Nothing Special   »   [go: up one dir, main page]

JP2000288584A - Donor diaphragm for microorganism and production thereof - Google Patents

Donor diaphragm for microorganism and production thereof

Info

Publication number
JP2000288584A
JP2000288584A JP11096800A JP9680099A JP2000288584A JP 2000288584 A JP2000288584 A JP 2000288584A JP 11096800 A JP11096800 A JP 11096800A JP 9680099 A JP9680099 A JP 9680099A JP 2000288584 A JP2000288584 A JP 2000288584A
Authority
JP
Japan
Prior art keywords
donor
membrane
microorganism
microorganisms
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11096800A
Other languages
Japanese (ja)
Inventor
Takeshi Miura
毅 三浦
Yusuke Kunoki
右典 九軒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP11096800A priority Critical patent/JP2000288584A/en
Publication of JP2000288584A publication Critical patent/JP2000288584A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform effective denitrification treatment in a waste water equipment by supplying a proper amt. of a propagation factor to a microorganism without requiring special control even if load or temp. changes. SOLUTION: A diaphragm 1 isolating a microorganism and permitting a microorganism propagation factor (donor) to gradually transmit toward the microorganism has a structure different in donor transmissivity at positions 1a, 1b. This diaphragm is produced by extrusion molding, blow molding, compression molding, injection molding or vacuum molding. By this constitution, a proper amt. of the propagation factor is supplied to a microorganism through the diaphragm even if load or temp. varies and the microorganism is active efficiently to perform denitrification treatment and the disposal work of the excessive propagation factor is also omitted or reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物を用いた排
水処理等において増殖因子(供与体)と微生物(受容
体)とを隔てて増殖因子を徐々に微生物側に透過させて
微生物を良好に増殖させる微生物用供与体隔膜およびそ
の製造方法に関するものであり、特に、脱窒菌の水素供
与体として有機炭素源を添加して排水中の窒素を除去す
る方法において、処理を安定させ、処理コストを低減さ
せることができる生物担体膜に好適なものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for satisfactorily removing microorganisms by separating growth factors (donors) from microorganisms (acceptors) and gradually allowing the growth factors to permeate the microorganisms in wastewater treatment or the like using microorganisms. The present invention relates to a donor membrane for microorganisms to be grown and a method for producing the same. Particularly, in a method for removing nitrogen in wastewater by adding an organic carbon source as a hydrogen donor for denitrifying bacteria, stabilizes the treatment and reduces the treatment cost. It is suitable for a biological carrier membrane that can be reduced.

【0002】[0002]

