JP2000208135A - Nonaqueous electrolyte positive electrode and its production - Google Patents
Nonaqueous electrolyte positive electrode and its productionInfo
- Publication number
- JP2000208135A JP2000208135A JP11010939A JP1093999A JP2000208135A JP 2000208135 A JP2000208135 A JP 2000208135A JP 11010939 A JP11010939 A JP 11010939A JP 1093999 A JP1093999 A JP 1093999A JP 2000208135 A JP2000208135 A JP 2000208135A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode plate
- lithium
- composite oxide
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池用
正極およびその製造方法に属する。The present invention relates to a positive electrode for a non-aqueous electrolyte battery and a method for producing the same.
【0002】[0002]
【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。そのような要
求を満たす典型的な電池は、特にリチウム金属やリチウ
ム合金等の活物質、又はリチウムイオンをホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)である炭素に吸蔵させたリチウ
ムインターカレーション化合物を負極材料とし、LiC
lO4、LiPF6等のリチウム塩を溶解した非プロトン
性の有機溶媒を電解液とする非水電解質二次電池であ
る。2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or lithium alloy, or a host material containing lithium ions (here, a host material refers to a material that can occlude and release lithium ions). Lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and LiC
This is a non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as 10 4 or LiPF 6 is dissolved as an electrolyte.
【0003】この非水電解質二次電池は、上記の負極材
料をその支持体である負極集電体に保持してなる負極
板、リチウムコバルト複合酸化物のようにリチウムイオ
ンと可逆的に電気化学反応をする正極活物質をその支持
体である正極集電体に保持してなる正極板、電解液を保
持するとともに負極板と正極板との間に介在して両極の
短絡を防止するセパレータからなっている。This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above-mentioned negative electrode material is held on a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions such as a lithium-cobalt composite oxide. The positive electrode plate, which holds the positive electrode active material that reacts on the positive electrode current collector that is the support, from the separator that holds the electrolytic solution and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes Has become.
【0004】そして、上記正極板、セパレータ及び負極
板は、いずれも薄いシートないし箔状に成形されたもの
を順に積層、又は螺旋状に巻いて、気密構造を有する金
属ラミネート樹脂フィルムからなる電池容器に収納され
る。The above-mentioned positive electrode plate, separator and negative electrode plate are each formed of a thin sheet or foil and laminated or spirally wound in order to form a battery container made of a metal laminated resin film having an airtight structure. Is stored in.
【0005】この非水電解質二次電池を電子機器に用い
る場合、単電池又は複数個の直列接続したものとして所
某の電圧を得るようにする。この単数又は複数個の電池
は、充放電制御回路とともに樹脂もしくは金属と樹脂か
らなる筐体に収納され、内容物を取り出せないよう封口
して電池パックとして用いられる。When this non-aqueous electrolyte secondary battery is used in electronic equipment, a predetermined voltage is obtained as a unit cell or a plurality of cells connected in series. The single or plural batteries are housed in a housing made of resin or metal and resin together with the charge / discharge control circuit, and sealed so that the contents cannot be taken out, and used as a battery pack.
【0006】[0006]
【発明が解決しようとする課題】繰り返し充放電が可能
な二次電池は、高エネルギー密度化や、放電容量、高負
荷放電、低温放電などの高い放電性能とともに、急速充
電、低温充電などの高い充電性能を備えていることが望
ましい。非水電解質電池において、充電性能が劣ってい
ると、大電流での急速充電時に負極板の表面に金属リチ
ウムが樹枝状に析出してしまう。この樹枝上の金属リチ
ウムが成長すると、正極板に達して内部短絡を引き起こ
し、電池の発熱、破裂等が発生し、電池を装着する機器
やユーザーに損傷を与えてしまう。この問題を解決する
ための一つの手段として、負極の充電受け入れ性と正極
の充電受け入れ性を向上させる効果があるものと考えら
れる。A secondary battery capable of being repeatedly charged and discharged has a high energy density, a high discharge capacity, a high discharge performance such as a high load discharge, a low temperature discharge, and a high charge such as a rapid charge and a low temperature charge. It is desirable to have charging performance. In a non-aqueous electrolyte battery, if the charging performance is poor, metallic lithium will precipitate in a dendritic manner on the surface of the negative electrode plate during rapid charging with a large current. When the metal lithium on the tree grows, it reaches the positive electrode plate and causes an internal short circuit, which generates heat, ruptures, and the like of the battery, and damages equipment and users to which the battery is mounted. It is considered that as one means for solving this problem, there is an effect of improving the charge acceptability of the negative electrode and the charge acceptability of the positive electrode.
【0007】ここで、本願発明者は、正極板の集電リー
ドがエレメントの巻き中心にあり、負極リードが巻き最
外周にある角型非水電解質電池を急速充電した後、ドラ
イ環境下において、前記急速充電した非水電解質電池を
解体して、電極を観察した結果、正極板の集電リード付
近に対向している負極板表面において単位面積当たりの
金属リチウムの析出量が最も多いことを見出した。Here, the inventor of the present application has found that after rapidly charging a rectangular nonaqueous electrolyte battery in which the current collecting lead of the positive electrode plate is at the center of winding of the element and the negative electrode lead is at the outermost periphery of the element, in a dry environment, Disassembling the non-aqueous electrolyte battery that had been rapidly charged and observing the electrodes revealed that the amount of deposited metallic lithium per unit area on the surface of the negative electrode plate facing the current collecting lead of the positive electrode plate was the largest. Was.
【0008】また、前記のようにして電池を解体して正
極板を取り出し、この正極板の集電リードに近い部分
と、中央付近と、集電リードから最も遠い部分から、2
×2cmの寸法で正極板を切り出し、金属リチウムを参
照極として、EC/DEC=1:1、1MLiClO4
電解液中で、電極電位を測定したところ、正極板の集電
リードに最も近い部分の正極板の電位が最も高いことも
見出した。Further, the battery is disassembled as described above, and the positive electrode plate is taken out. From the portion near the current collecting lead, near the center, and the portion farthest from the current collecting lead, 2
A positive electrode plate was cut out at a size of × 2 cm, and EC / DEC = 1: 1, 1M LiClO 4 using lithium metal as a reference electrode.
When the electrode potential was measured in the electrolytic solution, it was found that the potential of the positive electrode plate closest to the current collecting lead of the positive electrode plate was the highest.
【0009】これらの結果から、急速充電時における負
極板表面における金属リチウムの析出は、正極板各部に
おける正極活物質の充電深度が不均一であることが原因
の一つであると推定される。すなわち、正極板におい
て、最も導電パスの短い正極集電リード付近の正極活物
質の充電深度が深いために、その部分に対向する負極の
充電深度も高くなってしまい、金属リチウムの析出を引
き起こしたものと推定される。From these results, it is presumed that one of the causes of the deposition of metallic lithium on the surface of the negative electrode plate during rapid charging is that the depth of charge of the positive electrode active material in each part of the positive electrode plate is not uniform. That is, in the positive electrode plate, since the depth of charge of the positive electrode active material near the positive electrode current collecting lead having the shortest conductive path is deep, the depth of charge of the negative electrode opposed to that portion also becomes high, causing precipitation of metallic lithium. It is presumed that.
【0010】正極板の厚さ方向での活物質の充電深度の
不均一が原因となって、その部分に対向する負極板への
金属リチウムの析出も考えられる。正極板の厚さ方向に
おいて、集電体に近接している正極活物質はほぼ均等な
充電深度であると考えられるが、集電体からの距離が長
いほど、集電体からの導電パスが良好である活物質のみ
充電深度が高いものと考えられる。集電体から最も長距
離に位置する正極板表面付近の活物質においては、前記
充電深度の不均一が顕著になるものと考えられる。すな
わち、正極板表面付近の正極活物質において、集電体か
らの導電パスが良好なものほど充電深度が高く、この部
分に対向する負極も充電深度が高くなって、金属リチウ
ムの析出を引き起こすものと考えられる。[0010] Due to the non-uniform charge depth of the active material in the thickness direction of the positive electrode plate, deposition of metallic lithium on the negative electrode plate facing the portion may be considered. In the thickness direction of the positive electrode plate, the positive electrode active material that is close to the current collector is considered to have a substantially uniform charge depth, but as the distance from the current collector increases, the conductive path from the current collector increases. It is considered that only a good active material has a high charge depth. In the active material near the surface of the positive electrode plate located at the longest distance from the current collector, it is considered that the unevenness of the charging depth becomes remarkable. That is, in the positive electrode active material near the surface of the positive electrode plate, the better the conductive path from the current collector, the higher the depth of charge, and the negative electrode facing this part also has a higher depth of charge, which causes precipitation of metallic lithium. it is conceivable that.
【0011】したがって、急速充電時の負極表面におけ
る金属リチウムの析出を抑制するためには、正極板内の
各部における正極活物質の充電深度を均一なものにする
必要がある。Therefore, in order to suppress the deposition of metallic lithium on the surface of the negative electrode during rapid charging, it is necessary to make the depth of charge of the positive electrode active material in each part in the positive electrode plate uniform.
【0012】ここで、正極板内の各部における活物質の
充電深度を均一なものにするためには、正極合材中の導
電材を増量することも手段の一つとしてあげられる。し
かし、正極板製造工程中において合材ペースト中に混合
した導電剤は凝集する性質があり、正極板内での導電性
を確保するためには多量の導電剤を必要としてしまう
が、この手段によっては電極および電池のエネルギー密
度の低下につながり好ましくない。Here, in order to make the charge depth of the active material in each part in the positive electrode plate uniform, increasing the amount of the conductive material in the positive electrode mixture is one of the means. However, the conductive agent mixed in the mixture paste during the positive electrode plate manufacturing process has a property of agglomeration, and a large amount of the conductive agent is required to secure conductivity within the positive electrode plate. Is undesirable because it leads to a decrease in the energy density of the electrode and the battery.
【0013】[0013]
【課題を解決する手段】そこで、本発明は、正極板内の
各部におい、正極活物質の充電深度の不均一が生じてし
まうという問題を鑑みてなされたものである。SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the problem that the depth of charge of the positive electrode active material is nonuniform in each part in the positive electrode plate.
【0014】本発明は、リチウムイオンを可逆的に吸蔵
放出するリチウム遷移金属複合酸化物、導電剤および結
着剤を含む合剤を備えた多孔構造を有する非水電解質電
池用正極板において、電極内に存在する多孔中に炭素材
料からなる層を設けたことを特徴とする。The present invention provides a positive electrode plate for a non-aqueous electrolyte battery having a porous structure comprising a mixture containing a lithium transition metal composite oxide that reversibly stores and releases lithium ions, a conductive agent and a binder. It is characterized in that a layer made of a carbon material is provided in the pores existing therein.
【0015】また、本発明は、リチウム遷移金属複合酸
化物と導電剤と結着剤を含む混合物に有機溶媒を加えた
合剤を集電体に塗布、乾燥した極板を、炭素質材料と増
粘剤と結着剤と分散剤を含む混合物中に浸漬、乾燥する
ことを特徴とする、電極内に存在する多孔中に炭素材料
からなる層を設けた非水電解質電池用正極の製造方法に
よるものである。Further, according to the present invention, a mixture obtained by adding an organic solvent to a mixture containing a lithium-transition metal composite oxide, a conductive agent and a binder is applied to a current collector, and a dried electrode plate is made of a carbonaceous material. A method for producing a positive electrode for a non-aqueous electrolyte battery having a layer made of a carbon material in pores present in an electrode, characterized by immersing and drying in a mixture containing a thickener, a binder and a dispersant. It is due to.
【0016】[0016]
【発明の実施の形態】本発明の実施の形態を実施例にも
とづき図面を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings.
【0017】[実施例1]図2は本発明になる非水電解
質二次電池の外観を示した図である。図2において、1
は非水電解質二次電池であり、2は金属ラミネート樹脂
フィルムケース、3および4は金属ラミネート樹脂フィ
ルムケースの熱溶着部、5は正極端子、6は負極端子で
ある。正極板、隔離体および負極板からなる電極群が非
水系の電解液(図示省略)とともに金属ラミネート樹脂
フィルムを熱溶着してなるラミネートフィルムケース2
に収納した。Embodiment 1 FIG. 2 is a view showing the appearance of a non-aqueous electrolyte secondary battery according to the present invention. In FIG. 2, 1
Is a non-aqueous electrolyte secondary battery, 2 is a metal laminated resin film case, 3 and 4 are heat welded portions of the metal laminated resin film case, 5 is a positive terminal, and 6 is a negative terminal. A laminated film case 2 in which an electrode group consisting of a positive electrode plate, a separator and a negative electrode plate is heat-welded to a metal laminated resin film together with a non-aqueous electrolyte (not shown).
Stored in.
【0018】正極活物質にはリチウムコバルト複合酸化
物を用いた。正極板は集電体としての厚さ10μmのア
ルミニウム箔に上記のリチウムコバルト複合酸化物を保
持したものである。多孔構造を有する正極板は、結着剤
であるポリフッ化ビニリデン6部と、導電剤であるアセ
チレンブラック3部と、活物質としてのリチウムコバル
ト複合酸化物91部を混合し、適宜N−メチルピロリド
ンを加えてペースト状に調製した後、集電体であるアル
ミニウム箔の両面に塗布、乾燥することによって製作し
た。As the positive electrode active material, a lithium-cobalt composite oxide was used. The positive electrode plate is obtained by holding the above-mentioned lithium cobalt composite oxide on an aluminum foil having a thickness of 10 μm as a current collector. A positive electrode plate having a porous structure is prepared by mixing 6 parts of polyvinylidene fluoride as a binder, 3 parts of acetylene black as a conductive agent, and 91 parts of lithium-cobalt composite oxide as an active material, and appropriately mixing N-methylpyrrolidone. Was prepared in the form of a paste, and then applied to both sides of an aluminum foil as a current collector and dried.
【0019】次に、炭素材料としてのアセチレンブラッ
ク30部と、増粘剤および結着剤であるポリフッ化ビニ
リデン10部と、分散媒であるN−メチルピロリドン6
0部とを混合し、ペースト状に調製し、このペースト中
に前記の正極板を浸漬し、乾燥することによって、正極
板の孔中にアセチレンブラックの層を形成した。Next, 30 parts of acetylene black as a carbon material, 10 parts of polyvinylidene fluoride as a thickener and a binder, and N-methylpyrrolidone 6 as a dispersion medium
0 parts were mixed to prepare a paste, and the positive electrode plate was immersed in the paste and dried to form an acetylene black layer in the holes of the positive electrode plate.
【0020】負極板は、集電体の両面に、ホスト物質と
してのグラファイト(黒鉛)92部と結着剤としてのポ
リフッ化ビニリデン8部とを混合し、適宜N−メチルピ
ロリドンを加えてペースト状に調製したものを、集電体
としての厚さ14μmの銅箔の両面に塗布、乾燥するこ
とによって製作した。The negative electrode plate is prepared by mixing 92 parts of graphite (graphite) as a host substance and 8 parts of polyvinylidene fluoride as a binder on both sides of a current collector, and adding N-methylpyrrolidone as appropriate to form a paste. Was prepared by coating and drying both surfaces of a 14 μm-thick copper foil as a current collector.
【0021】隔離体はポリエチレン微多孔膜とし、ま
た、電解液は、LiPF6を1mol/l含むエチレン
カーボネート:ジエチルカーボネート=4:6(体積
比)の混合液とした。The separator was a microporous polyethylene membrane, and the electrolyte was a mixed solution of ethylene carbonate: diethyl carbonate = 4: 6 (volume ratio) containing 1 mol / l of LiPF 6 .
【0022】極板の寸法は、正極板が厚さ180μm、
幅49mm、セパレータが厚さ25μm、幅53mm、
負極板が厚さ170μm、幅51mmであり、順に重ね
合わせ、ポリエチレンの長方形状の巻芯を中心として、
その周囲に長円渦状に巻いた後、金属ラミネート樹脂フ
ィルムケースに収納した。The dimensions of the electrode plate are as follows.
Width 49mm, separator thickness 25μm, width 53mm,
The negative electrode plate has a thickness of 170 μm and a width of 51 mm, and is superposed in order, centering on a rectangular core of polyethylene,
After being wound in an elliptical shape around it, it was stored in a metal laminated resin film case.
【0023】図3は、図2に示した非水電解質二次電池
のA−A′断面を示したものである。図3において、1
0は最外層の表面保護用の厚さ12μmのPETフィル
ム、11はバリア層としての厚さ9μmのアルミニウム
箔、12は熱溶着層としての厚さ100μmの酸変性ポ
リエチレン層であり、気密封口用のラミネートフィルム
ケースは10と11と12からなり、最外層の表面保護
用PETフィルム10とバリア層としてのアルミニウム
箔11はウレタン系接着剤で接着した。FIG. 3 shows a cross section taken along line AA 'of the nonaqueous electrolyte secondary battery shown in FIG. In FIG. 3, 1
0 is a 12 μm thick PET film for protecting the surface of the outermost layer, 11 is a 9 μm thick aluminum foil as a barrier layer, and 12 is an acid-modified polyethylene layer having a thickness of 100 μm as a heat welding layer. The laminated film case of No. 10 was composed of 10, 11 and 12, and the outermost PET film 10 for surface protection and the aluminum foil 11 as a barrier layer were bonded with a urethane-based adhesive.
【0024】また、図3において、正極リード端子5お
よび負極リード端子6は、厚さ50から100μmの
銅、アルミニウム、ニッケルなどの金属導体に、金属と
の接着層を形成する厚さ50μmの酸変性PE層を接着
し、その外側に電解液バリア層としての厚さ70μmの
エバール樹脂(クラレ製のエチレンビニルアルコール共
重合樹脂)層を設けたものである。これらを図3のよう
に重ねて接着すると良好な気密性が得られた。このよう
にして、設計容量520mAhの非水電解質電池を50
個製作した。In FIG. 3, a positive electrode lead terminal 5 and a negative electrode lead terminal 6 are formed on a 50 to 100 μm thick metal conductor such as copper, aluminum, nickel or the like by forming a 50 μm thick acid to form an adhesive layer with a metal. A modified PE layer is adhered, and an evar resin (ethylene-vinyl alcohol copolymer resin manufactured by Kuraray) layer having a thickness of 70 μm as an electrolyte barrier layer is provided outside the modified PE layer. When these were overlapped and bonded as shown in FIG. 3, good airtightness was obtained. In this way, a non-aqueous electrolyte battery having a design capacity of 520 mAh
Made individually.
【0025】[実施例2]実施例1において、正極板に
炭素材料層を設けるためのペーストの組成を、アセチレ
ンブラック40部と、ポリフッ化ビニリデン20部と、
N−メチルピロリドン40部とした以外は、実施例1と
同じ設計容量520mAhの非水電解質電池を50個製
作した。Example 2 In Example 1, the composition of the paste for forming the carbon material layer on the positive electrode plate was 40 parts of acetylene black, 20 parts of polyvinylidene fluoride,
Fifty non-aqueous electrolyte batteries having the same design capacity of 520 mAh as in Example 1 were produced except that N-methylpyrrolidone was 40 parts.
【0026】[実施例3]正極板に炭素材料層を設ける
ためのペーストの組成を、グラファイト30部と、ポリ
フッ化ビニリデン10部と、N−メチルピロリドン60
部とした以外は、実施例1と同じ設計容量520mAh
の非水電解質電池を50個製作した。Example 3 The composition of a paste for providing a carbon material layer on a positive electrode plate was as follows: 30 parts of graphite, 10 parts of polyvinylidene fluoride, and 60 parts of N-methylpyrrolidone.
520 mAh, the same design capacity as in Example 1 except that
50 non-aqueous electrolyte batteries were manufactured.
【0027】[実施例4]正極板に炭素材料層を設ける
ためのペーストの組成を、ハードカーボン30部と、ポ
リフッ化ビニリデン10部と、N−メチルピロリドン6
0部とした以外は、実施例1と同じ設計容量520mA
hの非水電解質電池を50個製作した。Example 4 The composition of the paste for providing the carbon material layer on the positive electrode plate was as follows: 30 parts of hard carbon, 10 parts of polyvinylidene fluoride, and N-methylpyrrolidone 6
The same design capacity as that of Example 1 except that it was set to 0 parts, 520 mA
h, 50 non-aqueous electrolyte batteries were manufactured.
【0028】[比較例]実施例1において、正極板に炭
素材料層を設けていない従来のものを用いた以外は、実
施例1と同じ設計容量520mAhの電池を50個製作
した。[Comparative Example] Fifty batteries having the same design capacity of 520 mAh as in Example 1 were produced, except that a conventional one in which no carbon material layer was provided on the positive electrode plate was used.
【0029】実施例1、2、3、4および比較例の電池
各10セルを、1200mA(設計容量に対して約2.
3CmA相当;1CmA=520mA)の電流で4.1
Vまで3時間充電した後、ドライ雰囲気下で電池を解体
し、目視にて電極やセパレータの性状を観察した。その
結果、従来品に相当する比較例の電池の負極板表面に
は、一面に銀灰色の金属リチウムが析出しており、セパ
レータの負極板に接する面にまで金属リチウムが付着し
ていた。特に正極板の集電リードに近い部分の活物質に
対向する負極表面で金属リチウムの析出が著しかった。
これに対して、実施例1、2、3および4の電池の負極
板表面には、金属リチウムは全く析出してなかった。The batteries of Examples 1, 2, 3, 4 and the comparative example were each 10 cells at 1200 mA (about 2.
(3 CmA equivalent; 1 CmA = 520 mA) at a current of 4.1
After charging for 3 hours to V, the battery was disassembled in a dry atmosphere, and the properties of the electrodes and separator were visually observed. As a result, silver-grey metallic lithium was precipitated all over the surface of the negative electrode plate of the battery of the comparative example corresponding to the conventional product, and the metallic lithium was adhered to the surface of the separator in contact with the negative electrode plate. In particular, the deposition of metallic lithium was remarkable on the negative electrode surface facing the active material near the current collecting lead of the positive electrode plate.
On the other hand, no metallic lithium was deposited on the negative electrode plate surfaces of the batteries of Examples 1, 2, 3, and 4.
【0030】また、電池を解体して取り出した正極板に
おいて、集電リードに最も近い部分、正極板中央付近、
集電リードから最も距離が長い部分を2×2cmの寸法
で切り出して、金属リチウムを参照極として、EC/D
EC=1:1、1MLiClO4電解液中で、電極電位
を測定した。比較例の場合、正極板の集電リードに最も
近い部分の電位が最も高く、集電リードから距離が長く
なるにしたがって、電位が低くなっていた。一方、本発
明実施例の場合、サンプルを切り出した正極板の場所に
依存せず、電位はほぼ同じであった。Further, in the positive electrode plate taken out after disassembly of the battery, a portion closest to the current collecting lead, near the center of the positive electrode plate,
A portion having the longest distance from the current collecting lead was cut out to a size of 2 × 2 cm, and EC / D was determined using metallic lithium as a reference electrode.
The electrode potential was measured in an EC = 1: 1, 1M LiClO 4 electrolyte. In the case of the comparative example, the potential of the portion of the positive electrode plate closest to the current collecting lead was the highest, and the potential decreased as the distance from the current collecting lead became longer. On the other hand, in the case of the example of the present invention, the potential was almost the same irrespective of the location of the positive electrode plate from which the sample was cut out.
【0031】また、1CmA(=520mA)/4.1
Vで3時間充電した時の充電曲線を図1に示す。図1に
おいて、Aは実施例1、2、3および4の電池の充電曲
線を、Bは比較例の充電曲線を示す。図1より、本発明
実施例1、2、3および4の電池は比較例の電池と比べ
て、充電時の分極が小さかった。すなわち、正極板に炭
素材料層を設けることによって、正極板の分極を小さく
できたものである。Further, 1 CmA (= 520 mA) /4.1
FIG. 1 shows a charging curve when the battery was charged at V for 3 hours. In FIG. 1, A shows the charging curve of the batteries of Examples 1, 2, 3, and 4, and B shows the charging curve of the comparative example. As shown in FIG. 1, the batteries of Examples 1, 2, 3, and 4 of the present invention had smaller polarization during charging than the batteries of Comparative Examples. That is, the polarization of the positive electrode plate can be reduced by providing the carbon material layer on the positive electrode plate.
【0032】次に、実施例1、2、3、4および比較例
の電池各40セルを、室温にて各10セルづつ、充電電
流1CmA、2CmA、3CmA、5CmAで4.1V
まで3時間充電した後、1CmAで2.75Vまで放電
したときの平均放電容量を表1に示す。Next, 40 cells of each of the batteries of Examples 1, 2, 3, 4 and the comparative example were charged at a charging current of 1 CmA, 2 CmA, 3 CmA, 5 CmA to 4.1 V at room temperature.
Table 1 shows the average discharge capacity when the battery was charged to 2.75 V at 1 CmA after charging for 3 hours.
【0033】[0033]
【0034】[0034]
【表1】 [Table 1]
【0035】表1より、本発明になる実施例1、2、3
および4の電池は、急速充電性能に優れていることがわ
かる。これは、比較例の電池を急速充電した時、負極板
表面に金属リチウムが析出し、この金属リチウムの大部
分は放電反応に関与しないため、高率充電時の放電容量
が小さくなるのに対して、本発明になる実施例1、2、
3および4の電池では、正極板の多孔中に炭素材料層を
設けたことによって、負極表面に析出する金属リチウム
の析出が抑制されたために、高率充電時においても放電
容量の減少が小さかったものと考えられる。According to Table 1, Examples 1, 2, and 3 according to the present invention are shown.
It can be seen that the batteries Nos. 4 and 4 have excellent quick charge performance. This is because when the battery of the comparative example was rapidly charged, metallic lithium was deposited on the surface of the negative electrode plate, and most of the metallic lithium did not participate in the discharge reaction. Thus, Embodiments 1 and 2 according to the present invention
In the batteries of Nos. 3 and 4, since the carbon material layer was provided in the pores of the positive electrode plate, the deposition of metallic lithium deposited on the negative electrode surface was suppressed, so that the decrease in the discharge capacity was small even during high-rate charging. It is considered something.
【0036】本発明に使用する発電要素としては、実施
例で述べた正極板・セパレータ・負極板を巻回した形状
に限定されるものではなく、箔状に成形した平板状の極
板を積層した形状等も使用可能である。The power generating element used in the present invention is not limited to the shape in which the positive electrode plate, the separator, and the negative electrode plate are wound as described in the embodiment, and a flat electrode plate formed in a foil shape is laminated. Shaped shapes and the like can also be used.
【0037】さらに、前記実施例においては、正極材料
たるリチウムを吸蔵放出可能な化合物としてリチウムコ
バルト複合酸化物を使用しているが、これに限定される
ものではなく、この化合物の結晶中においてコバルト原
子の占める格子位置の一部またはすべてを、ニッケル、
マンガン、アルミニウムなどの1種または2種以上の遷
移金属原子で置換したものでもよい。Further, in the above-described embodiment, the lithium-cobalt composite oxide is used as the compound capable of inserting and extracting lithium as the positive electrode material. However, the present invention is not limited to this. Some or all of the lattice positions occupied by atoms are nickel,
It may be substituted with one or more transition metal atoms such as manganese and aluminum.
【0038】さらに、前記実施例においては、負極材料
たる化合物としてグラファイトを使用しているが、その
他に、Al、Si、Pb、Sn、Zn、Cd等とリチウ
ムとの合金、LiFe2O3、WO2、MoO2等の遷移金
属酸化物、グラファイト、カーボン等の炭素質材料、L
i5(Li3N)等の窒化リチウム、もしくは金属リチウ
ム箔、又はこれらの混合物を用いてもよい。Further, in the above embodiment, graphite is used as the compound as the negative electrode material. In addition, alloys of lithium with Al, Si, Pb, Sn, Zn, Cd, etc., LiFe 2 O 3 , WO 2, MoO transition metal oxides such as 2, graphite, carbonaceous materials such as carbon, L
Lithium nitride such as i 5 (Li 3 N), or lithium metal foil, or a mixture thereof may be used.
【0039】さらに、電解液溶媒として、実施例ではエ
チレンカーボネートとジエチルカーボネートの混合溶液
を用いているが、これに限定されるものではなく、エチ
レンカーボネート、プロピレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、γ−ブチロラク
トン、スルホラン、ジメチルスルホキシド、アセトニト
リル、ジメチルホルムアミド、ジメチルアセトアミド、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、メチルアセテート等の極性溶媒、も
しくはこれらの混合物を使用してもよい。Further, as a solvent for the electrolytic solution, a mixed solution of ethylene carbonate and diethyl carbonate is used in the embodiment. However, the present invention is not limited to this. Ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ- Butyrolactone, sulfolane, dimethylsulfoxide, acetonitrile, dimethylformamide, dimethylacetamide,
A polar solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.
【0040】さらに、実施例では、隔離体としては絶縁
性のポリエチレン微多孔膜を使用し、これに電解液を含
浸したものを使用したが、これ以外にも高分子固体電解
質、高分子固体電解質に電解液を含有させたゲル状電解
質等も使用できる。また、絶縁性の微多孔膜と高分子固
体電解質等を組み合わせて使用してもよい。さらに、高
分子固体電解質として有孔性高分子固体電解質膜を使用
する場合、高分子中に含有させる電解液と、細孔中に含
有させる電解液とが異なっていてもよい。Further, in the examples, the insulator used was an insulating polyethylene microporous membrane, which was impregnated with an electrolytic solution. However, other than this, a polymer solid electrolyte, a polymer solid electrolyte was used. A gel electrolyte containing an electrolyte solution can also be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination. Further, when a porous solid polymer electrolyte membrane is used as the solid polymer electrolyte, the electrolyte contained in the polymer and the electrolyte contained in the pores may be different.
【0041】さらに、実施例において、正極板の孔中に
高導電体層を形成する際に用いたペーストは、導電剤と
増粘剤および結着剤であるポリフッ化ビニリデンと分散
媒であるN−メチルピロリドンを混合したものを用いた
が、これらの比率を変えることによって、正極板の多孔
中に設ける炭素材料層の厚みを調整することができる。
炭素材料層を設けるためのペーストの組成は、製作した
正極板の空孔の量および径に対応して適宜かえると良
い。Further, in the examples, the paste used for forming the high conductor layer in the holes of the positive electrode plate was a conductive agent, a thickener, polyvinylidene fluoride as a binder, and N as a dispersion medium. Although a mixture of -methylpyrrolidone was used, the thickness of the carbon material layer provided in the pores of the positive electrode plate can be adjusted by changing these ratios.
The composition of the paste for providing the carbon material layer may be appropriately changed according to the amount and diameter of the holes in the manufactured positive electrode plate.
【0042】また、実施例においては、炭素材料として
アセチレンブラックを用いたが、これに限定されるもの
ではなく、グラファイト、ハードカーボン、ソフトカー
ボン、あるいはこれらの複合材料など、導電性の高い炭
素材料であればどれを使用してもよい。In the examples, acetylene black was used as the carbon material. However, the present invention is not limited to this, and carbon materials having high conductivity such as graphite, hard carbon, soft carbon, and composite materials thereof are used. Any may be used.
【0043】また、増粘剤および結着剤としてポリフッ
化ビニリデンを用いたが、これに限定されるものではな
く、スチレンブタジエンゴムなどのゴム材料、ポリテト
ラフロロエチレン、ポリエチレン、ポリプロピレンなど
の結着性の高い高分子材料が使用できる。Further, polyvinylidene fluoride was used as the thickener and the binder, but the present invention is not limited to this. For example, rubber materials such as styrene-butadiene rubber, and binders such as polytetrafluoroethylene, polyethylene, and polypropylene are used. Highly polymer materials can be used.
【0044】[0044]
【発明の効果】本発明になる正極板は多孔構造を有し、
正極の多孔の中に炭素材料層が設けられている。炭素材
料層は高導電体であるため、正極板の厚さ方向の電導度
は正極板のあらゆる部分で均一となる。その結果、急速
充電時においても、正極板のあらゆる部分での活物質の
充電深度は均一となり、正極板と対向する負極板の表面
における金属リチウムの析出を抑制して、電池の急速充
電時の安全化を確保できる。本発明になる正極板を使用
した非水電解質電池は、携帯用電子機器の電源としてき
わめて有益である。The positive electrode plate according to the present invention has a porous structure,
A carbon material layer is provided in the pores of the positive electrode. Since the carbon material layer is a highly conductive material, the electric conductivity in the thickness direction of the positive electrode plate is uniform in all parts of the positive electrode plate. As a result, even during rapid charging, the depth of charge of the active material in all parts of the positive electrode plate becomes uniform, suppressing the deposition of metallic lithium on the surface of the negative electrode plate facing the positive electrode plate, thereby reducing the time of rapid charging of the battery. Safety can be ensured. The nonaqueous electrolyte battery using the positive electrode plate according to the present invention is extremely useful as a power source for portable electronic devices.
【0045】[0045]
【図1】本発明になる実施例および比較例の急速充電時
の充電曲線。FIG. 1 is a charging curve at the time of rapid charging in Examples and Comparative Examples according to the present invention.
【図2】本発明になる非水電解質二次電池の外観を示し
た図。FIG. 2 is a diagram showing the appearance of a non-aqueous electrolyte secondary battery according to the present invention.
【図3】本発明になる非水電解質二次電池のA−A′断
面図。FIG. 3 is a sectional view taken along line AA ′ of the nonaqueous electrolyte secondary battery according to the present invention.
Claims (2)
リチウム遷移金属複合酸化物、導電剤および結着剤を含
む合剤を備えた多孔構造を有し、多孔中に炭素材料から
なる層を設けたことを特徴とする非水電解質電池用正
極。1. A porous structure comprising a lithium transition metal composite oxide that reversibly stores and releases lithium ions, a mixture containing a conductive agent and a binder, and a layer made of a carbon material is provided in the pores. A positive electrode for a non-aqueous electrolyte battery, characterized in that:
着剤を含む混合物に有機溶媒を加えた合剤を集電体に塗
布、乾燥した極板を、炭素質材料と増粘剤と結着剤と分
散剤を含む混合物中に浸漬、乾燥することを特徴とす
る、請求項1記載の非水電解質電池用正極の製造方法。2. A current collector obtained by applying a mixture obtained by adding an organic solvent to a mixture containing a lithium transition metal composite oxide, a conductive agent and a binder to a current collector, and drying the electrode plate with a carbonaceous material, a thickener and The method for producing a positive electrode for a non-aqueous electrolyte battery according to claim 1, wherein the positive electrode is immersed and dried in a mixture containing a binder and a dispersant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11010939A JP2000208135A (en) | 1999-01-19 | 1999-01-19 | Nonaqueous electrolyte positive electrode and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11010939A JP2000208135A (en) | 1999-01-19 | 1999-01-19 | Nonaqueous electrolyte positive electrode and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000208135A true JP2000208135A (en) | 2000-07-28 |
Family
ID=11764198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11010939A Pending JP2000208135A (en) | 1999-01-19 | 1999-01-19 | Nonaqueous electrolyte positive electrode and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000208135A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100450109B1 (en) * | 2001-09-14 | 2004-09-24 | 마쯔시다덴기산교 가부시키가이샤 | Non-aqueous electrolyte secondary battery and production method thereof |
JP2006179320A (en) * | 2004-12-22 | 2006-07-06 | Dainippon Printing Co Ltd | Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method |
CN105406082A (en) * | 2015-12-17 | 2016-03-16 | 佛山市南海区欣源电子有限公司 | Composite pole piece of high-magnification lithium ion battery positive pole and preparation method of composite pole piece |
-
1999
- 1999-01-19 JP JP11010939A patent/JP2000208135A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100450109B1 (en) * | 2001-09-14 | 2004-09-24 | 마쯔시다덴기산교 가부시키가이샤 | Non-aqueous electrolyte secondary battery and production method thereof |
JP2006179320A (en) * | 2004-12-22 | 2006-07-06 | Dainippon Printing Co Ltd | Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method |
CN105406082A (en) * | 2015-12-17 | 2016-03-16 | 佛山市南海区欣源电子有限公司 | Composite pole piece of high-magnification lithium ion battery positive pole and preparation method of composite pole piece |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
JP4519796B2 (en) | Square lithium secondary battery | |
JP6754768B2 (en) | Non-aqueous electrolyte secondary battery | |
US8431265B2 (en) | Electric cell | |
WO2006112243A1 (en) | Rectangular lithium secondary battery | |
JP2017134997A (en) | Nonaqueous electrolyte secondary battery | |
US10541453B2 (en) | Battery module for starting a power equipment | |
US20240290973A1 (en) | Electrode plate, lithium-ion battery, battery module, battery pack and electric device | |
JP4710099B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH10241699A (en) | Battery | |
JP2007172879A (en) | Battery and its manufacturing method | |
JPH10112323A (en) | Battery | |
JP2001167752A (en) | Non-aqueous electrolyte secondary battery | |
JP2000331686A (en) | Nonaqueous electrolyte secondary battery | |
JPH08222223A (en) | Nonaqueous electrolyte secondary battery | |
JP2007172878A (en) | Battery and its manufacturing method | |
JP2007095570A (en) | Lithium secondary battery and negative electrode used in that battery | |
JP2004265832A (en) | Electrolyte and battery using it | |
JP2003346768A (en) | Non-aqueous electrolyte secondary battery | |
JP2002203551A (en) | Non-aqueous electrolyte battery | |
JP2000243427A (en) | Solid electrolyte cell and its manufacture | |
JP2000208135A (en) | Nonaqueous electrolyte positive electrode and its production | |
JP2000100404A (en) | Nonaqueous electrolyte battery and battery pack | |
JP4264209B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2007172881A (en) | Battery and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |