Nothing Special   »   [go: up one dir, main page]

JP2000349320A - Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture - Google Patents

Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture

Info

Publication number
JP2000349320A
JP2000349320A JP11161598A JP16159899A JP2000349320A JP 2000349320 A JP2000349320 A JP 2000349320A JP 11161598 A JP11161598 A JP 11161598A JP 16159899 A JP16159899 A JP 16159899A JP 2000349320 A JP2000349320 A JP 2000349320A
Authority
JP
Japan
Prior art keywords
insulating material
pores
alloy
withstand voltage
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11161598A
Other languages
Japanese (ja)
Inventor
Ikuo Hashimoto
郁郎 橋本
Atsushi Hisamoto
淳 久本
Takuya Masui
卓也 増井
Kohei Suzuki
康平 鈴木
Fumio Kamikubo
文生 上窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11161598A priority Critical patent/JP2000349320A/en
Publication of JP2000349320A publication Critical patent/JP2000349320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide insulating material excellent in withstand voltage characteristic which is more lightweight and thermally conductive than a glass substrate, hard to break, flexible and suitable for a solar battery substrate and a printed wiring board. SOLUTION: In insulating material made of Al alloy in which an anodic oxidaized film having pores is formed on an Al base material surface, the thickness of the anodic oxidized film is made at least 0.5 μm, and a plurality of holes which are stretched in the direction almost rectangular to the axis center of the pores are formed on the anodic film. The insulating material made of Al alloy in which the pores and/or the holes are filled with compound having Si-O bonds exhibits more excellent withstand voltage characteristic and is desirable. When the material is manufactured, solution containing compound having Si-O bonds is spread on insulating material having holes, and baking may be performed at 100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜太陽電池基板
やプリント配線基板として好適な耐電圧特性に優れたA
l合金製絶縁材料及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an A film having excellent withstand voltage characteristics suitable for a thin film solar cell substrate or a printed wiring board.
1. Field of the Invention The present invention relates to a 1-alloy insulating material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】薄膜太陽電池用基板としてはガラス基板
が主に使用されている。但し、ガラス基板は割れやすく
取り扱いに十分な注意が必要であると共に、フレキシブ
ル性に欠けることから適用範囲が限定されていた。最近
では住宅等の建造物用の電力供給源として太陽電池が注
目を集めており、十分な供給電力を確保する上で太陽電
池の大型化が不可欠であり、太陽電池の大面積化を図る
上で基板の軽量化が望まれている。しかしながら、軽量
化を目的として、ガラス基板を薄くすると一層割れやす
くなってしまうことから、割れにくくフレキシブルであ
り、しかもガラス基板よりも軽量化を図ることのできる
基板材料の開発が要望されている。
2. Description of the Related Art As a substrate for a thin-film solar cell, a glass substrate is mainly used. However, the glass substrate is fragile and requires careful attention in handling, and its application range is limited due to lack of flexibility. Recently, solar cells are attracting attention as a power supply source for buildings such as houses, and in order to secure sufficient power supply, it is essential to increase the size of the solar cells. Therefore, it is desired to reduce the weight of the substrate. However, for the purpose of weight reduction, when the glass substrate is made thinner, the glass substrate is more likely to be broken. Therefore, there is a demand for a substrate material which is hard to be broken and is flexible and which can achieve a lighter weight than the glass substrate.

【0003】金属材料は薄くしても割れにくいが、導電
体であるためガラスに替わる絶縁基板材料としてはほと
んど検討されていなかった。尚、Al合金表面に陽極酸
化処理を施した材料が、一般の建材等に用いられてお
り、陽極酸化皮膜自体の性質として耐食性・絶縁性に優
れていることは知られている。但し、薄膜太陽電池の成
膜工程では高温となるため通常の陽極酸化皮膜では割れ
が発生してしまい、製造中に絶縁性が損なわれる。即
ち、陽極酸化皮膜が熱履歴を受けると皮膜に割れが発生
することが多く、特に絶縁性を高くするために皮膜を厚
くすると割れが発生しやすくなり、かえって耐食性や絶
縁性が損なわれてしまうことから適用できなかった。
Although a metal material is hard to be broken even when it is thin, it has hardly been studied as an insulating substrate material replacing glass because it is a conductor. It should be noted that a material obtained by subjecting an Al alloy surface to anodic oxidation treatment is used for general building materials and the like, and it is known that the anodic oxide film itself has excellent corrosion resistance and insulation properties. However, since the temperature is high in the film forming process of the thin-film solar cell, a crack is generated in a normal anodic oxide film, and the insulating property is impaired during the manufacturing. That is, the anodic oxide film often undergoes cracking when subjected to a thermal history, and particularly when the film is thickened to increase the insulation properties, cracking is likely to occur, and the corrosion resistance and insulation properties are rather impaired. Therefore, it could not be applied.

【0004】尚、特開平5−191001号公報には、
電子機器の高集積化に対応して樹脂基板よりも伝熱性を
高くする目的で陽極酸化処理を施したプリント配線用金
属板等が提案されているが、絶縁性は配線と基板の間の
樹脂層によるものであり、陽極酸化層自体は5000Å
以下と薄く絶縁性は小さい。この陽極酸化層に、ガラス
基板を用い太陽電池を製造する工程と同様にして直接金
属配線を成膜しても、陽極酸化層が薄いため太陽電池の
製造時に必要な絶縁性が得られない。
Japanese Patent Application Laid-Open No. Hei 5-191001 discloses that
Anodized metal plates for printed wiring etc. have been proposed for the purpose of increasing the heat conductivity of resin substrates in response to the higher integration of electronic devices. Layer, and the anodic oxide layer itself is 5000
Insulation is small as below. Even if a metal wiring is directly formed on the anodic oxide layer in the same manner as in the process of manufacturing a solar cell using a glass substrate, the insulating property required at the time of manufacturing the solar cell cannot be obtained because the anodic oxide layer is thin.

【0005】また、電解コンデンサの誘電体にはバリア
型と呼ばれる0.4μm程度の薄い陽極酸化皮膜が使用
されており、100V以上の耐電圧が得られている。但
し、基材が特殊な高純度アルミに限定される上、表面の
微細な傷等の影響も大きく、太陽電池等の大面積基板に
適用するのは強度や製造方法の面で制約が大きく極めて
困難である。さらに、この方法で得られる耐電圧は約7
00Vが上限とされており、より高い耐電圧が必要とさ
れる場合には適用できない。
Further, a thin anodic oxide film of about 0.4 μm called a barrier type is used as a dielectric of the electrolytic capacitor, and a withstand voltage of 100 V or more is obtained. However, the substrate is limited to special high-purity aluminum, and the surface is greatly affected by minute scratches, etc., and application to large-area substrates such as solar cells is extremely limited in terms of strength and manufacturing method, and is extremely limited. Have difficulty. Furthermore, the withstand voltage obtained by this method is about 7
The upper limit is 00 V, which is not applicable when higher withstand voltage is required.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、ガラス基板よりも軽量・
高熱伝導性で割れにくく可撓性を有する絶縁材料であっ
て、太陽電池基板やプリント配線基板等に好適な耐電圧
特性に優れた絶縁材料を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is lighter and lighter than a glass substrate.
An object of the present invention is to provide an insulating material having high thermal conductivity, resistance to cracking, and flexibility, and excellent in withstand voltage characteristics suitable for a solar cell substrate, a printed wiring board, and the like.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明に係るAl合金製絶縁材料とは、Al基材表面にポア
を有する陽極酸化皮膜が形成されたAl合金製絶縁材料
であって、上記陽極酸化皮膜の厚さが0.5μm以上で
あると共に、前記陽極酸化皮膜中に上記ポアの軸心と略
直角方向に延設された複数の空孔を有することを要旨と
するものである。
The Al alloy insulating material according to the present invention which has solved the above-mentioned problems is an Al alloy insulating material in which an anodic oxide film having pores is formed on the surface of an Al base material. The gist is that the thickness of the anodic oxide film is 0.5 μm or more and that the anodic oxide film has a plurality of holes extending in a direction substantially perpendicular to the axis of the pore. .

【0008】前記陽極酸化皮膜の成長方向断面を透過型
電子顕微鏡により観察し、隣接するポア間を結ぶ線を一
辺とする正方形を複数選んだときに、その20%以上の
正方形領域に前記空孔が存在することが望ましく、また
前記空孔の占める面積率が1〜50%であることが好ま
しい。
The cross section in the growth direction of the anodic oxide film is observed with a transmission electron microscope, and when a plurality of squares each having a line connecting adjacent pores as one side are selected, the vacancies are formed in a square region of 20% or more thereof. Is desirably present, and the area ratio occupied by the holes is preferably 1 to 50%.

【0009】更に、前記ポア及び/又は空孔の内部にS
i−O結合を有する化合物が充填されてなるAl合金製
絶縁材料は、より優れた耐電圧特性を発揮するので好ま
しく、該Al合金製絶縁材料を製造するにあたっては、
前記空孔を有する絶縁材料に、Si−O結合を有する化
合物を含む溶液を塗布した後、100℃以上で焼成すれ
ばよい。
Further, S is formed inside the pores and / or holes.
An Al alloy insulating material filled with a compound having an i-O bond is preferable because it exhibits more excellent withstand voltage characteristics. In producing the Al alloy insulating material,
A solution containing a compound having a Si—O bond may be applied to the insulating material having pores and then fired at 100 ° C. or higher.

【0010】[0010]

【発明の実施の形態】本発明者らは陽極酸化処理により
金属基板上に絶縁層(陽極酸化皮膜)を形成し、その陽
極酸化皮膜のポアを非導電性物質で封鎖した電子材料用
基板を開発し、先に出願を済ませた(特願平10−13
7139)。その後、更に研究を進めた結果、より高い
耐電圧を大面積で実現できる絶縁層構造を見出し、本発
明に想到した。図1にその断面構造の模式図と、図2に
透過電子顕微鏡(TEM)による観察例を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors formed an insulating layer (anodic oxide film) on a metal substrate by anodizing treatment, and closed an electronic material substrate in which the pores of the anodized film were closed with a non-conductive substance. Developed and filed earlier (Japanese Patent Application No. 10-13)
7139). Then, as a result of further research, they found an insulating layer structure capable of realizing higher withstand voltage in a large area, and reached the present invention. FIG. 1 shows a schematic diagram of the cross-sectional structure, and FIG. 2 shows an example observed by a transmission electron microscope (TEM).

【0011】太陽電池用基板ではその光電素子の成膜工
程で200℃以上の温度になることがあるが、一般に硬
質アルマイトと呼ばれる通常の陽極酸化を適用すると加
熱時に割れが起きやすく、局所的には絶縁性を確保でき
ても大面積となると割れ部からの導通が避けられず安定
した絶縁性を得られなかった。この加熱時に割れの起き
やすい陽極酸化の断面構造は図3のようになっている。
これに対し、図1に示すように陽極酸化物層中の成長方
向に伸びたポアと略直角方向に交差する空孔を有する構
造とすることで導通の原因となる加熱時の割れが抑制さ
れる。その結果、大面積の板材として用いられたとして
も全面に亘って十分な絶縁性が確保できるようになる。
In the case of a solar cell substrate, the temperature may be 200 ° C. or higher in the process of forming the photoelectric element. However, when ordinary anodic oxidation, which is generally called hard alumite, is applied, cracks easily occur during heating, and However, even if the insulating property could be ensured, when the area became large, conduction from the cracks was unavoidable and stable insulating property could not be obtained. FIG. 3 shows the cross-sectional structure of anodic oxidation, which is liable to crack during heating.
On the other hand, as shown in FIG. 1, a structure having pores extending in a direction substantially perpendicular to the pores extending in the growth direction in the anodic oxide layer suppresses cracking during heating that causes conduction. You. As a result, even if it is used as a large-area plate material, sufficient insulation can be ensured over the entire surface.

【0012】陽極酸化皮膜中に前記空孔が多く分散して
いる程、割れ抑制効果は大きく、優れた可撓性が得られ
る。前記陽極酸化皮膜の成長方向断面を透過型電子顕微
鏡により観察し、隣接するポア間を結ぶ線を一辺とする
正方形(図1参照)を複数選んだときに、その20%以
上の正方形領域に前記空孔が存在することが、優れた絶
縁性を得る上で望ましく、太陽電池基板として後述のS
i酸化物塗布との組み合わせで適用するにはこの含空孔
領域率が70%以上である構造がより好ましい。
The more the pores are dispersed in the anodic oxide film, the greater the effect of suppressing cracking and the more excellent the flexibility. The cross section in the growth direction of the anodic oxide film was observed by a transmission electron microscope, and when a plurality of squares (see FIG. 1) each having a line connecting adjacent pores as one side were selected, the square region of 20% or more was selected. The presence of vacancies is desirable for obtaining excellent insulation properties.
For application in combination with i-oxide coating, a structure having a void-containing area ratio of 70% or more is more preferable.

【0013】また、割れ抑制効果を得るには、前記断面
の透過型電子顕微鏡観察視野で前記空孔の面積率が1%
以上であることが好ましく、5%以上であればより望ま
しい。一方、空孔部分が大きすぎると空孔そのものが導
通部となり絶縁性がかえって低下するので、空孔面積率
の上限は50%とすることが望ましく、20%以下であ
ればより望ましい。
Further, in order to obtain the effect of suppressing cracks, the area ratio of the pores is 1% in the field of view of the cross section observed by a transmission electron microscope.
It is preferably at least 5%, more preferably at least 5%. On the other hand, if the void portion is too large, the void itself becomes a conductive portion and the insulating property is rather deteriorated. Therefore, the upper limit of the void area ratio is desirably 50%, and more desirably 20% or less.

【0014】安定した絶縁性を確保するために絶縁層厚
さは0.5μm以上が好ましい。必要とされる耐電圧は
個々の部品の使用条件によって異なり、高い耐電圧を必
要とする部品には厚い絶縁層が適用され、例えば耐電圧
2kVが要求される場合の絶縁層厚さは50〜70μm
が適当である。絶縁層の厚さの上限は耐電圧・耐食性の
面からは特に限定されないが、一般に陽極酸化層等の絶
縁性の無機化合物は厚くなると割れやすくなり金属基板
の特徴であるフレキシブル性が発揮できなくなるので、
絶縁層の厚さは100μm以下が好ましい。
In order to ensure stable insulation, the thickness of the insulating layer is preferably 0.5 μm or more. The required withstand voltage varies depending on the use conditions of individual components, and a thick insulating layer is applied to components requiring high withstand voltage. For example, when a withstand voltage of 2 kV is required, the insulating layer thickness is 50 to 50 kV. 70 μm
Is appropriate. The upper limit of the thickness of the insulating layer is not particularly limited in terms of withstand voltage and corrosion resistance, but in general, an insulating inorganic compound such as an anodized layer is easily broken when it is thick, and cannot exhibit the flexibility characteristic of a metal substrate. So
The thickness of the insulating layer is preferably 100 μm or less.

【0015】基材合金は1000系,3000系,50
00系,6000系等のAl合金が適用でき、陽極酸化
処理浴としてはシュウ酸浴又は硫酸浴等が適用できる
が、合金と処理条件によって陽極酸化皮膜の内部構造が
異なり、その結果として、種々の耐電圧が得られる。例
えば、耐電圧2kVが要求される太陽電池基板には、M
nを含有する3000系合金を用いるか、或いはMgお
よびSiを含有する6000系合金等のAl合金を用い
て、2〜4%のシュウ酸を含む処理液で30〜90Vの
陽極酸化処理を行うことにより厚さ45〜70μmの絶
縁層を形成したものを採用することが推奨される。尚、
要求される耐電圧が1kV程度の場合には、同様の処理
方法によりで絶縁層厚さを10〜30μmとしたものを
用いてもよい。更に、3000系や6000系以外のA
l合金やシュウ酸以外の処理液を用いても、交流重畳や
電流反転等電解条件との組み合わせによっては図1のよ
うな内部構造を有する陽極酸化皮膜を得ることが可能で
ある。
The base alloys are 1000 series, 3000 series, 50 series.
Al alloys such as 00 series and 6000 series can be applied, and as the anodizing bath, an oxalic acid bath or a sulfuric acid bath can be applied. However, the internal structure of the anodized film differs depending on the alloy and the processing conditions. Is obtained. For example, for a solar cell substrate requiring a withstand voltage of 2 kV, M
Using a 3000 series alloy containing n or an Al alloy such as a 6000 series alloy containing Mg and Si, anodizing at 30 to 90 V is performed with a treatment solution containing 2 to 4% oxalic acid. Therefore, it is recommended to adopt an insulating layer having a thickness of 45 to 70 μm. still,
When the required withstand voltage is about 1 kV, a material having an insulating layer thickness of 10 to 30 μm by the same processing method may be used. Furthermore, A other than 3000 series and 6000 series
An anodic oxide film having an internal structure as shown in FIG. 1 can be obtained depending on the combination with electrolytic conditions such as AC superposition and current reversal, even if a treatment solution other than 1 alloy or oxalic acid is used.

【0016】さらに陽極酸化処理後にポア及び/又は空
孔にSi酸化物を充填した構造にすることによって、よ
り高い耐電圧を実現可能である。Si酸化物による充填
はSi−O結合を有する化合物を含む溶液を塗布した後
に焼成する方法で可能である。図3に示す従来の陽極酸
化皮膜構造では焼成時に割れを生じやすく焼成により絶
縁性がかえって低下することがあるが、図1に示す本発
明に係る陽極酸化構造では、絶縁性が向上する。
Further, a higher withstand voltage can be realized by forming a structure in which pores and / or vacancies are filled with an Si oxide after anodizing. Filling with a Si oxide is possible by a method of baking after applying a solution containing a compound having a Si-O bond. In the conventional anodic oxide film structure shown in FIG. 3, cracks are likely to occur during firing, and the insulating property may be lowered by firing, but in the anodic oxide structure according to the present invention shown in FIG. 1, the insulating property is improved.

【0017】Si−O結合を有する化合物は、モノマ
ー,オリゴマー,ポリマーのいずれの状態であってもよ
く、側鎖にメチル基やフェニル基等の官能基を有するオ
ルガノポリシロキサンやオルガノシルセスキオキサン
(例えば、フェニルシルセスキオキサン等)、シラノー
ル等を用いれば良く、これらの化合物を溶媒に溶かし、
陽極酸化皮膜に塗布するか、或いは含浸させた後、焼成
してSi酸化物とすればよい。このSi酸化物の充填に
は、電子工業の分野でSOG(Spin on G1ass )や塗布
ガラスと呼ばれている技術を用いることができる。ま
た、上記Si−O結合を有する化合物を溶かす溶媒とし
ては、トルエン,エタノール,イソプロパノール,ブタ
ノール,メチルイソブチルケトン(MIBK),アセトン,酢
酸エチル,酢酸ブチル等の有機溶媒を用いれば良い。焼
成温度条件はSi−O結合を有する化合物の種類等に応
じて適宜選択すれば良く、例えば側鎖にメチル基とフェ
ニル基を2:1のモル比で有するポリオルガノシロキサ
ンの場合、150〜350℃で焼成すれば良く、また側
鎖がメチル基だけのポリオルガノシロキサンの場合に
は、150℃以下で焼成することも可能である。
The compound having a Si--O bond may be in any state of a monomer, an oligomer or a polymer, and may be an organopolysiloxane or an organosilsesquioxane having a functional group such as a methyl group or a phenyl group in a side chain. (Eg, phenylsilsesquioxane), silanol, or the like may be used. These compounds are dissolved in a solvent,
After applying or impregnating the anodic oxide film, it may be fired to form Si oxide. For filling the Si oxide, a technique called SOG (Spin on G1ass) or coated glass in the field of electronics industry can be used. As a solvent for dissolving the compound having the Si—O bond, an organic solvent such as toluene, ethanol, isopropanol, butanol, methyl isobutyl ketone (MIBK), acetone, ethyl acetate, or butyl acetate may be used. The firing temperature condition may be appropriately selected according to the type of the compound having a Si-O bond, and for example, in the case of a polyorganosiloxane having a methyl group and a phenyl group in a side chain at a molar ratio of 2: 1, 150 to 350 The sintering may be carried out at a temperature of 150 ° C., or in the case of a polyorganosiloxane having only a methyl group in the side chain, the sintering may be carried out at a temperature of 150 ° C. or less.

【0018】尚、ポア及び/ 又は空孔に充填する物質
は、Si−O結合を有する化合物以外であっても非導電
性の物質であれば採用することができ、例えば、Al,
Zr,Ti,Li,Mg,Sn,Zn,Y,B,Ba,
Ta,Nb,K,Pbの1種以上を含む酸化物,水酸化
物,オキシ水酸化物,窒化物を、封孔用物質として用い
てもよい。
The substance to be filled in the pores and / or the pores may be a non-conductive substance other than a compound having a Si—O bond.
Zr, Ti, Li, Mg, Sn, Zn, Y, B, Ba,
Oxides, hydroxides, oxyhydroxides, and nitrides containing one or more of Ta, Nb, K, and Pb may be used as the sealing material.

【0019】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に基づいて設計変更すること
はいずれも本発明の技術的範囲内に含まれるものであ
る。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design changes based on the above and following gist will be described. Are included within the technical scope of

【0020】[0020]

【実施例】基材として、表1に示すAl合金を用い、表
1に併記する陽極酸化処理条件で種々の厚さの陽極酸化
皮膜(絶縁層)を形成した。これらの陽極酸化皮膜は、
透過型電子顕微鏡により、陽極酸化皮膜の成長方向断面
を観察し、隣接するポア間の距離を一辺とする正方形を
任意に100領域選択し、その正方形内にポアから略直
交方向に伸びた空孔が存在する領域の数を数え、その比
率を求めた。また各領域においてポアを除く部分に空孔
の占める面積比率を求め、平均値を算出した。
EXAMPLES An Al alloy shown in Table 1 was used as a substrate, and anodic oxide films (insulating layers) of various thicknesses were formed under the anodic oxidation treatment conditions shown in Table 1. These anodized films are
Using a transmission electron microscope, observe the cross section in the growth direction of the anodic oxide film, arbitrarily select 100 squares with the distance between adjacent pores as one side, and vacancies extending in the square in a direction substantially orthogonal to the pores Were counted and the ratio was determined. In each region, the area ratio occupied by vacancies in portions other than the pores was determined, and the average value was calculated.

【0021】試験用基板は陽極酸化処理後、ポリメチル
シルセスキオキサンをメチルイソブチルケトンで溶解・
分散させた溶液を塗布し80℃で溶媒を揮発させた後、
大気中において140℃で5分間加熱し、さらにN2
囲気中300℃で30分間加熱する焼成を行い、Si酸
化物を陽極酸化層中のポアおよび空孔に充填した(但
し、No.5は陽極酸化処理のみでSi酸化物を充填し
ていない本発明例である)。これら基板上に5cm×4
cmのAl電極を形成し、電圧を0〜3kVまで上昇さ
せて漏れ電流が10-6A/mm2を超えた電圧によって
耐電圧を評価した。
After the anodizing treatment of the test substrate, polymethylsilsesquioxane is dissolved in methyl isobutyl ketone.
After applying the dispersed solution and evaporating the solvent at 80 ° C,
Firing was performed by heating at 140 ° C. for 5 minutes in the air and then at 300 ° C. for 30 minutes in an N 2 atmosphere to fill the pores and holes in the anodic oxide layer (No. 5 This is an example of the present invention in which only an anodizing treatment is not performed and Si oxide is filled). 5cm × 4 on these substrates
cm Al electrode was formed, the voltage was increased to 0 to 3 kV, and the withstand voltage was evaluated based on the voltage at which the leakage current exceeded 10 −6 A / mm 2 .

【0022】結果は、表1に示す。The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】No.1〜6はいずれも本発明に係る基板
であり、優れた耐電圧特性が得られた。
No. 1 to 6 are substrates according to the present invention, and excellent withstand voltage characteristics were obtained.

【0025】これに対し、陽極酸化皮膜が本発明の様な
内部構造となっていないNo.7〜9では、耐電圧が非
常に低かった。No.7では、平均膜厚が薄いので皮膜
自体は割れにくいが、絶縁性は得られなかった。これ
は、測定範囲の中で基材の微小な凹凸に起因する膜厚の
変動により絶縁層のほとんどない部分があったか或いは
測定時にプローブの接触で絶縁層が破壊されたものと推
測される。No.8〜9については、陽極酸化層に空孔
が導入されなかった(図3の構造)ためSi酸化物焼成
時に絶縁層の割れが生じて割れ部で導通したものと考え
られる。
On the other hand, the anodic oxide film having no internal structure as in the present invention No. 7 to 9, the withstand voltage was very low. No. In No. 7, although the average film thickness was small, the film itself was hard to crack, but no insulating property was obtained. This is presumed to be due to the fact that there was almost no portion of the insulating layer due to fluctuations in the film thickness caused by minute irregularities of the substrate in the measurement range, or the insulating layer was broken by contact with the probe during measurement. No. In Nos. 8 to 9, it is considered that no holes were introduced into the anodic oxide layer (the structure of FIG. 3), so that the insulating layer was cracked during the firing of the Si oxide, and conduction was caused at the cracked portion.

【0026】[0026]

【発明の効果】本発明は以上の様に構成されているの
で、ガラス基板よりも軽量・高熱伝導性で可撓性を有す
る耐電圧特性に優れた絶縁材料が提供できることとなっ
た。
As described above, according to the present invention, it is possible to provide an insulating material which is lighter in weight, has higher thermal conductivity, is flexible and has excellent withstand voltage characteristics, as compared with a glass substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る陽極酸化皮膜の構造を示す模式図
である。
FIG. 1 is a schematic view showing a structure of an anodic oxide film according to the present invention.

【図2】本発明に係る陽極酸化皮膜のTEM観察例(T
EM写真の複写)である。
FIG. 2 is a TEM observation example (T
(Copy of EM photograph).

【図3】従来の陽極酸化皮膜の構造を示す模式図であ
る。
FIG. 3 is a schematic view showing the structure of a conventional anodic oxide film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増井 卓也 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 鈴木 康平 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 上窪 文生 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 5E315 AA03 AA05 BB03 BB11 CC19 DD08 GG03 GG18 5F051 BA15 GA02 GA03 GA05 GA06 GA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuya Masui 1-5-5 Takatsukadai, Nishi-ku, Kobe, Japan Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Kohei Suzuki 1-chome, Takatsukadai, Nishi-ku, Kobe-shi No. 5-5 Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Fumio Uekubo 1-5-5, Takatsukadai, Nishi-ku, Kobe City F-term, Kobe Steel Research Institute Kobe Research Institute (Reference) 5E315 AA03 AA05 BB03 BB11 CC19 DD08 GG03 GG18 5F051 BA15 GA02 GA03 GA05 GA06 GA20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Al基材表面にポアを有する陽極酸化皮
膜が形成されたAl合金製絶縁材料であって、上記陽極
酸化皮膜の厚さが0.5μm以上であると共に、前記陽
極酸化皮膜中に上記ポアの軸心と略直角方向に延設され
た複数の空孔を有することを特徴とする耐電圧特性に優
れたAl合金製絶縁材料。
1. An insulating material made of an Al alloy in which an anodic oxide film having pores is formed on the surface of an Al substrate, wherein the thickness of the anodic oxide film is 0.5 μm or more. Characterized by having a plurality of holes extending in a direction substantially perpendicular to the axis of the pore.
【請求項2】 前記陽極酸化皮膜の成長方向断面を透過
型電子顕微鏡により観察し、隣接するポア間を結ぶ線を
一辺とする正方形を複数選んだときに、その20%以上
の正方形領域に前記空孔が存在する請求項1記載のAl
合金製絶縁材料。
2. A cross section of the anodic oxide film in a growth direction is observed by a transmission electron microscope, and when a plurality of squares each having a line connecting adjacent pores as one side are selected, the square region of 20% or more is selected. 2. The Al according to claim 1, wherein vacancies are present.
Alloy insulating material.
【請求項3】 前記陽極酸化皮膜の成長方向断面を透過
型電子顕微鏡により観察し、隣接するポア間を結ぶ線を
一辺とする正方形を複数選んだときに、前記空孔の占め
る面積率が1〜50%である請求項1または2に記載の
Al合金製絶縁材料。
3. A cross section in the growth direction of the anodic oxide film is observed with a transmission electron microscope, and when a plurality of squares each including a line connecting adjacent pores as one side are selected, the area ratio of the holes is 1%. The insulating material made of an Al alloy according to claim 1 or 2, which is 50% or less.
【請求項4】 前記ポア及び/又は空孔の内部にSi−
O結合を有する化合物が充填されてなる請求項1〜3の
いずれかに記載のAl合金製絶縁材料。
4. The method according to claim 1, wherein said pores and / or voids have Si-
The insulating material made of an Al alloy according to any one of claims 1 to 3, which is filled with a compound having an O bond.
【請求項5】 請求項1〜3のいずれかに記載の絶縁材
料に、Si−O結合を有する化合物を含む溶液を塗布し
た後、100℃以上で焼成することを特徴とする請求項
4のAl合金製絶縁材料の製造方法。
5. A method according to claim 4, wherein a solution containing a compound having a Si—O bond is applied to the insulating material according to claim 1 and then fired at 100 ° C. or higher. A method for producing an Al alloy insulating material.
【請求項6】 請求項1〜4のいずれかに記載の絶縁材
料を用いてなることを特徴とする薄膜太陽電池基板。
6. A thin-film solar cell substrate comprising the insulating material according to claim 1. Description:
【請求項7】 請求項1〜4のいずれかに記載の絶縁材
料を用いてなることを特徴とするプリント配線基板。
7. A printed wiring board comprising the insulating material according to claim 1.
JP11161598A 1999-06-08 1999-06-08 Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture Pending JP2000349320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11161598A JP2000349320A (en) 1999-06-08 1999-06-08 Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11161598A JP2000349320A (en) 1999-06-08 1999-06-08 Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture

Publications (1)

Publication Number Publication Date
JP2000349320A true JP2000349320A (en) 2000-12-15

Family

ID=15738203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11161598A Pending JP2000349320A (en) 1999-06-08 1999-06-08 Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture

Country Status (1)

Country Link
JP (1) JP2000349320A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307341A (en) * 2004-03-23 2005-11-04 Fuji Photo Film Co Ltd Fine structural body and method of producing the same
JP2006070321A (en) * 2004-09-01 2006-03-16 Canon Inc Porous body and method for producing structure
JP2007502333A (en) * 2003-08-01 2007-02-08 ダウ・コーニング・コーポレーション Silicone-based dielectric coatings and films for photovoltaic applications
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041658A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2010082642A1 (en) * 2009-01-16 2010-07-22 Fujifilm Corporation Photoelectric conversion device and solar cell using the same
EP2228467A2 (en) 2009-03-11 2010-09-15 Fujifilm Corporation Aluminum alloy substrate and solar cell substrate
EP2246897A2 (en) 2009-05-01 2010-11-03 FUJIFILM Corporation Layered film and manufacturing method thereof, photoelectric conversion device and manufacturing method thereof, and solar cell apparatus
EP2248662A1 (en) 2009-05-01 2010-11-10 Fujifilm Corporation Metal composite substrate and method of producing the same
JP2010258255A (en) * 2009-04-27 2010-11-11 Fujifilm Corp Anodic oxidation substrate, method of manufacturing photoelectric conversion element using the same, the photoelectric conversion element, and solar cell
WO2011078010A1 (en) * 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
US20110186102A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
US20110186103A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
JP2011190466A (en) * 2009-03-11 2011-09-29 Fujifilm Corp Aluminum alloy substrate, and substrate for solar cell
JP2011233874A (en) * 2010-04-07 2011-11-17 Fujifilm Corp Metal substrate with isolation layer and photoelectric conversion element
WO2013005717A1 (en) * 2011-07-04 2013-01-10 富士フイルム株式会社 Insulating reflective substrate and method for producing same
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
JP2013159844A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Alumited aluminum-plated steel plate
WO2013168553A1 (en) * 2012-05-08 2013-11-14 富士フイルム株式会社 Substrate for semiconductor device, semiconductor device, dimming-type lighting device, self light-emitting display device, solar cell and reflective liquid crystal display device
KR20140019432A (en) 2011-04-05 2014-02-14 후지필름 가부시키가이샤 Metal substrate having insulating layer, method for manufacturing same, and semiconductor device
EP2309555A3 (en) * 2009-10-06 2014-10-29 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
EP2306525A3 (en) * 2009-10-05 2014-10-29 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502333A (en) * 2003-08-01 2007-02-08 ダウ・コーニング・コーポレーション Silicone-based dielectric coatings and films for photovoltaic applications
JP2005307341A (en) * 2004-03-23 2005-11-04 Fuji Photo Film Co Ltd Fine structural body and method of producing the same
JP2006070321A (en) * 2004-09-01 2006-03-16 Canon Inc Porous body and method for producing structure
JP4560356B2 (en) * 2004-09-01 2010-10-13 キヤノン株式会社 Method for producing porous body and structure
JP2009267332A (en) * 2007-09-28 2009-11-12 Fujifilm Corp Substrate for solar cell, and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041658A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2010082642A1 (en) * 2009-01-16 2010-07-22 Fujifilm Corporation Photoelectric conversion device and solar cell using the same
JP2010165878A (en) * 2009-01-16 2010-07-29 Fujifilm Corp Photoelectric conversion element, and solar cell using the same
JP4550928B2 (en) * 2009-01-16 2010-09-22 富士フイルム株式会社 Photoelectric conversion element and solar cell using the same
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
EP2228467A2 (en) 2009-03-11 2010-09-15 Fujifilm Corporation Aluminum alloy substrate and solar cell substrate
JP2011190466A (en) * 2009-03-11 2011-09-29 Fujifilm Corp Aluminum alloy substrate, and substrate for solar cell
JP2010258255A (en) * 2009-04-27 2010-11-11 Fujifilm Corp Anodic oxidation substrate, method of manufacturing photoelectric conversion element using the same, the photoelectric conversion element, and solar cell
EP2248662A1 (en) 2009-05-01 2010-11-10 Fujifilm Corporation Metal composite substrate and method of producing the same
EP2246897A2 (en) 2009-05-01 2010-11-03 FUJIFILM Corporation Layered film and manufacturing method thereof, photoelectric conversion device and manufacturing method thereof, and solar cell apparatus
EP2306525A3 (en) * 2009-10-05 2014-10-29 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
EP2309555A3 (en) * 2009-10-06 2014-10-29 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
CN102666940A (en) * 2009-12-25 2012-09-12 富士胶片株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
WO2011078010A1 (en) * 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
US20110186102A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
US20110186103A1 (en) * 2010-02-01 2011-08-04 Fujifilm Corporation Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
JP2011233874A (en) * 2010-04-07 2011-11-17 Fujifilm Corp Metal substrate with isolation layer and photoelectric conversion element
KR20140019432A (en) 2011-04-05 2014-02-14 후지필름 가부시키가이샤 Metal substrate having insulating layer, method for manufacturing same, and semiconductor device
WO2013005717A1 (en) * 2011-07-04 2013-01-10 富士フイルム株式会社 Insulating reflective substrate and method for producing same
JP2013159844A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Alumited aluminum-plated steel plate
WO2013168553A1 (en) * 2012-05-08 2013-11-14 富士フイルム株式会社 Substrate for semiconductor device, semiconductor device, dimming-type lighting device, self light-emitting display device, solar cell and reflective liquid crystal display device

Similar Documents

Publication Publication Date Title
JP2000349320A (en) Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture
EP0940828B1 (en) Method for producing foil electrodes
TW574422B (en) Lead zirconate titanate dielectric thin film composites on metallic foils
TW200300947A (en) Capacitance material, printed circuit board having the same and manufacturing method thereof, and capacitor structure
JP2006523153A (en) Multilayer structure containing barium strontium titanate on metal foil
WO2013005468A1 (en) Dielectric thin film, dielectric thin film element, and thin film capacitor
EP2924766A2 (en) Electrical storage device and method for manufacturing electrical storage devices
JP5861278B2 (en) Thin film capacitor manufacturing method and thin film capacitor obtained by the method
WO2014185256A1 (en) Method for manufacturing conductive resin substrate
JP3261482B2 (en) Electrode of aluminum electrolytic capacitor and method of manufacturing the same
WO2016001971A1 (en) Metal substrate for manufacturing electronic devices, and panel
CN104576046A (en) PLZT capacitor on glass substrate
Liu et al. Dual interfacial modification via anodizing method for achieving enhanced breakdown strength in multi-layer anodized alumina/Sr0. 85Bi0. 1TiO3 films
JP5634315B2 (en) Metal substrate with insulating layer and photoelectric conversion element
KR101764214B1 (en) Heating structure and method of fabricating the same
Sun et al. Effects of thickness on the microstructure and energy-storage performance of PLZT antiferroelectric thick films
JPH11229187A (en) Substrate for electronic material excellent in insulating property and its production
JPH0679444B2 (en) Electric film
JPH11268976A (en) Manufacturing method of graphite sheet
CN1790569A (en) Dielectric thin film, dielectric thin film device, and method of production thereof
JP4510358B2 (en) Electrostatic chuck and manufacturing method thereof
JP4865119B2 (en) Insulating substrate for solar cell having excellent heat resistance and method for producing the same
JP2008294319A (en) Method for manufacturing thin-film capacitor
JPS63222468A (en) Amorphous silicon solar cell substrate
KR102628459B1 (en) α-Al2O3 phase anodic aluminum and its fabricating method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206