【従来の技術】排水に含まれる窒素を除去する方法とし
て、微生物を用いた脱窒法があり、従来から脱窒槽に微
生物担体と水素供与体となるメタノール等の有機炭素源
を添加する方法(生物学的脱窒法)が知られている。そ
の原理は、「水処理工学」(井出哲夫編、技報堂出版、
1997年、pp297−303)に詳細に説明されて
いる。上記方法として脱窒槽に水素供与体を直接投入し
て脱窒処理する方法があり、例えば公開特許公報昭54
−37364号公報にその内容が開示されている。この
方法においては、脱窒菌および有機炭素源と被処理液と
の接触効率を高めるために、ポンプにより被処理液を循
環させている。また、流入する被処理水中の窒素濃度の
変動等により添加した有機炭素源が余剰になり、放流水
の悪化を招くことがあるので、有機炭素源の添加量を制
御するよう工夫がなされている。一方、上記のように水
素供与体を直接脱窒槽に投入するのではなく、プラスチ
ックの膜を通して有機炭素を供給する膜分離脱窒処理方
式(井澤博文ら、日本水処理生物学会、第32巻、第3
号、pp.191−197(1996))が提案されて
いる。
2. Description of the Related Art As a method for removing nitrogen contained in wastewater, there is a denitrification method using microorganisms. Conventionally, a method of adding a microorganism carrier and an organic carbon source such as methanol as a hydrogen donor to a denitrification tank (biological method) Denitrification method) is known. The principle is "water treatment engineering" (edited by Tetsuo Ide, Gihodo Publishing,
1997, pp 297-303). As the above method, there is a method in which a hydrogen donor is directly charged into a denitrification tank to perform a denitrification treatment.
Japanese Patent No. 37364 discloses the contents. In this method, the liquid to be treated is circulated by a pump in order to increase the contact efficiency between the denitrifying bacteria and the organic carbon source and the liquid to be treated. In addition, since the added organic carbon source becomes excessive due to the fluctuation of the nitrogen concentration in the inflowing water to be treated and the like, and the discharge water may be deteriorated, it is devised to control the added amount of the organic carbon source. . On the other hand, a membrane separation denitrification treatment method in which organic carbon is supplied through a plastic membrane instead of directly charging a hydrogen donor into a denitrification tank as described above (Hirofumi Izawa et al., Japan Society for Water Treatment Biology, Vol. 32, Third
No. pp. 191-197 (1996)).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
の処理方法では以下のような問題点がある。 (1)水素供与体を直接投入する脱窒処理法(特開昭5
4−37364号)では、有機炭素(水素供与体:メタ
ノールがよく使われる)の濃度を検出し制御する場合、
添加量が少なくて検出が困難で定量的に検出する機器も
高価であり、また検出して濃度を制御してもその効果
(菌の増殖等)が現れるまで長期間を要するため急激な
負荷変動に耐えられないなどの問題がある。また、余剰
となった有機炭素は排水のCODを増加させるため処理
する必要があり、余分なコストがかかるという問題もあ
る。 (2)有機炭素を膜分離によって供与する脱窒処理法
(井澤法)では、プラスチック(PE、シリコンゴム
等)の膜を透過する微量の有機炭素を脱窒菌に供与する
ため、脱窒菌を膜表面へ選択的に固定でき窒素除去効率
を向上させることができる。また、有機炭素を直接投入
しないため濃度管理や過剰有機炭素の処理などが不要と
なる。しかし温度変化(夏/冬)や被処理水の負荷変動
等に対し対応できないという問題がある。これは、上記
膜の透過量が膜厚、材質によって決まるため、夏場や小
さい負荷に合わせて膜厚、材質を決めれば冬場や負荷が
大きくなったときに有機炭素の透過量が不足して脱窒性
能が低下し、逆に冬場や大きな負荷に合わせて膜厚、材
質を選定すると、夏場や負荷が小さくなったときに有機
炭素の透過量が過剰となり余剰の有機炭素を処分する必
要が生じてくるからである。また、菌はコロニー(集
落)を形成するため、菌の密度は場所によって異なり栄
養源として必要な有機炭素量も場所によって異なってく
る。しかし、膜を透過する有機炭素の密度は全面にわた
って同じであるので(膜の有機炭素透過能力は全面で均
等であるため)、有機炭素を多く必要とするコロニー部
では有機炭素が不足気味となり、有機炭素の必要量が少
ない非コロニー部では有機炭素が過剰気味になって増殖
効率が悪くなるという問題もある。
However, the conventional processing method described above has the following problems. (1) A denitrification treatment method in which a hydrogen donor is directly charged
4-37364), when detecting and controlling the concentration of organic carbon (hydrogen donor: methanol is often used),
A small amount of addition makes detection difficult and equipment for quantitative detection is expensive, and even if the concentration is detected and controlled, it takes a long time for the effects (such as bacterial growth) to appear, so sudden load fluctuations occur. There are problems such as not being able to withstand. In addition, there is a problem that excess organic carbon needs to be treated to increase the COD of the wastewater, resulting in an extra cost. (2) In the denitrification treatment method in which organic carbon is provided by membrane separation (Izawa method), a small amount of organic carbon permeating a plastic (PE, silicon rubber, etc.) membrane is supplied to the denitrifying bacteria. It can be selectively fixed to the surface and the nitrogen removal efficiency can be improved. In addition, since organic carbon is not directly introduced, concentration management and treatment of excess organic carbon are not required. However, there is a problem that it cannot respond to a temperature change (summer / winter), a load change of the water to be treated, and the like. This is because the permeation amount of the above-mentioned membrane is determined by the film thickness and the material, and if the film thickness and the material are determined according to the summer or a small load, the permeation amount of the organic carbon becomes insufficient when the load is increased in the winter or when the load becomes large. When the film thickness and material are selected in accordance with the winter season or heavy load, the permeation amount of organic carbon becomes excessive when the summer season or the load becomes small, and it becomes necessary to dispose of the excess organic carbon. Because it comes. In addition, since fungi form colonies (communities), the density of the fungus varies from place to place, and the amount of organic carbon required as a nutrient source also varies from place to place. However, since the density of organic carbon permeating the membrane is the same over the entire surface (because the organic carbon permeability of the membrane is uniform over the entire surface), the organic carbon tends to be insufficient in the colony portion that requires a large amount of organic carbon, In a non-colonial part where the required amount of organic carbon is small, there is a problem that organic carbon tends to be excessive and the growth efficiency is deteriorated.

【0004】本発明は上記事情を背景としてなされたも
のであり、有機炭素の濃度管理および余剰有機炭素を不
要とし、温度変化や負荷変動に対応できる膜分離脱窒処
理方式を提供することを基本的な目的として、供与体で
ある微生物増殖因子を受容体である微生物と隔て、前記
供与体を該受容体側に適切な濃度で透過させて効率的に
微生物を増殖させることができる供与体隔膜を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a membrane separation and denitrification treatment system which can control the concentration of organic carbon and eliminate excess organic carbon and can cope with temperature changes and load fluctuations. As a general purpose, a donor membrane capable of separating a donor microbial growth factor from an acceptor microorganism and allowing the donor to pass through the acceptor at an appropriate concentration to allow efficient growth of the microorganism is used. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の微生物用供与体隔膜のうち第1の発明は、
供与体である微生物増殖因子を受容体である微生物と隔
て、前記供与体を該受容体側に徐々に透過させる供与体
隔膜であって、供与体透過率が位置によって異なる構造
を有することを特徴とする。
Means for Solving the Problems To solve the above problems, the first invention of the microorganism donor membrane of the present invention is:
A donor membrane that separates a microbial growth factor that is a donor from a microorganism that is an acceptor and allows the donor to gradually pass through to the acceptor side, wherein the donor permeability has a structure that differs depending on the position. I do.

【0006】第2の発明の微生物用供与体隔膜は、第1
の発明において、膜の構成材料、厚さ、膜の空隙率、分
散材の分布の有無、または分散率の1つ以上を位置によ
って変えることによって供与体透過率を位置によって異
ならせることを特徴とする。第3の発明の微生物用供与
体隔膜は、第1または第2の発明において、分散材が吸
着材であることを特徴とする。第4の発明の微生物用供
与体隔膜は、第1〜第3の発明のいずれかにおいて、膜
の構成材料が熱可塑性ポリマ、熱硬化性ポリマ、ゴムお
よび/あるいはこれらの混合物であることを特徴とす
る。第5の発明の微生物用供与体隔膜は、第1〜第4の
発明において、隔膜が微生物を固定する微生物担体であ
ることを特徴とする。
[0006] The donor membrane for microorganisms of the second invention comprises a first donor membrane.
In the invention of the present invention, the constituent material of the membrane, the thickness, the porosity of the membrane, the presence or absence of the distribution of the dispersing agent, or by changing one or more of the dispersity by the position, to vary the donor transmittance depending on the position, I do. The donor membrane for microorganisms of the third invention is characterized in that, in the first or second invention, the dispersant is an adsorbent. A fourth aspect of the present invention provides the microorganism donor membrane according to any one of the first to third aspects, wherein the constituent material of the membrane is a thermoplastic polymer, a thermosetting polymer, a rubber, and / or a mixture thereof. And The donor membrane for microorganisms of the fifth invention is characterized in that, in the first to fourth inventions, the membrane is a microorganism carrier for immobilizing microorganisms.

【0007】第6の発明の微生物用供与体隔膜の製造方
法は、第1〜第5の発明のいずれかに記載の膜を押出成
形、ブロー成形、圧縮成形、射出成形あるいは真空成形
することを特徴とする。
According to a sixth aspect of the present invention, there is provided a method for producing a donor membrane for microorganisms, comprising extruding, blow molding, compression molding, injection molding or vacuum molding the membrane according to any one of the first to fifth aspects. Features.

【0008】[0008]

【発明の実施の形態】本発明の隔膜では、供与体である
微生物増殖因子を受容体である微生物と隔てることがで
き、かつ供与体を該受容体側に徐々に透過させる機能が
必要とされる。このような膜の材料としては、代表的に
は熱可塑性ポリマ、熱硬化性ポリマ、ゴムあるいはこれ
らの混合物を用いることができる。ただし、本発明では
これらに限定されるものではなく、上記機能を有する膜
であればよい。この膜は、その材質や使用環境等を勘案
して厚さを定めるため、本発明としては特定の厚さに限
定されるものではないが、通常は50〜500μm程度
の厚さとされる。この膜は、例えば押出成形、ブロー成
形、圧縮成形、射出成形あるいは真空成形により得るこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The diaphragm of the present invention is required to have a function of separating a microorganism growth factor as a donor from a microorganism as an acceptor and a function of gradually transmitting the donor to the acceptor. . As a material of such a film, typically, a thermoplastic polymer, a thermosetting polymer, a rubber, or a mixture thereof can be used. However, the present invention is not limited to these, and any film having the above function may be used. The thickness of this film is determined in consideration of its material, use environment, and the like. Therefore, the present invention is not limited to a specific thickness, but is generally about 50 to 500 μm. This film can be obtained by, for example, extrusion molding, blow molding, compression molding, injection molding or vacuum molding.

【0009】なお、本発明の隔膜は、従来の膜が全面に
亘って一様な有機炭素透過量を有していたことから、微
生物の増殖因子である供与体の透過率を位置によって変
えることにより前記した問題点の解決を図っている。こ
の透過率の相違は、膜の構成材料、厚さ、膜の空隙率、
分散材の分布の有無、または分散材の分散率を位置によ
って変えることによって達成することができ、これらを
同位置または異なる位置で組み合わせることもできる。
透過率は、例えば単位時間当たりの供与体の平均透過量
や最大透過量、透過割合等により表すことができる。
In the membrane of the present invention, since the conventional membrane has a uniform amount of organic carbon permeated over the entire surface, the permeability of the donor, which is a growth factor of microorganisms, is changed depending on the position. To solve the above-mentioned problem. This difference in transmittance is due to the constituent material of the film, the thickness, the porosity of the film,
This can be achieved by changing the presence or absence of the dispersing material or the dispersing rate of the dispersing material depending on the position, and these can be combined at the same position or at different positions.
The transmittance can be represented by, for example, the average amount of transmission of the donor per unit time, the maximum amount of transmission, the transmission ratio, and the like.

【0010】図1(A)は、隔膜1の厚さを局部的に変
えて薄膜部1aを設けたものであり、薄膜部1aでは、
基部(厚膜部)1bよりも高い供与体透過率が得られ
る。なお、図中のq1、q2は、単位時間・単位面積当
たりの供与体の透過量を示している。図1(B)は、膜
の材質(拡散の程度)を局部的に変えたものであり、局
部の隔膜(高拡散部10a)は拡散係数が基部(低拡散
部)10bよりも大きくなっている。この隔膜10で
は、高拡散部10aの供与体透過率が基部10bよりも
大きくなる。図1(C)は、発泡制御を行って局部的に
発泡させたものであり、発泡2…2を有する発泡部20
aと発泡を有しない基部(無発泡部)20bとからなっ
ている。発泡部20aでは、気泡2…2の存在により供
与体の透過が促進され、基部20bよりも高い透過率を
有している。なお、この例では、気泡の有無によって透
過率を変えるものとしたが場所によって気泡の分散密度
を変えたり、または/および気泡の大きさを変えたりし
て透過率を変えることも可能である。図1(D)は、局
部的に分散材3を分散させたものであり、隔膜30は、
分散材3…3が分散している分散部30aと分散材がな
い基部(非分散部)30bとからなっている。分散部3
0aでは、分散材3…3の存在により供与体の透過が抑
制されており、基部よりも透過率が低くなっている。ま
た、この例では、分散の有無によって透過率を変えるも
のとしたが分散密度、分散材の大きさ、分散材の種別を
場所によって変えることによって透過率を変えることも
可能である。
FIG. 1A shows a case where a thin film portion 1a is provided by locally changing the thickness of a diaphragm 1. In the thin film portion 1a,
A higher donor transmittance than the base (thick film portion) 1b is obtained. Here, q1 and q2 in the figure indicate the permeation amount of the donor per unit time and unit area. In FIG. 1B, the material (degree of diffusion) of the film is locally changed. The diffusion coefficient of the local diaphragm (high diffusion portion 10a) is larger than that of the base (low diffusion portion) 10b. I have. In the diaphragm 10, the donor transmittance of the high diffusion portion 10a is larger than that of the base 10b. FIG. 1 (C) shows a case where foaming is controlled and foaming is locally performed.
a and a base (non-foamed portion) 20b having no foam. In the foaming portion 20a, the presence of the bubbles 2... 2 promotes the permeation of the donor, and has a higher transmittance than the base portion 20b. In this example, the transmittance is changed depending on the presence or absence of bubbles. However, the transmittance can be changed by changing the dispersion density of bubbles or / and the size of bubbles depending on the location. FIG. 1D shows a state in which the dispersing material 3 is locally dispersed.
It is composed of a dispersion portion 30a in which the dispersion materials 3 are dispersed and a base portion (non-dispersion portion) 30b without the dispersion material. Dispersing unit 3
At 0a, the permeation of the donor is suppressed due to the presence of the dispersants 3..., And the transmittance is lower than that of the base. In this example, the transmittance is changed depending on the presence or absence of the dispersion. However, the transmittance can be changed by changing the dispersion density, the size of the dispersion material, and the type of the dispersion material depending on the location.

【0011】なお、上記各実施形態では隔膜の供与体透
過率を局部的に変えたが、透過率を変える部分の位置や
広さ、数等は適宜選定可能であり、一部だけでなく例え
ば島状に透過率が異なる部分を設けてもよく、また、境
界を定めて各領域の透過率を変えてもよい。さらに隔膜
の全部または一部において面方向で供与体透過率を徐々
に変化させる傾斜部を設けてもよい。なお、透過率の相
違の程度も特に限定されるものではないが、例えば供与
体が多く必要とされる状態を考慮して高透過率部を確保
し、供与体を多く必要としない状態を考慮して低透過率
部を確保することができる。
In each of the above embodiments, the donor transmittance of the diaphragm is locally changed. However, the position, width, number, etc. of the portion for changing the transmittance can be appropriately selected. A portion having a different transmittance in an island shape may be provided, or the transmittance of each region may be changed by defining a boundary. Further, an inclined portion for gradually changing the donor transmittance in the plane direction may be provided in all or a part of the diaphragm. The degree of difference in transmittance is not particularly limited. For example, a high transmittance portion is secured in consideration of a state where a large number of donors are required, and a state where a large amount of a donor is not considered. As a result, a low transmittance portion can be secured.

【0012】隔膜は、前記した各方法により製造するこ
とができるが、その製造に際しては、固化前の膜を突部
を設けたロール間で圧延して膜の厚さを変えたり、押出
機、射出機で異質の材料や発泡材、分散材を間欠的に原
料投入したりすることにより透過率が異なる部分を設け
ることができる。例えば、押出機で溶融ポリマのシート
を押出し、前記シートを表面に凹凸を設けた金属製ロー
ルで挟み、冷却固化して表面に凹凸のあるポリマシート
をつくることができる。
[0012] The diaphragm can be produced by the above-mentioned methods. In the production, the film before solidification is rolled between rolls provided with protrusions to change the thickness of the film, or an extruder, A portion having a different transmittance can be provided by intermittently feeding a different material, a foaming material, or a dispersing material with an injection machine. For example, a sheet of a molten polymer is extruded by an extruder, and the sheet is sandwiched between metal rolls having irregularities on the surface, and cooled and solidified to form a polymer sheet having irregularities on the surface.

【0013】上記により得られる隔膜は、好適には脱窒
処理施設に用いられ、メタン等の有機炭素源を増殖因子
(供与体)とし、脱窒菌を受容体とする。その際には予
め隔膜を微生物担体とするべく、微生物を固定する工程
を設けてもよい。この隔膜の配置方法、配置形状につい
ては特に限定されるものではなく、施設の装置構造等に
より適宜の形状、方法で配置することができる。なお、
本発明としては供与体および受容体の種類が上記に限定
されるものではなく、上記とは種別の異なる受容体に合
わせて上記と異なる供与体を対象とすることができ、供
与体、受容体が複数であってもよい。
The membrane obtained as described above is preferably used in a denitrification treatment facility, and uses an organic carbon source such as methane as a growth factor (donor) and a denitrifying bacterium as an acceptor. In that case, a step of immobilizing microorganisms may be provided in advance so that the diaphragm is used as a microorganism carrier. The arrangement method and arrangement shape of the diaphragm are not particularly limited, and they can be arranged in an appropriate shape and method according to the facility device structure and the like. In addition,
As the present invention, the types of the donor and the acceptor are not limited to the above, and it is possible to target a different donor from the above in accordance with an acceptor of a different type from the above. May be plural.

【0014】本発明の隔膜によれば、位置によって供与
体の透過率が異なるので、該透過率の違いによって微生
物が位置によって異なる増殖形態を示す。すなわち、透
過率が高い場所では活発なコロニーが形成され、透過率
が低い部分は活動の低いコロニーまた非コロニーとな
る。そして、負荷が大きいときや温度が低いときには、
透過率が高い場所のコロニーで増殖因子が不足すること
なく微生物が活発に活動するため、脱窒等の所期の性能
が効果的に得られる。一方、負荷が小さいときや温度が
高いときには、透過率が低い部分では増殖因子が良好に
消費されて微生物が活動しており、透過率が高い部分で
はコロニーでの増殖因子の消費により増殖因子が余剰に
なるのが抑えられている。したがって、透過率の選定に
おいては、負荷変動や温度を想定して大負荷、低温度に
合わせて高透過率部分の透過率を定め、低負荷、高温度
に合わせて低透過率部分の透過率を定めるのが望まし
い。すなわち本発明によれば、負荷の変動や季節の変化
に対しても、特別な濃度制御等を行うことなく微生物が
良好に活動しており、余分な供与体の発生も抑制されて
いる。
According to the diaphragm of the present invention, since the transmittance of the donor varies depending on the position, the microorganisms exhibit different growth forms depending on the position due to the difference in the transmittance. That is, an active colony is formed in a place where the transmittance is high, and a portion where the transmittance is low is a colony with low activity or a non-colony. And when the load is large or the temperature is low,
Microorganisms are active in a colony in a place having a high transmittance without a shortage of growth factors, so that desired performance such as denitrification can be effectively obtained. On the other hand, when the load is small or the temperature is high, the growth factor is consumed well in the portion where the transmittance is low and the microorganisms are active, and in the portion where the transmittance is high the growth factor is consumed by the consumption of the growth factor in the colony. Surplus is suppressed. Therefore, in selecting the transmittance, the transmittance of the high transmittance portion is determined according to the large load and low temperature, assuming load fluctuation and temperature, and the transmittance of the low transmittance portion is determined according to the low load and high temperature. It is desirable to determine. That is, according to the present invention, microorganisms are satisfactorily active even with load fluctuations and seasonal changes without performing special concentration control or the like, and the generation of extra donors is suppressed.

【0015】[0015]

【発明の効果】以上説明したように、本発明の微生物用
供与体隔膜によれば、供与体である微生物増殖因子を受
容体である微生物と隔て、前記供与体を該受容体側に徐
々に透過させる供与体隔膜であって、供与体透過率が位
置によって異なる構造を有するので、供与体(例えば有
機炭素)の濃度管理や余剰供与体の処分が不要になり、
温度変化や負荷変動に対して微生物が良好に活動できる
ように供与体を供給できる効果がある。
As described above, according to the donor membrane for microorganisms of the present invention, the microorganism growth factor as the donor is separated from the microorganism as the acceptor, and the donor is gradually transmitted to the acceptor. Since the donor diaphragm has a structure in which the donor transmittance varies depending on the position, it is not necessary to control the concentration of the donor (for example, organic carbon) or to dispose of the excess donor,
There is an effect that the donor can be supplied so that the microorganisms can work well against a temperature change or a load change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態における隔膜の部分拡大図
である。
FIG. 1 is a partially enlarged view of a diaphragm according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 隔膜 1a 薄膜部 1b 基部 10 隔膜 10a 高拡散部 10b 基部 20 隔膜 20a 発泡部 20b 基部 30 隔膜 30a 分散部 30b 基部 DESCRIPTION OF SYMBOLS 1 diaphragm 1a thin film part 1b base 10 diaphragm 10a high diffusion part 10b base 20 diaphragm 20a foaming part 20b base 30 diaphragm 30a dispersion part 30b base

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101/16 C08J 5/18 CEQ 4J002 // C08J 5/18 CEQ CER CER CEZ CEZ C12N 11/08 C12N 11/08 C08L 101/00 Fターム(参考) 4B033 NA01 NA12 NB02 NB33 NB63 ND04 ND20 4D003 AA01 BA02 CA08 EA20 EA30 EA38 FA04 FA10 4D006 GA02 GA50 MA31 NA21 NA50 PB20 PC67 PC69 4D040 BB02 BB42 BB93 4F071 AA02 AA03 AA10 AE22 AF52 AH19 BB03 BB05 BB06 BC01 4J002 AA01W AA01X AA02W AA02X AC00W AC00X GD00 GE00──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 101/16 C08J 5/18 CEQ 4J002 // C08J 5/18 CEQ CER CER CEZ CEZ C12N 11/08 C12N 11 / 08 C08L 101/00 F-term (reference) 4B033 NA01 NA12 NB02 NB33 NB63 ND04 ND20 4D003 AA01 BA02 CA08 EA20 EA30 EA38 FA04 FA10 4D006 GA02 GA50 MA31 NA21 NA50 PB20 PC67 PC69 4D040 BB02 BB42 ABBA BB93 A03A03A BB06 BC01 4J002 AA01W AA01X AA02W AA02X AC00W AC00X GD00 GE00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 供与体である微生物増殖因子を受容体で
ある微生物と隔て前記供与体を該受容体側に徐々に透過
させる供与体隔膜であって、供与体透過率が位置によっ
て異なる構造を有することを特徴とする微生物用供与体
隔膜
Claims: 1. A donor membrane for separating a donor microbial growth factor from an acceptor microorganism and allowing the donor to permeate gradually toward the acceptor, wherein the donor permeability has a structure that differs depending on the position. Donor diaphragm for microorganisms characterized by the following:
【請求項2】 膜の構成材料、厚さ、膜の空隙率、分散
材の分散率の1つ以上を位置によって変えることによっ
て供与体透過率を位置によって異ならせることを特徴と
する請求項1記載の微生物用供与体隔膜
2. The method according to claim 1, wherein at least one of the constituent material and thickness of the membrane, the porosity of the membrane, and the dispersity of the dispersing material is changed depending on the position, so that the donor transmittance varies depending on the position. Donor membrane for microorganisms as described
【請求項3】 分散材は吸着材であることを特徴とする
請求項1または2に記載の微生物用供与体隔膜
3. The donor membrane for microorganisms according to claim 1, wherein the dispersant is an adsorbent.
【請求項4】 膜の構成材料が熱可塑性ポリマ、熱硬化
性ポリマ、ゴムおよび/あるいはこれらの混合物である
ことを特徴とする請求項1〜3のいずれかに記載の微生
物用供与体隔膜
4. The donor membrane for microorganisms according to claim 1, wherein the constituent material of the membrane is a thermoplastic polymer, a thermosetting polymer, a rubber, and / or a mixture thereof.
【請求項5】 隔膜が微生物を固定する微生物担体であ
ることを特徴とする請求項1〜4のいずれかの記載の微
生物用供与体隔膜
5. The donor membrane for microorganisms according to claim 1, wherein the membrane is a microorganism carrier for immobilizing microorganisms.
【請求項6】 請求項1〜5のいずれかに記載の膜を押
出成形、ブロー成形、圧縮成形、射出成形あるいは真空
成形することを特徴とする微生物用供与体隔膜の製造方
6. A process for producing a donor membrane for microorganisms, comprising subjecting the membrane according to claim 1 to extrusion molding, blow molding, compression molding, injection molding or vacuum molding.
JP11096800A 1999-04-02 1999-04-02 Donor diaphragm for microorganism and production thereof Pending JP2000288584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11096800A JP2000288584A (en) 1999-04-02 1999-04-02 Donor diaphragm for microorganism and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11096800A JP2000288584A (en) 1999-04-02 1999-04-02 Donor diaphragm for microorganism and production thereof

Publications (1)

Publication Number Publication Date
JP2000288584A true JP2000288584A (en) 2000-10-17

Family

ID=14174708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11096800A Pending JP2000288584A (en) 1999-04-02 1999-04-02 Donor diaphragm for microorganism and production thereof

Country Status (1)

Country Link
JP (1) JP2000288584A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
JP2011005380A (en) * 2009-06-24 2011-01-13 Central Res Inst Of Electric Power Ind Device for supplying electron donor to microorganism and method of using the device
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
JP2013121595A (en) * 2013-02-12 2013-06-20 Central Research Institute Of Electric Power Industry Device for supplying electron donor to microorganism and method of using the device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
JP5335238B2 (en) * 2005-06-15 2013-11-06 一般財団法人電力中央研究所 Microbial activity control substance supply method and apparatus, environmental purification method and bioreactor using the same
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
JP2011005380A (en) * 2009-06-24 2011-01-13 Central Res Inst Of Electric Power Ind Device for supplying electron donor to microorganism and method of using the device
JP2013121595A (en) * 2013-02-12 2013-06-20 Central Research Institute Of Electric Power Industry Device for supplying electron donor to microorganism and method of using the device

Similar Documents

Publication Publication Date Title
US7140495B2 (en) Layered sheet construction for wastewater treatment
Chiemchaisri et al. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment
Brindle et al. Nitrification and oxygen utilisation in a membrane aeration bioreactor
Huang et al. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor
JP3267935B2 (en) Method and apparatus for treating organic wastewater
Leyva-Díaz et al. Comparative kinetics of hybrid and pure moving bed reactor-membrane bioreactors
Zhang et al. Transport and biodegradation of toxic organics in biofilms
CN102249489B (en) Wastewater treatment device and wastewater treatment method using same
WO2008066244A1 (en) Apparatus for treating high concentration organic waste water and method of treating high concentration organic waste water using the same
Zhang et al. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment
JP2887737B2 (en) Bioreactor
JP2000288584A (en) Donor diaphragm for microorganism and production thereof
Morgenroth et al. Modeling of enhanced biological phosphorus removal in a sequencing batch biofilm reactor
JPH1085787A (en) Method and apparatus for nitrification-denitrification treatment.
JPH11309480A (en) Operating method of immersion type membrane separation device
Ngo et al. Simple approaches towards the design of an attached-growth sponge bioreactor (AGSB) for wastewater treatment and reuse
Koc‐Jurczyk et al. Biological treatment of landfill leachate at elevated temperature in the presence of polyurethane foam of various porosity
Celmer‐Repin et al. Autotrophic nitrogen‐removing biofilms on porous and non‐porous membranes
US6270665B1 (en) Aeration tank of organic waste liquor and aeration apparatus using the tank
Motlagh et al. Advective flow through membrane-aerated biofilms: Modeling results
Liu et al. Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment
Arbabi et al. Optimization of SBR system for enhanced biological phosphorus and nitrogen removal
Li et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods
JP2000094000A (en) Immersion-type film-utilizing methane fermentation system
Yu et al. Diffusion of lactose in acidogenic biofilms