to obtain a slurry. Next, this slurry was spray-dried using a spray dryer or the like to obtain granulated powder. Next, the granulated powder is filled in a graphite hot press container, and baked under a uniaxial pressure of 20 MPa, 1 atmosphere and 1800 ° C. in a nitrogen atmosphere for 2 hours to obtain a disc-shaped AlN-based sintered body. Was.

【0043】次いで、このAlN基焼結体の平均結晶粒
径、スパッタ痕サイズ、明度L*を測定し、耐プラズマ
性、色調(黒色化度)を評価した。その結果を表1に示
す。 「平均結晶粒径」AlN基焼結体の平均結晶粒径を走査
型電子顕微鏡(SEM)により観察し、インターセクト
法により測定した。
Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and the plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results. "Average crystal grain size" The average crystal grain size of the AlN-based sintered body was observed by a scanning electron microscope (SEM) and measured by an intersect method.

【0044】「スパッタ痕サイズ及び耐プラズマ性」プ
ラズマ照射後のAlN基焼結体の表面のスパッタ痕サイ
ズを以下の方法で測定した。得られたAlN基焼結体を
ECRエッチング装置内に設置し、このAlN基焼結体
に、CF4ガス中で電圧500V、電流0.16Aを印
加して発生させたCF4プラズマを1000分間照射す
ることにより、プラズマ暴露を行った。
[Sputter Mark Size and Plasma Resistance] The sputter mark size on the surface of the AlN-based sintered body after plasma irradiation was measured by the following method. The obtained AlN-based sintered body was placed in an ECR etching apparatus, and a CF 4 plasma generated by applying a voltage of 500 V and a current of 0.16 A in CF 4 gas to the AlN-based sintered body for 1000 minutes. Irradiation resulted in plasma exposure.

【0045】そして、プラズマ照射によって削られた跡
であるAlN基焼結体の表面のスパッタ痕を走査型電子
顕微鏡(SEM)で観察し、1mm2中に存在する上位
10個のスパッタ痕の平均値をスパッタ痕サイズとし
た。また、測定により得られたスパッタ痕サイズは、飛
散したパーティクルのサイズと同等であると推定し、耐
プラズマ性を評価した。
The sputter marks on the surface of the AlN-based sintered body, which were marks removed by the plasma irradiation, were observed with a scanning electron microscope (SEM), and the average of the top 10 sputter marks existing in 1 mm 2 was measured. The value was taken as the sputter mark size. In addition, the size of the sputter mark obtained by the measurement was estimated to be equivalent to the size of the scattered particles, and the plasma resistance was evaluated.

【0046】「明度L*及び色調(黒色化度)」カラー
アナライザー((有)東京電色センター製TCー180
0MKII)により、AlN基焼結体の表面のJIS
Z8729に規定する明度L*を測定し、AlN基焼結
体の色調(黒色化度)を評価した。
"Lightness L * and color tone (degree of blackening)" Color analyzer (TC-180 manufactured by Tokyo Denshoku Center)
0MKII), the JIS of the surface of the AlN-based sintered body
The lightness L * specified in Z8729 was measured, and the color tone (degree of blackening) of the AlN-based sintered body was evaluated.

【0047】(実施例2〜5)β−SiC微粉末とAl
N粉末の混合比率を表1に示す割合に変更した点の他
は、実施例1と同様に行い、AlN基焼結体を得た。次
いで、このAlN基焼結体の平均結晶粒径、スパッタ痕
サイズ、明度L*を測定し、耐プラズマ性、色調(黒色
化度)を評価した。その結果を表1に示す。
(Examples 2-5) β-SiC fine powder and Al
An AlN-based sintered body was obtained in the same manner as in Example 1, except that the mixing ratio of the N powder was changed to the ratio shown in Table 1. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0048】(実施例6〜7)一軸加圧力を表1に示す
圧力に変更した点の他は、実施例1と同様に行い、Al
N基焼結体を得た。次いで、このAlN基焼結体の平均
結晶粒径、スパッタ痕サイズ、明度L*を測定し、耐プ
ラズマ性、色調(黒色化度)を評価した。その結果を表
1に示す。
(Examples 6 and 7) The same procedure as in Example 1 was carried out except that the uniaxial pressing force was changed to the pressure shown in Table 1.
An N-based sintered body was obtained. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0049】(比較例1)実施例1〜7に用いたAlN
粉末のみを原料粉とした点の他は、実施例1と同様に行
い、AlN基焼結体を得た。次いで、このAlN基焼結
体の平均結晶粒径、スパッタ痕サイズ、明度L*を測定
し、耐プラズマ性、色調(黒色化度)を評価した。その
結果を表1に示す。
Comparative Example 1 AlN used in Examples 1 to 7
An AlN-based sintered body was obtained in the same manner as in Example 1, except that only the powder was used as the raw material powder. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0050】(比較例2)β−SiC微粉末とAlN粉
末の混合比率を表1に示す割合に変更した点の他は、実
施例1と同様に行い、AlN基焼結体を得た。次いで、
このAlN基焼結体の平均結晶粒径、スパッタ痕サイ
ズ、明度L*を測定し、耐プラズマ性、色調(黒色化
度)を評価した。その結果を表1に示す。
Comparative Example 2 An AlN-based sintered body was obtained in the same manner as in Example 1, except that the mixing ratio between the β-SiC fine powder and the AlN powder was changed to the ratio shown in Table 1. Then
The average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0051】(比較例3)市販のSiC粉末(イビデン
(株)製、平均結晶粒径0.3μm)と実施例1〜7に
用いたAlN粉末を表1に示す割合で混合した混合粉末
を使用した点の他は、実施例1と同様に行い、AlN基
焼結体を得た。次いで、このAlN基焼結体の平均結晶
粒径、スパッタ痕サイズ、明度L*を測定し、耐プラズ
マ性、色調(黒色化度)を評価した。その結果を表1に
示す。
Comparative Example 3 A mixed powder obtained by mixing a commercially available SiC powder (manufactured by Ibiden Co., Ltd., average crystal grain size: 0.3 μm) and the AlN powder used in Examples 1 to 7 at a ratio shown in Table 1 was used. Except for the point of use, the same procedure as in Example 1 was performed to obtain an AlN-based sintered body. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0052】(比較例4)一軸加圧力を表1に示す圧力
(3MPa)に変更した点の他は、実施例1と同様に行
い、AlN基焼結体を得た。次いで、このAlN基焼結
体の平均結晶粒径、スパッタ痕サイズ、明度L*を測定
し、耐プラズマ性、色調(黒色化度)を評価した。その
結果を表1に示す。
Comparative Example 4 An AlN-based sintered body was obtained in the same manner as in Example 1 except that the uniaxial pressing force was changed to the pressure (3 MPa) shown in Table 1. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0053】(比較例5)一軸加圧力を表1に示す圧力
(4MPa)に変更した点の他は、実施例1と同様に行
い、AlN基焼結体を得た。次いで、このAlN基焼結
体の平均結晶粒径、スパッタ痕サイズ、明度L*を測定
し、耐プラズマ性、色調(黒色化度)を評価した。その
結果を表1に示す。
Comparative Example 5 An AlN-based sintered body was obtained in the same manner as in Example 1, except that the uniaxial pressing force was changed to the pressure (4 MPa) shown in Table 1. Next, the average crystal grain size, sputter mark size, and lightness L * of the AlN-based sintered body were measured, and plasma resistance and color tone (degree of blackening) were evaluated. Table 1 shows the results.

【0054】[0054]

【表1】 [Table 1]

【0055】実施例1〜7のAlN基焼結体は全て黒色
であるが、比較例1、4のAlN基焼結体は白色、比較
例3のそれは灰緑色、比較例5のそれは灰白色であっ
た。したがって、実施例1〜7のAlN基焼結体は熱伝
導率に優れ、放射を熱として吸収する効率の高いもので
あった。
The AlN-based sintered bodies of Examples 1 to 7 are all black, but the AlN-based sintered bodies of Comparative Examples 1 and 4 are white, that of Comparative Example 3 is gray-green, and that of Comparative Example 5 is gray-white. there were. Therefore, the AlN-based sintered bodies of Examples 1 to 7 were excellent in thermal conductivity and highly efficient in absorbing radiation as heat.

【0056】また、実施例1〜7及び比較例1〜3のA
lN基焼結体をサセプターの基体とし、このサセプター
にCF4プラスマを照射した際に発生するパーティクル
のサイズを比較したところ、実施例1〜7のAlN基焼
結体を用いたサセプターは、比較例1〜3のそれよりも
小さく、耐プラズマ性に優れていることがわかった。
In Examples 1 to 7 and Comparative Examples 1 to 3, A
When the 1N-based sintered body was used as a base of the susceptor and the size of particles generated when the susceptor was irradiated with CF 4 plasma was compared, the susceptors using the AlN-based sintered bodies of Examples 1 to 7 were compared. It was smaller than those of Examples 1 to 3 and was found to be excellent in plasma resistance.

【0057】また、実施例1、6、7及び比較例4、5
のAlN基焼結体が示す一軸加圧力と色調の関係から、
焼結時の一軸加圧力が10MPa以上の圧力下では黒色
のAlN基焼結体が得られるが、一軸加圧力が10MP
a未満下では白色または灰白色のAlN基焼結体しか得
られないことがわかった。
Further, Examples 1, 6, 7 and Comparative Examples 4, 5
From the relationship between the uniaxial pressing force and the color tone of the AlN-based sintered body of
When the uniaxial pressure during sintering is 10 MPa or more, a black AlN-based sintered body is obtained, but the uniaxial pressure is 10 MPa.
It was found that below a, only a white or gray-white AlN-based sintered body could be obtained.

【0058】[0058]

【発明の効果】以上説明した様に、本発明の窒化アルミ
ニウム基焼結体によれば、炭化珪素を0.1〜20重量
%含有し、残部を窒化アルミニウム及び不可避不純物と
した組成の焼結体の平均結晶粒径を20μm以下とした
ので、該焼結体における結晶粒径が均一化されることで
結晶粒径に起因する色むらを無くすことができ、放射吸
収率のばらつきを極めて小さくすることができ、均熱性
を向上させることができる。
As described above, according to the aluminum nitride-based sintered body of the present invention, the sintered body has a composition containing 0.1 to 20% by weight of silicon carbide, with the balance being aluminum nitride and unavoidable impurities. Since the average crystal grain size of the body is set to 20 μm or less, the crystal grain size in the sintered body can be made uniform, thereby eliminating color unevenness due to the crystal grain size, and making the variation in radiation absorptivity extremely small. And the heat uniformity can be improved.

【0059】また、CIE 1976明度L*を30以
下としたので、色調が黒色となり外部から放射として加
えられたエネルギーを熱として吸収する効率を高めるこ
とができる。さらに、従来の様にAlON相やC相等の
第2成分が無く、熱伝導率が低下する虞や、均一性が低
下する虞が無い。
Further, since the CIE 1976 lightness L * is set to 30 or less, the color tone becomes black, and the efficiency of absorbing externally applied energy as heat can be increased. Furthermore, there is no second component such as the AlON phase and the C phase as in the conventional case, and there is no fear that the thermal conductivity is reduced or the uniformity is reduced.

【0060】本発明の窒化アルミニウム基焼結体の製造
方法によれば、平均粒子径が10〜100nmの炭化珪
素粉末を0.1〜20重量%含有する窒化アルミニウム
粉末を、10MPa以上の圧力下、1700〜2300
℃の温度で焼成するので、放射吸収率が高く、結晶粒径
に起因する色むらが無く均熱性に優れ、しかも気孔の無
い緻密な焼結体を得ることができる。また、通常の加圧
焼結法を適用することができるので、高価、かつ複雑な
製造装置が不要となり、特性に優れた窒化アルミニウム
基焼結体を簡便に作製することができる。
According to the method for producing an aluminum nitride-based sintered body of the present invention, aluminum nitride powder containing 0.1 to 20% by weight of silicon carbide powder having an average particle size of 10 to 100 nm is subjected to a pressure of 10 MPa or more. , 1700-2300
Since it is fired at a temperature of ° C., it is possible to obtain a dense sintered body having high radiation absorptivity, excellent color uniformity due to crystal grain size, excellent thermal uniformity, and no pores. In addition, since an ordinary pressure sintering method can be applied, an expensive and complicated manufacturing apparatus is not required, and an aluminum nitride-based sintered body having excellent characteristics can be easily manufactured.

【0061】本発明のサセプターによれば、基体を請求
項1または2記載の窒化アルミニウム基焼結体により構
成したので、プラズマに対する耐食性に優れたものとな
り、プラズマに曝されても粗大なパーティクルが発生す
る虞が無く、長期間プラズマ照射された場合においても
当初の耐プラズマ性を長期間維持することができる。
According to the susceptor of the present invention, since the substrate is made of the aluminum nitride-based sintered body according to claim 1 or 2, it has excellent corrosion resistance to plasma, and coarse particles even when exposed to plasma. There is no danger of occurrence, and the initial plasma resistance can be maintained for a long time even when plasma irradiation is performed for a long time.

【0062】しかも、色調を黒色とするための金属元素
等の不純物元素を一切含まないので、半導体を汚染する
虞が無く、熱CVD装置やプラズマCVD装置等に適し
たサセプターとすることができる。さらに、基体が単一
の窒化アルミニウム基焼結体により構成されているの
で、温度の上昇と下降のサイクルを繰り返した場合にお
いても、該焼結体に剥離、断裂等が生じる虞が無く、サ
セプターとしての信頼性を高めることができる。
Moreover, since it does not contain any impurity element such as a metal element for making the color tone black, there is no risk of contaminating the semiconductor, and a susceptor suitable for a thermal CVD apparatus or a plasma CVD apparatus can be obtained. Further, since the base is made of a single aluminum nitride-based sintered body, even if the cycle of temperature rise and fall is repeated, there is no possibility that the sintered body will be peeled, broken, etc. Reliability can be increased.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/64 302Z (72)発明者 稲妻地 浩 千葉県船橋市豊富町585番地 住友大阪セ メント株式会社新規技術研究所内 (72)発明者 吉岡 良樹 千葉県船橋市豊富町585番地 住友大阪セ メント株式会社新規技術研究所内 (72)発明者 石塚 雅之 千葉県船橋市豊富町585番地 住友大阪セ メント株式会社新規技術研究所内 Fターム(参考) 4G001 BA06 BA07 BA09 BA22 BA36 BB06 BB07 BB09 BB22 BB36 BC01 BC42 BD03 BD38 5F045 AA08 BB14 BB15 EM01 EM09──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/64 302Z (72) Inventor Hiroshi Lightning 585 Tomicho, Funabashi-shi, Chiba Sumitomo Osaka Cement Co., Ltd. New Technology Research Laboratory (72) Inventor Yoshiki Yoshioka 585 Tomicho, Funabashi City, Chiba Prefecture Sumitomo Osaka Cement Co., Ltd.New Technology Research Laboratory (72) Inventor Masayuki Ishizuka 585 Tomimachi, Funabashi City, Chiba Prefecture Sumitomo Osaka Cement Co., Ltd. 4G001 BA06 BA07 BA09 BA22 BA36 BB06 BB07 BB09 BB22 BB36 BC01 BC42 BD03 BD38 5F045 AA08 BB14 BB15 EM01 EM09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素を0.1〜20重量%含有し、
残部を窒化アルミニウム及び不可避不純物とした組成か
らなり、 平均結晶粒径が20μm以下であり、かつ、CIE 1
976明度L*が30以下であることを特徴とする窒化
アルミニウム基焼結体。
Claims: 1. A silicon carbide content of 0.1 to 20% by weight,
The balance consists of aluminum nitride and unavoidable impurities, the average crystal grain size is 20 μm or less, and CIE 1
An aluminum nitride-based sintered body, wherein 976 lightness L * is 30 or less.
【請求項2】 イットリア、カルシア、マグネシアから
選択された1種または2種以上を合計で1.0〜10.
0重量%含有することを特徴とする請求項1記載の窒化
アルミニウム基焼結体。
2. One or more selected from yttria, calcia, and magnesia in total of 1.0 to 10.
The aluminum nitride-based sintered body according to claim 1, which contains 0% by weight.
【請求項3】 平均粒子径が10〜100nmの炭化珪
素粉末を0.1〜20重量%含有する窒化アルミニウム
粉末を、10MPa以上の圧力下、1700〜2300
℃の温度で焼成することを特徴とする窒化アルミニウム
基焼結体の製造方法。
3. An aluminum nitride powder containing 0.1 to 20% by weight of a silicon carbide powder having an average particle diameter of 10 to 100 nm is subjected to a pressure of 1 MPa or more under a pressure of 1700 to 2300.
A method for producing an aluminum nitride-based sintered body, characterized by firing at a temperature of ° C.
【請求項4】 前記炭化珪素粉末は、気相反応法により
気相合成してなることを特徴とする請求項3記載の窒化
アルミニウム基焼結体の製造方法。
4. The method for producing an aluminum nitride-based sintered body according to claim 3, wherein said silicon carbide powder is synthesized by a gas phase reaction method.
【請求項5】 前記気相反応法は、プラズマCVD法で
あることを特徴とする請求項4記載の窒化アルミニウム
基焼結体の製造方法。
5. The method according to claim 4, wherein the gas phase reaction method is a plasma CVD method.
【請求項6】 基体が請求項1または2記載の窒化アル
ミニウム基焼結体により構成されていることを特徴とす
るサセプター。
6. A susceptor, wherein the base is made of the aluminum nitride-based sintered body according to claim 1.
JP13200499A 1999-05-12 1999-05-12 Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same Expired - Fee Related JP3756345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13200499A JP3756345B2 (en) 1999-05-12 1999-05-12 Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13200499A JP3756345B2 (en) 1999-05-12 1999-05-12 Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same

Publications (2)

Publication Number Publication Date
JP2000327424A true JP2000327424A (en) 2000-11-28
JP3756345B2 JP3756345B2 (en) 2006-03-15

Family

ID=15071308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13200499A Expired - Fee Related JP3756345B2 (en) 1999-05-12 1999-05-12 Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same

Country Status (1)

Country Link
JP (1) JP3756345B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052062A1 (en) * 2000-12-27 2002-07-04 Tokyo Electron Limited Treating device
JP2002198416A (en) * 2000-12-27 2002-07-12 Tokyo Electron Ltd Processor
US6950297B2 (en) 2001-11-14 2005-09-27 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck and manufacturing method therefor
JP2008127227A (en) * 2006-11-17 2008-06-05 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same
US7833401B2 (en) 2002-01-08 2010-11-16 Applied Materials, Inc. Electroplating an yttrium-containing coating on a chamber component
JP2011219321A (en) * 2010-04-12 2011-11-04 Bridgestone Corp Ceramic material and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256658A (en) * 1985-05-08 1986-11-14 Shin Etsu Chem Co Ltd Electrically insulating substrate material
JPH03137057A (en) * 1989-10-23 1991-06-11 Kyocera Corp Sintered body of black aluminum nitride
JPH04292463A (en) * 1991-03-16 1992-10-16 Ube Ind Ltd Ultra-fine powder composite material and its production
JPH06329474A (en) * 1993-05-21 1994-11-29 Toshiba Corp Sintered aluminum nitride and its production
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
JPH08274146A (en) * 1995-03-30 1996-10-18 Kyocera Corp Wafer supporting member
JPH11335173A (en) * 1998-05-25 1999-12-07 Sumitomo Osaka Cement Co Ltd Aluminum nitride-base sintered compact and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256658A (en) * 1985-05-08 1986-11-14 Shin Etsu Chem Co Ltd Electrically insulating substrate material
JPH03137057A (en) * 1989-10-23 1991-06-11 Kyocera Corp Sintered body of black aluminum nitride
JPH04292463A (en) * 1991-03-16 1992-10-16 Ube Ind Ltd Ultra-fine powder composite material and its production
JPH06329474A (en) * 1993-05-21 1994-11-29 Toshiba Corp Sintered aluminum nitride and its production
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
JPH08274146A (en) * 1995-03-30 1996-10-18 Kyocera Corp Wafer supporting member
JPH11335173A (en) * 1998-05-25 1999-12-07 Sumitomo Osaka Cement Co Ltd Aluminum nitride-base sintered compact and its production

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052062A1 (en) * 2000-12-27 2002-07-04 Tokyo Electron Limited Treating device
JP2002198416A (en) * 2000-12-27 2002-07-12 Tokyo Electron Ltd Processor
JP4663110B2 (en) * 2000-12-27 2011-03-30 東京エレクトロン株式会社 Processing equipment
US6950297B2 (en) 2001-11-14 2005-09-27 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck and manufacturing method therefor
US7833401B2 (en) 2002-01-08 2010-11-16 Applied Materials, Inc. Electroplating an yttrium-containing coating on a chamber component
US8110086B2 (en) 2002-01-08 2012-02-07 Applied Materials, Inc. Method of manufacturing a process chamber component having yttrium-aluminum coating
US8114525B2 (en) 2002-01-08 2012-02-14 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
JP2008127227A (en) * 2006-11-17 2008-06-05 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same
JP2011219321A (en) * 2010-04-12 2011-11-04 Bridgestone Corp Ceramic material and method for producing the same

Also Published As

Publication number Publication date
JP3756345B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6632549B1 (en) Corrosion-resistant member, wafer-supporting member, and method of manufacturing the same
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
US5767027A (en) Aluminum nitride sintered body and its production method
WO2005009919A1 (en) Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
JP2009173537A (en) High-purity low-resistivity electrostatic chuck
JP2001163672A (en) Aluminum nitride sintered compact and member for producing semiconductor
JP2009215154A (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and manufacturing process of yttrium oxide material
EP1201622B1 (en) A material with a low volume resistivity, aluminium nitride sintered body and article for manufacturing semiconductors
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
JP3433063B2 (en) Aluminum nitride sintered body, electronic functional material and electrostatic chuck
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
KR100569643B1 (en) An aluminum nitride ceramics, a member used for the production of semiconductors and a method of producing an aluminum nitride sintered body
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
US20020110709A1 (en) Material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
JP3756345B2 (en) Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same
CN115304383A (en) Aluminum nitride substrate and preparation method and application thereof
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
KR102704180B1 (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
JP2001294492A (en) Aluminum nitride sintered compact and method of producing the same
JPH11335173A (en) Aluminum nitride-base sintered compact and its production
JPH11228234A (en) Sintered product having excellent corrosion resistance and heat conductivity
JP2004083292A (en) Aluminum nitride sintered compact, its producing method, and electrode built-in susceptor using the aluminum nitride sintered compact
JP2004051445A (en) Sintered compact of aluminum nitride and electrostatic chuck using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3756345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees