Nothing Special   »   [go: up one dir, main page]

JP2000266750A - Immunoassay of midkine - Google Patents

Immunoassay of midkine

Info

Publication number
JP2000266750A
JP2000266750A JP11070734A JP7073499A JP2000266750A JP 2000266750 A JP2000266750 A JP 2000266750A JP 11070734 A JP11070734 A JP 11070734A JP 7073499 A JP7073499 A JP 7073499A JP 2000266750 A JP2000266750 A JP 2000266750A
Authority
JP
Japan
Prior art keywords
antibody
ionic strength
reaction
buffer solution
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11070734A
Other languages
Japanese (ja)
Other versions
JP2000266750A5 (en
Inventor
Akira Yano
朗 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP11070734A priority Critical patent/JP2000266750A/en
Publication of JP2000266750A publication Critical patent/JP2000266750A/en
Publication of JP2000266750A5 publication Critical patent/JP2000266750A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To greatly improve immunoreaction efficiency in comparison with that under a physiological condition by setting ionic strength of an immunoreactive buffer solution used for a reaction between Midkine(MK) and an antibody within a predetermined value range higher than a usual one. SOLUTION: A preferable measurement system can be constructed because a polyclonal antibody and a monoclonal antibody are used alike. As an immunoreaction buffer solution, a phosphoric acid buffer solution, tris- hydrochloric acid buffer solution, and the like can be used. For regulating ionic strength, a tris-hydrochloric acid buffer solution with ignorable strength can be used conveniently. Although a salt such as NaCl and KCl may be used for regulating ionic strength, KCl is desirable. As to a salt concentration, an ionic strength ranging 0.3-1.5 is used, however, an ionic strength ranging from 0.4 to 0.6 provides the most stable result. An MK measuring immunoreaction buffer solution improving ionic strength accomplishes improvement important for high sensitive immunomeasurement when it is used in either of two reactions between MK and an antibody carried out in a two-step sandwich method or used in a one-step method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、臨床検体中のミッ
ドカイン(以降MK)を定量的に測定するために用いられ
るMKの免疫学的測定を高感度化かつ安定化する方法にお
いて、MKと抗体との免疫反応の効率を大幅に向上させる
と同時に非特異的な反応を減少させて反応の高感度化と
測定再現性の向上を両立させる方法に関する。
The present invention relates to a method for improving the sensitivity and stabilization of MK immunoassay used for quantitatively measuring midkine (hereinafter referred to as MK) in a clinical sample. The present invention relates to a method for significantly improving the efficiency of an immune reaction with an antibody, and at the same time, reducing nonspecific reactions to achieve both high sensitivity of the reaction and improvement in measurement reproducibility.

【0002】[0002]

【従来の技術】MKはレチノイン酸によって発現が誘導さ
れる遺伝子の産物として発見された分子量13,000の塩基
性アミノ酸に富むヘパリン結合性の成長因子である。
(Kadomatu,K.et al.,:Biophys.Res.Commu.,151:1312-1
318)MKは神経細胞の生存維持や神経突起の伸長に関与
しており、また個体発生、組織修復、癌の進展等の過程
に深く関わっていることが示唆されている。また、多く
のヒト癌でMKの発現が調べられており、MKは非癌部に比
べて癌部に高頻度に高いレベルでの発現が認められてい
る。このような背景からヒト体液中のMKを測定すること
は癌を初めとする各種の疾病の診断や治療に有効な手が
かりを与える可能性がある。しかしながら、ヒト体液中
のMKの濃度は数十〜数百pg/ml(健常者)と低濃度で、
実用的な測定系を組み上げる為にはできるだけ高感度で
しかも再現性の良い結果を与える測定系を組み上げるこ
とが重要となる。そこで本発明者は、サンドイッチ測定
法を用いた免疫学的測定法においてMKをより高感度にか
つ再現性よく測定するための各種条件を検討した結果、
免疫反応用緩衝液のイオン強度が通常用いられる強度よ
り高い場合にMKと抗体との反応性が大幅に改善されるこ
とを見出した。しかも最も高い反応性を示すイオン強度
は0.5付近と通常用いられている生理的条件の0.15より
遥かに高くその際のレスポンスの向上は生理的条件下の
4倍以上にもなること、また0.3以上のイオン強度になる
とイオン強度の変動によるレスポンスの変動幅が小さく
なり、さらに非特異的な固相への反応が減少してブラン
クレベルが低下するため測定結果の再現性が向上する事
も併せて見出し、本発明の高感度でかつ再現性の良い測
定結果を与えるMKの免疫学的測定法を完成させた。
2. Description of the Related Art MK is a heparin-binding growth factor rich in basic amino acids having a molecular weight of 13,000 and found as a product of a gene whose expression is induced by retinoic acid.
(Kadomatu, K. et al.,: Biophys. Res. Commu., 151: 1312-1.
318) It has been suggested that MK is involved in maintaining survival of nerve cells and elongating neurites, and is also deeply involved in processes such as ontogenesis, tissue repair, and progression of cancer. In addition, the expression of MK has been examined in many human cancers, and the expression of MK at a higher frequency is recognized in cancerous parts more frequently than in non-cancerous parts. From such a background, measuring MK in human body fluid may provide an effective clue for diagnosis and treatment of various diseases including cancer. However, the concentration of MK in human body fluid is as low as several tens to several hundreds pg / ml (healthy persons),
In order to assemble a practical measurement system, it is important to assemble a measurement system that provides as high a sensitivity as possible and a result with good reproducibility. Therefore, the present inventors have studied various conditions for measuring MK with higher sensitivity and reproducibility in an immunological assay using a sandwich assay,
It has been found that the reactivity between MK and the antibody is significantly improved when the ionic strength of the buffer for the immune reaction is higher than the strength normally used. Moreover, the ionic strength showing the highest reactivity is around 0.5, which is much higher than the usual physiological condition of 0.15, and the improvement of the response at that time is under physiological conditions
When the ionic strength is more than 4 times, and when the ionic strength is 0.3 or more, the fluctuation range of the response due to the fluctuation of the ionic strength becomes small, and further, the reaction to the non-specific solid phase is reduced, and the blank level is reduced. We also found that the reproducibility of the results was improved, and completed the immunological assay for MK of the present invention, which provides highly sensitive and reproducible measurement results.

【0003】[0003]

【発明が解決しようとする課題】サンドイッチ測定法
は、エピトープを少なくとも二つ有する測定対象物質
(以下抗原という)を測定する際に、固相化されている
抗体と液相中の抗体とで目的の抗原を挟む(=サンドイ
ッチする)ことによって抗原量を測定する方法である。
このとき、実際には液相中の抗体をラジオアイソトー
プ、酵素、蛍光物質、発光物質等で標識(ラベル)して
おいて、そのラベルの量から測定すべき抗原量を評価す
る。また、液相抗体自体はラベルせず液相抗体に特異的
に反応するラベルされた抗液相抗体等の三次抗体をさら
に反応させることによって間接的に液相抗体をラベル
し、ラベルされた三次抗体の量から測定すべき抗原量を
評価する方法もある。 これらの測定系は、免疫反応を
2度行う、いわゆる2ステップ測定系と1度だけ行う1
ステップ測定系の2種類に分けることができる。2ステ
ップ測定系は、まず一次反応として固相抗体に抗原を結
合させ、ついで洗浄等により未反応の抗原を除いた後
に、二次反応としてラベルされた液相抗体を測定系に添
加し、固相抗体にトラップされた抗原分子に液相抗体を
結合させる方法であり、1ステップ測定系は、抗体とし
て互いに異なるエピトープを認識する抗体を組み合わせ
て、抗原とこれらの抗体との結合反応を、固相抗体と液
相抗体との共存下に同時に行う方法である。1ステップ
測定系は測定操作が少なく反応の効率も高いので、異な
るエピトープを持つ抗体を選択できるモノクローナル抗
体を用いた場合、ほとんど1ステップ測定系が採用され
ている。MKの場合は、特開平10-160735に記載した方法
でポリクローナル抗体の組み合わせでも1ステップ測定
系を組み上げる事が可能である。この際免疫反応用緩衝
液は、2ステップ測定系の場合は一次反応用、二次反応
用の2種類となり、1ステップ測定系の場合は1種類と
なる。1ステップ測定系の場合に液相抗体としてラベル
されていない抗体を用いた場合には液相抗体に対するラ
ベルされた抗液相抗体をさらに反応させる工程が必要と
なるが本発明で用いられる免疫反応用緩衝液はこのよう
な過程に用いられる緩衝液は含まれず、あくまで測定対
象のMKとその抗体との反応の際に用いられる免疫反応用
緩衝液を指している。また、例えば本来固相化する抗体
をビオチン等でラベルしておき、抗原抗体反応の後にス
トレプトアビジン固相等でトラップする方法もあるがこ
の場合もビオチン化抗体とストレプトアビジン固相との
結合過程に用いられる反応用緩衝液は本発明には含まれ
ない。本発明はMK測定用免疫反応用緩衝液を検討した結
果見出された免疫反応の効率を大幅に改善し、かつ反応
自体の再現性を向上させるMK測定用免疫反応用緩衝液に
関するものである。
In the sandwich assay method, when measuring a substance to be measured having at least two epitopes (hereinafter referred to as an antigen), an antibody immobilized and an antibody in a liquid phase are used. This method measures the amount of antigen by sandwiching (= sandwiching) the antigen.
At this time, actually, the antibody in the liquid phase is labeled (labeled) with a radioisotope, an enzyme, a fluorescent substance, a luminescent substance, or the like, and the amount of the antigen to be measured is evaluated from the amount of the label. In addition, the liquid-phase antibody itself is not labeled, and the liquid-phase antibody is indirectly labeled by further reacting with a tertiary antibody such as a labeled anti-liquid-phase antibody that specifically reacts with the liquid-phase antibody. There is also a method for evaluating the amount of antigen to be measured from the amount of antibody. These measurement systems perform an immune reaction twice, that is, a so-called two-step measurement system and perform only once.
It can be divided into two types of step measurement systems. In the two-step measurement system, first, an antigen is bound to a solid-phase antibody as a primary reaction, and then unreacted antigen is removed by washing or the like. Then, a liquid-phase antibody labeled as a secondary reaction is added to the measurement system, This is a method in which a liquid phase antibody is bound to an antigen molecule trapped by a phase antibody. In a one-step measurement system, antibodies that recognize different epitopes are combined as antibodies, and the binding reaction between the antigen and these antibodies is fixed. This method is performed simultaneously in the presence of a phase antibody and a liquid phase antibody. Since the one-step measurement system has a small number of measurement operations and high reaction efficiency, almost one-step measurement systems are used when monoclonal antibodies capable of selecting antibodies having different epitopes are used. In the case of MK, it is possible to set up a one-step measurement system even with a combination of polyclonal antibodies by the method described in JP-A-10-160735. At this time, the buffer for the immunoreaction is two types for the primary reaction and the secondary reaction in the case of the two-step measurement system, and is one type in the case of the one-step measurement system. When an unlabeled antibody is used as a liquid phase antibody in the case of a one-step measurement system, a step of further reacting a labeled anti-liquid phase antibody against the liquid phase antibody is required. The buffer for use does not include the buffer used in such a process, but refers to the buffer for immunoreaction used for the reaction between the MK to be measured and its antibody. Further, for example, there is a method in which an antibody to be solid-phased is labeled with biotin or the like and trapped with a streptavidin solid phase after an antigen-antibody reaction.In this case, too, the binding process between the biotinylated antibody and the streptavidin solid phase is also used. The reaction buffer used in the above is not included in the present invention. The present invention relates to a buffer for an immunoreaction for MK measurement, which significantly improves the efficiency of an immunoreaction found as a result of examining a buffer for an immunoreaction for MK measurement and improves the reproducibility of the reaction itself. .

【0004】[0004]

【発明の実施の形態】以下、本発明法をさらに詳しく説
明する。通常、ポリクローナル抗体を用いて組み上げら
れた測定系で用いられている免疫反応用緩衝液のイオン
強度は生理的条件の0.15付近に設定するのが一般的であ
る。(P.Tijssen著 石川栄治監訳 エンザイムイムノアッ
セイ 生化学実験法11 東京科学同人 p114)一方、0.4程
度の高いイオン強度を用いている場合もあるがそれらは
本来の反応以外に生じてしまう非特異的な結合反応を抑
制する目的で加えられており、本発明の場合のようにイ
オン強度の増大とともに目的の抗原抗体反応そのものの
反応効率が向上している例は知られていない。例えば、
ヒト成長ホルモン(以下hGF)の測定に於いて、(Hashida,
S.et al.,Use of inorganic salts tominimize serum i
nterference in a sandwich enzyme immumoassay for h
umangrowth hormone using Fab’-horseradish peroxid
ase conjugate. Clin.Clim.Acta,135:263-273,1983 )表
題のごとく血清等の生体試料を検体として測定する場
合、血清中に存在する目的蛋白質以外の不特定の蛋白質
が非特異的に固相に吸着して本来の抗原抗体反応が阻害
されてしまうのを抑制する目的で0.4MのNaClを免疫反応
用緩衝液に加えている例が記載されている。この場合、
阻害により減少してしまったレスポンスを生理的条件下
より多い塩を添加することによって阻害前の状態近くに
回復させることが目的であり、抗原抗体反応そのものが
塩の添加によって増幅されている訳ではない。従って、
高濃度の塩を添加した場合のレスポンスは血清蛋白を含
まない生理的条件の緩衝液中でhGFを測定した場合のレ
スポンスを上回るものではない。このような塩の添加に
よって非特異反応を軽減する手法は、イオン強度の増大
につれて非特異的に固相に吸着しやすい蛋白のもつ荷電
がイオンの存在によって遮蔽されて吸着力が低下するこ
とを基にしたものである。しかしながら、hGFのように
極端に血清成分の影響を受け易い例は少数派であり、通
常は反応系のイオン強度を増大させると測定対象の抗原
に対する抗体の結合力も低下してしまうことが知られて
いるので(Eisen,H.N. 1980 Immunology:An Introductio
n to Molecular and Cellular Principles of the Immu
ne Responses. 2nd edition. Harper and Row Publ.,)
現在、一般的に用いられている免疫測定系のイオン強度
は非特異的な反応を低下させる効果と、本来の抗原抗体
反応の反応性をできるだけ低下させない条件の両面を考
慮した結果、生理的条件である0.15付近に設定されるこ
とが多い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the method of the present invention will be described in more detail. Usually, the ionic strength of the buffer solution for immunoreaction used in a measurement system assembled using a polyclonal antibody is generally set to around 0.15 of physiological conditions. (P.Tijssen, translated by Eiji Ishikawa, Enzyme Immunoassay, Biochemical Experimental Method 11, Tokyo Kagaku Doujin, p114) On the other hand, non-specific It is added for the purpose of suppressing the binding reaction, and there is no known example in which the reaction efficiency of the target antigen-antibody reaction itself is improved as the ionic strength is increased as in the present invention. For example,
In the measurement of human growth hormone (hGF), (Hashida,
S.et al., Use of inorganic salts tominimize serum i
nterference in a sandwich enzyme immumoassay for h
umangrowth hormone using Fab'-horseradish peroxid
Clin. Clim. Acta, 135 : 263-273, 1983) When measuring a biological sample such as serum as a sample as described in There is described an example in which 0.4 M NaCl is added to an immunoreaction buffer for the purpose of suppressing the original antigen-antibody reaction from being inhibited by adsorption to a solid phase. in this case,
The purpose is to restore the response reduced by inhibition to the state before inhibition by adding more salt under physiological conditions, and the antigen-antibody reaction itself is amplified by the addition of salt. Absent. Therefore,
The response when adding a high concentration of salt does not exceed the response when measuring hGF in a buffer under physiological conditions without serum proteins. The method of reducing non-specific reactions by adding such a salt is that as the ionic strength increases, the charge of a protein that is easily non-specifically adsorbed to the solid phase is shielded by the presence of ions, and the adsorption power decreases. It is based on However, a minority, such as hGF, is extremely sensitive to serum components, and it is known that increasing the ionic strength of the reaction system usually reduces the binding strength of the antibody to the antigen to be measured. (Eisen, HN 1980 Immunology: An Introductio
n to Molecular and Cellular Principles of the Immu
ne Responses. 2nd edition.Harper and Row Publ.,)
At present, the ionic strength of the commonly used immunoassay system is considered to be a physiological condition as a result of considering both the effect of reducing non-specific reactions and the condition that does not reduce the reactivity of the original antigen-antibody reaction as much as possible. Is often set near 0.15.

【0005】本発明者らもMKの免疫学的測定法を組み立
てるにあたり、MKと抗体との免疫反応に用いられる緩衝
液のイオン強度が反応の効率と反応の特異性にどの様に
影響しているのかを検討したところ、予想に反し、0.15
以上にイオン強度を増大させていくとそれにつれてレス
ポンスが増大し、しかも非特異的な反応の指標となるブ
ランクレベルはイオン強度の増大と共に減少していくこ
とを見出し、本発明の高感度でかつ測定再現性の良いMK
の免疫学的測定法を完成させるに至った。その効果は、
測定系が1ステップ測定系でも、2ステップ測定系にお
ける2つの免疫反応のどの段階でも認められたが、特に
1ステップ測定系の場合により顕著に現れ、イオン強度
を0.15から小刻みに増大させた際にもその変動に鋭敏に
応答してレスポンスが増大することが確認された。具体
的には、塩がNaClの場合、イオン強度が0.15から0.3ま
での変動でレスポンスは3.2倍に増大し、0.4の時にはレ
スポンスは0.15の 4.1倍となった。また、0.4以降レス
ポンスは漸減するもののその減少は緩やかであり、0.15
の場合より低いレスポンスとなったのはイオン強度が1.
3以上となってからであった。ただし、レスポンスが生
理的条件を下回っていても、ブランクが大幅に低下して
いるため免疫反応の感度に関係する Signal/Noise比は
イオン強度が1.5に至るまで生理的条件の0.15を上まわ
っており、その意味で1.5も有効なイオン強度の範囲内
であった。しかしながら実用的にはNaClの場合、0.4以
上0.6以下の範囲がイオン強度の変動によるレスポンス
の変動幅が少なく塩の析出等の2次的な問題も少ないこ
とからNaClを用いた場合、0.4から0.6がMK測定において
好適に用いられるイオン強度の範囲と判断される。また
NaCl以外の塩でも同様の効果が認められ、1価のイオン
を生成する塩ではKCl,KI,2価のイオンを生成する塩で
は硫酸アンモニウム(NH4)2SO4, 硫酸カリウムK2SO4につ
いてその効果が確認された。このことは、今回の現象が
ナトリウムあるいはカリウムイオン、もしくは塩素イオ
ン等の特定のイオンのみに現れる現象ではなく、イオン
強度の大きさそのものが重要であることを示している。
一方、レスポンスがイオン強度により大きく変動するこ
とは測定の再現性という点では問題となる。つまり実用
性の観点から見た場合は測定系のイオン強度が多少変動
してもレスポンスが変動しにくい方が測定の再現性を確
保しやすいといえる。この点においてKClは同じレスポ
ンスを示すイオン強度の範囲が広いこととブランクレベ
ルも他の塩にくらべて低目であることから、今回検討し
た中で最もMKの測定系に適した塩といえる。KClを用い
た場合、反応性が高くかつ安定したレスポンスを与える
イオン強度の範囲はTris-HCl緩衝液をベースとした場合
0.3から0.6である。しかしながらKClの実際の使用濃
度は、測定対象の検体が何倍に希釈されるかによっても
異なってくる。実用上は検体自身のもつイオン強度も問
題となりその影響を受けない濃度が実際に使用される濃
度となるからである。例えば血清、血漿、唾液、髄液、
尿等各種の体液を検体に用いた場合、免疫反応用緩衝液
には0.4から0.5の範囲でKClを加えておけばよい。なぜ
なら体液のイオン強度は0から0.15の範囲と考えられる
ので、検体の免疫反応用緩衝液による希釈倍率を10倍程
度とした場合、先のイオン強度の範囲の緩衝液を用いれ
ば種々の検体のイオン強度の変動に伴う免疫反応時の緩
衝液のイオン強度の変動はほぼ無視することができるか
らである。ただし、検体の希釈倍率を非常に高く取れる
場合には先のイオン強度の範囲にこだわる必要はない。
しかしながら、0.15から0.3間はレスポンスの変動幅が
大きいため、変動幅が小さくなる0.3より高い範囲のイ
オン強度を任意に選んでおくことが測定結果を安定化さ
せるという意味で重要である。また、反応温度や反応液
のpHがイオン強度の範囲に与える影響を検討したとこ
ろ、良好なレスポンスを示すイオン強度の範囲は20℃か
ら37℃間の反応温度の変動やpH 7からpH 9.2間の反応液
pHの変動による影響を受けなかったことから先の範囲は
ほぼ普遍的なものと判断することができる。
[0005] The present inventors have also set up an immunoassay for MK in which how the ionic strength of the buffer used for the immune reaction between MK and an antibody affects the efficiency and specificity of the reaction. After examining whether it is
As the ionic strength is increased as described above, the response increases as well, and it is found that the blank level, which is an index of a nonspecific reaction, decreases with an increase in the ionic strength. MK with good measurement reproducibility
Has been completed. The effect is
Even when the measurement system was a one-step measurement system, it was observed at any stage of the two immunoreactions in the two-step measurement system. It was also confirmed that the response increased in response to the fluctuation. Specifically, when the salt was NaCl, the response increased 3.2 times when the ionic strength varied from 0.15 to 0.3, and when the salt was 0.4, the response was 4.1 times 0.15. Although the response gradually decreased after 0.4, the decrease was gradual, and 0.15
The response was lower than in the case of 1.
It was after three or more. However, even if the response is below physiological conditions, the signal / noise ratio, which is related to the sensitivity of the immune response, exceeds the physiological condition of 0.15 until the ionic strength reaches 1.5 because the blank is greatly reduced. In that sense, 1.5 was within the range of effective ionic strength. However, practically, in the case of NaCl, the range of 0.4 or more and 0.6 or less has a small fluctuation range of the response due to the fluctuation of the ionic strength and there are few secondary problems such as salt precipitation. Is determined to be a range of ionic strength suitably used in the MK measurement. Also
Similar effects are observed with salts other than NaCl. For salts that generate monovalent ions, KCl and KI, for salts that generate divalent ions, ammonium sulfate (NH 4 ) 2 SO 4 and potassium sulfate K 2 SO 4 The effect was confirmed. This indicates that the magnitude of the ionic strength itself is important, not the phenomenon that this phenomenon appears only in specific ions such as sodium or potassium ions or chloride ions.
On the other hand, a large variation in response due to ionic strength poses a problem in terms of measurement reproducibility. In other words, from the viewpoint of practicality, it can be said that the reproducibility of the measurement is easier to ensure if the response does not fluctuate even if the ion intensity of the measurement system fluctuates somewhat. In this regard, KCl is the most suitable salt for the MK measurement system studied in this study because KCl has a wide range of ionic strength showing the same response and has a lower blank level than other salts. When KCl is used, the range of ionic strength that gives a highly reactive and stable response is based on Tris-HCl buffer.
It is 0.3 to 0.6. However, the actual use concentration of KCl differs depending on how many times the analyte to be measured is diluted. This is because, in practical use, the ionic strength of the specimen itself also becomes a problem, and the concentration not affected by the ionic strength is the concentration actually used. For example, serum, plasma, saliva, cerebrospinal fluid,
When various body fluids such as urine are used for the specimen, KCl may be added to the immune reaction buffer in the range of 0.4 to 0.5. Because the ionic strength of the body fluid is considered to be in the range of 0 to 0.15, if the dilution ratio of the sample with the buffer for immunoreaction is about 10 times, the use of This is because the change in the ionic strength of the buffer during the immune reaction due to the change in the ionic strength can be almost ignored. However, when the dilution ratio of the sample can be made extremely high, it is not necessary to stick to the above range of ionic strength.
However, since the range of fluctuation of the response is large between 0.15 and 0.3, it is important to arbitrarily select an ion intensity in a range higher than 0.3 where the range of fluctuation is small in order to stabilize the measurement result. In addition, the effect of the reaction temperature and the pH of the reaction solution on the range of ionic strength was examined.The range of ionic strength showing a good response was the fluctuation of the reaction temperature between 20 ° C and 37 ° C and the range of pH between 7 and 9.2. Reaction liquid
The previous range can be judged to be almost universal because it was not affected by the fluctuation of pH.

【0006】MKの免疫学的測定法を実施する場合、0.5
もの高いイオン強度に於いて生理的条件下の0.15に比べ
て抗原抗体反応が促進された結果、通常条件の4倍以上
のレスポンスが得られ、しかも従来言われているよう
に、非特異的な標識抗体の固相への結合が減少してブラ
ンクレベルは低下するので、2重の効果により非常に高
感度でかつ再現性の良い測定系となるという知見は今回
新たに見出されたものである。また、この現象が現在用
いている抗ヒトMK抗体とヒトMKとの反応においてたまた
ま認められた現象ではないことが、他の抗体である抗マ
ウスMK抗体を用いてヒトMKもしくはマウスMKを測定した
場合でも同様の現象が認められたことにより確認され
た。さらに、抗体がウサギ抗体、ニワトリ抗体と異なっ
た動物種由来のものであっても、得られた抗体とMK抗原
との反応におけるイオン強度の効果に免疫動物による差
は認められなかった。興味深いことに、2ステップの測
定系に於いては、1ステップ目、2ステップ目共にイオ
ン強度の増加に伴ってレスポンスが増加したのに対し、
MK抗原を直接固相化して作製した固相化抗原に抗体を反
応させた場合には、通常の抗原を測定する場合と同様に
イオン強度の増加と共に抗体の固相抗原に対する反応性
は低下していた。つまり今回見出した現象は、液相や抗
体上のMK抗原が抗体と反応する場合、言い換えるとコン
フォメーションの自由度の高い状態のMK抗原が抗体と反
応する場合には認められ、MK抗原が物理的に固相化され
た場合には認められなかったことになる。これらのこと
は、イオン強度の増大によりMKのコンフォメーションが
通常の状態から変化し、その結果、抗体との反応性が改
善されたことを示唆しているものと考えられる。コンフ
ォメーションの変化はMK表面の電荷の変動で起こると考
えられ、その電荷の変動はイオン強度の増大と共に起こ
るものと推察される。つまり、重要なのはイオン強度の
変化であり、イオンの種類に依存するものではないと考
えられる。
When performing an immunoassay for MK, 0.5
As a result, the antigen-antibody reaction was promoted at a very high ionic strength compared to 0.15 under physiological conditions, resulting in a response four times or more higher than that under normal conditions. Since the binding of the labeled antibody to the solid phase decreases and the blank level decreases, the finding that the double effect results in a highly sensitive and highly reproducible measurement system is newly found. is there. In addition, we measured human MK or mouse MK using another antibody, anti-mouse MK antibody, that this phenomenon was not a phenomenon that happened to be observed in the reaction between the currently used anti-human MK antibody and human MK. In this case, it was confirmed that the same phenomenon was observed. Furthermore, even if the antibody was derived from a different animal species from the rabbit antibody and the chicken antibody, no difference was observed between the immunized animals in the effect of ionic strength on the reaction between the obtained antibody and the MK antigen. Interestingly, in the two-step measurement system, the response increased with increasing ionic strength in both the first and second steps,
When the antibody reacts with the immobilized antigen prepared by directly immobilizing the MK antigen, the reactivity of the antibody to the solid phase antigen decreases as the ionic strength increases, as in the case of measuring the normal antigen. I was In other words, the phenomenon discovered this time is observed when the MK antigen on the liquid phase or on the antibody reacts with the antibody, in other words, when the MK antigen with a high degree of conformation reacts with the antibody. In the case of solid phase immobilization, it was not recognized. It is considered that these facts suggest that the conformation of MK changed from a normal state due to the increase in ionic strength, and as a result, the reactivity with the antibody was improved. The change in conformation is thought to occur due to the change in the charge on the MK surface, and it is speculated that the change in the charge occurs with an increase in ionic strength. That is, it is considered that what is important is a change in ionic strength and does not depend on the type of ion.

【0007】本発明の実施態様は、抗体としてはポリク
ローナル抗体、モノクローナル抗体のいずれも用いるこ
とができるが特開平10-160735に記載の方法によれば、
ポリクローナル抗体をモノクローナル抗体と同様に用い
ることができるのでより望ましい測定系を組み上げるこ
とができる。液相抗体を放射性同位元素で標識する場合
には放射性ヨードをクロラミンTを用いて抗体に結合す
る方法が一般的に用いられている。酵素を標識する場合
は標識酵素としてペルオキシダーゼ(以降POD)、アルカ
リフォスファターゼ、β-ガラクトシダーゼ等を用いる
ことができるが、それらの選択は最終的に用いる比色、
発光、蛍光等の検出手段に何を選択するかにより行えば
よい。例えば一般的に用いられる比色測定の場合はPOD
を選択することが多い。酵素を抗体に標識する方法とし
ては各種の方法が知られているが、マレイミド法(Ishi
kawa E et.al.,Ann NY Acad Sci 420 74-89;1983)は
緩和な条件で抗原抗体反応に影響しにくい抗体のヒンジ
部へ選択的に酵素を導入できるので性能の良い標識物を
得やすい。抗体の固相化方法としては固相の材質によら
ず物理的に固相化する方法が一般的に行われている。固
相の材質はガラス、プラスチック、フェライトなどの磁
性材料等これまでサンドイッチ測定用に用いられてきた
公知の材料を用いることができる。それらの中にはアミ
ノ基等の官能基を導入した物もあり、その場合には抗体
を化学的な方法で固定化することも可能である。本発明
法で用いられる免疫反応用緩衝液には、リン酸緩衝液、
トリス塩酸緩衝液、硼酸緩衝液等、免疫反応に通常用い
られる緩衝液を用いることができる。ただし、イオン強
度の調整は緩衝液の種類により変わってくるので緩衝液
のイオン強度をほぼ無視できるトリス塩酸緩衝液が用い
やすい。例えば、リン酸緩衝液を用いて緩衝液の濃度を
高くとる条件を選択した場合にはリン酸塩の示すイオン
強度にも留意してKCl等の添加濃度を改めて設定する必
要がある。イオン強度の調整にはNaCl,KCl等の塩を用い
れば良いが先に示した理由により、KClが好適に用いら
れる。その濃度はイオン強度 0.3-1.5の間を任意に用い
れば良いが0.4-0.6間が最も安定した結果を与える範囲
である。またKCl,NaClは1価の強電解質なのでモル濃度
でイオン強度を置き換えることができるのは言うまでも
ない。本法のイオン強度を高めたMK測定用の免疫反応用
緩衝液は、2ステップサンドイッチ法の2回のMKと抗体
との反応のいずれの場合でも、1ステップサンドイッチ
法に用いられる場合でもレスポンスの増大、ブランクレ
ベルの低下という高感度な免疫測定を行う上で重要な性
能の改善を実現することができる。
[0007] In the embodiment of the present invention, either polyclonal antibody or monoclonal antibody can be used as the antibody, but according to the method described in JP-A-10-160735,
Since a polyclonal antibody can be used in the same manner as a monoclonal antibody, a more desirable measurement system can be set up. When labeling a liquid phase antibody with a radioisotope, a method of binding radioactive iodine to the antibody using chloramine T is generally used. When labeling the enzyme, peroxidase (hereinafter POD), alkaline phosphatase, β-galactosidase and the like can be used as the labeling enzyme, but their selection is based on the final colorimetric
What should be done is what to select for the detection means such as light emission and fluorescence. For example, POD for commonly used colorimetry
Often select. Various methods are known for labeling an enzyme with an antibody.
kawa E et.al., Ann NY Acad Sci 420 74-89; 1983) can introduce enzymes into the hinge region of an antibody that is less likely to affect the antigen-antibody reaction under mild conditions. Cheap. As a method for immobilizing an antibody, a method for physically immobilizing an antibody regardless of the material of the solid phase is generally used. As the material of the solid phase, a known material that has been used for sandwich measurement, such as a magnetic material such as glass, plastic, or ferrite, can be used. Some of them have introduced a functional group such as an amino group, in which case the antibody can be immobilized by a chemical method. The buffer for the immune reaction used in the method of the present invention includes a phosphate buffer,
Buffers usually used for an immune reaction, such as a Tris-HCl buffer and a borate buffer, can be used. However, since the adjustment of the ionic strength changes depending on the type of the buffer, a Tris-HCl buffer, which can almost ignore the ionic strength of the buffer, is easily used. For example, when a condition for increasing the concentration of the buffer using a phosphate buffer is selected, it is necessary to set the concentration of KCl or the like again while paying attention to the ionic strength of the phosphate. To adjust the ionic strength, a salt such as NaCl or KCl may be used, but KCl is preferably used for the reasons described above. The concentration may be arbitrarily set between 0.3 and 1.5, but the range between 0.4 and 0.6 gives the most stable result. Since KCl and NaCl are monovalent strong electrolytes, it goes without saying that the ionic strength can be replaced by the molar concentration. The immunoreaction buffer for MK measurement with increased ionic strength of this method can provide a high response regardless of whether the two-step sandwich reaction between MK and the antibody is used or the one-step sandwich method. It is possible to realize an important performance improvement in performing a highly sensitive immunoassay such as an increase and a decrease in a blank level.

【0008】[0008]

【実施例】以下に本発明を実施例に従ってさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0009】実施例1 ヒトMKの1ステップELISA測定に
おける免疫反応用緩衝液中のNaCl濃度の影響 本検討で用いられるヒトMKは特開平09-95454に記載の方
法で得たリコンビナントヒトMKを用いた。ウサギ抗MK抗
体、そのペルオキシダーゼ(以下POD)標識抗体、抗体固
定化プレートは特開平10-160735に示されている方法で
調製した。ニワトリ抗MK抗体はProtein Aでの精製を行
わない以外はウサギ抗体と同様に精製し、そのPOD標識
抗体、抗体固定化プレートもウサギ抗体と同様に調製し
た。免疫反応用緩衝液のベースとして50mM Tris-HCl 0.
5%BSA 0.01% MicrocideTMI(Amresco社 CODE E448) pH8.
2を調製し、この中にNaClを0.05M刻みで0.8Mまで、0.8M
より0.1M刻みで1.5Mまで添加した。ヒトMK O , 100ng/
ml(PBS 0.5%BSA 0.01%Microcide I)溶液を先の各塩濃度
に調整済みのTris-HCl緩衝液で10倍に希釈してヒトMK
0,10ng/ml溶液とした後、以下の測定に用いた。調整し
たヒトMK抗原標準液を20μlずつ試験管に分注した。そ
の後、先のTris-HCl緩衝液にPOD標識ニワトリ抗ヒトMK
抗体を加えた溶液を200μlずつ分注した。 混合後、各
溶液を100μlずつウサギ抗ヒトMK抗体プレートに分注し
30分間室温で反応させた。PBS-Tween20洗浄液で5回洗
浄した後、酵素発色液としてテトラメチルベンジジン
(以下TMB)溶液(DAKO社 S1600)を100μlずつ分注し、室
温で30分間反応させ、その後2規定硫酸100μlで反応を
停止し、波長450nmでの吸光度を測定した。得られた結
果を表1に示す。NaCl濃度の増加に伴い、レスポンスが
大幅に変動しており、特に生理的条件である0.15Mから
の濃度の増加により急激にレスポンスが増大しているこ
とが確認できる。また、ブランクレベルはイオン強度の
増加と共に低下していくので今回検討した最高濃度の1.
5MにおいてもS/N比は0.15M時より良い値を示している。
Example 1 Effect of NaCl Concentration in Immune Reaction Buffer on One-Step ELISA Measurement of Human MK Human MK used in this study was a recombinant human MK obtained by the method described in JP-A-09-95454. Was. Rabbit anti-MK antibody, its peroxidase (hereinafter POD) -labeled antibody, and antibody-immobilized plate were prepared by the method described in JP-A-10-160735. The chicken anti-MK antibody was purified in the same manner as the rabbit antibody except that purification with Protein A was not performed, and the POD-labeled antibody and the antibody-immobilized plate were also prepared in the same manner as the rabbit antibody. 50 mM Tris-HCl 0.
5% BSA 0.01% Microcide TM I (Amresco Inc. CODE E448) pH8.
2 was prepared, and NaCl was added therein to 0.8 M in 0.05 M steps, 0.8 M
It was added to 1.5M in 0.1M increments. Human MK O, 100ng /
ml (PBS 0.5% BSA 0.01% Microcide I) solution was diluted 10 times with Tris-HCl buffer adjusted to each salt concentration, and human MK was diluted.
After preparing a 0.10 ng / ml solution, it was used for the following measurements. The prepared human MK antigen standard solution was dispensed into test tubes in an amount of 20 μl. Then, POD-labeled chicken anti-human MK was added to the above Tris-HCl buffer.
The solution to which the antibody was added was dispensed in 200 μl portions. After mixing, 100 μl of each solution was dispensed into a rabbit anti-human MK antibody plate.
The reaction was performed at room temperature for 30 minutes. After washing 5 times with PBS-Tween20 washing solution, tetramethylbenzidine is used as an enzyme coloring solution.
A solution (hereinafter referred to as TMB) (100 μl, DAKO Co., S1600) was dispensed in 100 μl portions and reacted at room temperature for 30 minutes. Thereafter, the reaction was stopped with 100 μl of 2N sulfuric acid, and the absorbance at a wavelength of 450 nm was measured. Table 1 shows the obtained results. It can be confirmed that the response fluctuates greatly with the increase in the NaCl concentration, and that the response sharply increases particularly with an increase in the concentration from the physiological condition of 0.15M. In addition, the blank level decreases as the ionic strength increases.
Even at 5M, the S / N ratio shows a better value than at 0.15M.

【0010】[0010]

【表1】 [Table 1]

【0011】実施例2 NaClと他の塩の比較 実施例1と同様の測定を、NaCl以外にKCl,,硫酸アンモニ
ウム(NH4)SO4,硫酸カリウムK2SO4,について行った。 ブ
ランクレベルに対する各塩の影響を比較するため、標識
抗体濃度を実施例1の2.5倍量用いた他は実施例1と同
様に測定を行った。得られた結果を図1A,B,C,Dに示
す。塩の種類により、レスポンスの増加するパターンに
違いを認めたが、検討した全ての塩が0.15より高いイオ
ン強度に於いて 生理的条件(NaCl 0.15)より高いレス
ポンスを示した(図1A,B,C,D)。特に、KClは最も広い
イオン強度の範囲でほぼ同じレベルの高いレスポンスを
維持し、またブランクレベルも最も低いレベルを示した
ことから本発明法の高イオン強度調整剤として好適に用
いられる塩であることが判明した(図1B)。
Example 2 Comparison between NaCl and other salts The same measurement as in Example 1 was carried out for KCl, ammonium sulfate (NH 4 ) SO 4 , and potassium sulfate K 2 SO 4 in addition to NaCl. In order to compare the influence of each salt on the blank level, the measurement was performed in the same manner as in Example 1 except that the concentration of the labeled antibody was 2.5 times that in Example 1. The obtained results are shown in FIGS. 1A, 1B, 1C, and 1D. Although there was a difference in the pattern of response increase depending on the type of salt, all the salts examined showed a response higher than the physiological condition (NaCl 0.15) at an ionic strength higher than 0.15 (FIGS. 1A, B, C, D). In particular, KCl is a salt that is preferably used as a high ionic strength modifier of the present invention because it maintains a high response at almost the same level in the widest range of ionic strength and also shows the lowest level in the blank level. This was found (FIG. 1B).

【0012】実施例3 2ステップ反応時の免疫反応用
緩衝液イオン強度の影響 実施例1及び2で行った反応をMK抗原と固相抗体の反応
する段階と固相抗体にMK抗原を反応させた状態で標識抗
体を反応させる段階の2ステップに分け、それぞれの反
応ステップに於ける免疫反応用緩衝液中のKCl濃度の影
響を検討した。 1ステップ目の免疫反応用緩衝液中KCl濃度の影響 実施例1と同じTris-HCl 緩衝液にKClを段階的に濃度を
増加させて添加し、標識抗体を加えない状態で実施例1
と同様にMK抗原を希釈後、ウサギ抗ヒトMK抗体プレート
に分注して室温で30分間反応させた。洗浄の後、第2反
応用BufferにはKClを0.45M含む先のTris-HCl Bufferを
用い、ニワトリ抗ヒトMK-POD標識抗体を添加後にプレー
トに分注して室温で30分間反応させた。洗浄の後、TMB
酵素発色液を分注し、室温で30分間反応させ硫酸で反応
を停止した後発色レベルを比較した。 2ステップ目の免疫反応用緩衝液中KCl濃度の影響 1と同様の反応において第1反応用緩衝液中のKCl濃度
を0.45Mに固定しかつMK抗原量をの10倍量用いて固相
抗体に十分量の抗原が結合するようにしてから、第2反
応用緩衝液中のKCl濃度を段階的に増加させて測定を行
った。
Example 3 Influence of Ionic Strength of Immune Reaction Buffer during Two-Step Reaction The reaction performed in Examples 1 and 2 is a step in which MK antigen reacts with a solid phase antibody, and the solid phase antibody is reacted with MK antigen. The reaction was divided into two steps, in which the labeled antibody was reacted in this state, and the effect of the KCl concentration in the immune reaction buffer in each reaction step was examined. Influence of KCl concentration in the buffer for immunoreaction in the first step Example 1 was carried out in the same manner as in Example 1 except that KCl was added to the same Tris-HCl buffer in increasing concentrations and no labeled antibody was added.
After dilution of the MK antigen in the same manner as described above, the mixture was dispensed into a rabbit anti-human MK antibody plate and reacted at room temperature for 30 minutes. After washing, Tris-HCl Buffer containing 0.45 M of KCl was used as a buffer for the second reaction, and a chicken anti-human MK-POD-labeled antibody was added. After dispensing the plate, the plate was reacted at room temperature for 30 minutes. After washing, TMB
The enzyme coloring solution was dispensed, reacted at room temperature for 30 minutes, stopped with sulfuric acid, and the coloring levels were compared. Influence of KCl concentration in buffer for immunoreaction in the second step In the same reaction as in 1, the KCl concentration in the first buffer for reaction was fixed at 0.45 M and the amount of MK antigen was 10 times the amount of solid phase antibody. After a sufficient amount of the antigen was bound, the KCl concentration in the second reaction buffer was gradually increased, and the measurement was performed.

【0013】との結果を図2に示す。 第1反応
目、第2反応目共に、0.55MまでKCl濃度が増加するにつ
れてレスポンスは改善された。すなわち、固相化抗体と
液相中のMK抗原が反応する際も、固相化抗体上に固定化
されたMK抗原と液相の標識抗体が反応する際も、免疫反
応用緩衝液のイオン強度を生理的条件より高く設定する
ことによってMK抗原と抗体の反応効率は向上することが
確認された。
FIG. 2 shows the results. In both the first reaction and the second reaction, the response was improved as the KCl concentration was increased to 0.55M. That is, when the immobilized antibody reacts with the MK antigen in the liquid phase, or when the MK antigen immobilized on the immobilized antibody reacts with the labeled antibody in the liquid phase, the ion of the immune reaction buffer is It was confirmed that by setting the intensity higher than the physiological condition, the reaction efficiency between the MK antigen and the antibody was improved.

【0014】実施例4 物理的に固相化したMK抗原と抗
体との反応性に対するイオン強度の影響 MK抗原を10μg/mlの濃度でPBSに希釈し、PolysorpTM P
late(NUNC)に50μlずつ分注しシールをしてから、室
温で16時間インキュベートしてMK抗原をプレート上に固
定化した。実施例1で用いたベースの免疫反応用緩衝液
にKClを徐々に濃い濃度に添加し、さらにそれぞれの緩
衝液にニワトリ抗ヒトMK-POD標識抗体を希釈添加してか
ら先のMK固定化プレートに分注し、室温で30分間反応さ
せた。PBS-Tween20緩衝液で5回洗浄の後、TMB溶液(DAKO
S1600)を分注し、室温で30分間反応させ、硫酸で反応
を停止後450nmでの吸光度を測定した。この際、ブラン
クとして牛血清アルブミン(BSA)を固定化したプレート
にも先の反応液を分注し同様の処理を行った。得られた
結果を図3に示す。
Example 4 Influence of Ionic Strength on the Reactivity of Physically Immobilized MK Antigen with Antibody MK antigen was diluted with PBS to a concentration of 10 μg / ml in Polysorp P
Late (NUNC) was dispensed in 50 μl aliquots, sealed, and incubated at room temperature for 16 hours to immobilize the MK antigen on the plate. KCl was gradually added to the base immunoreaction buffer used in Example 1 at a gradually increasing concentration, and a chicken anti-human MK-POD labeled antibody was added to each buffer by dilution, and then the MK-immobilized plate was added. And reacted at room temperature for 30 minutes. After washing 5 times with PBS-Tween20 buffer, the TMB solution (DAKO
S1600) was dispensed, reacted at room temperature for 30 minutes, stopped the reaction with sulfuric acid, and measured the absorbance at 450 nm. At this time, the same reaction was performed by dispensing the above reaction solution also on a plate on which bovine serum albumin (BSA) was immobilized as a blank. FIG. 3 shows the obtained results.

【0015】この場合は、KCl濃度の増加に伴いニワト
リ抗ヒトMK抗体の固相化MK抗原に対する反応性は低下し
た。以上から、MKの測定に於いてイオン強度の増大と共
にMK抗原と抗体との反応性が向上するのはMKが液相中に
存在する場合かもしくは抗体上に結合している場合であ
り、MKが直接固相上に固定化された場合にはそのような
効果が現れず通常の抗原と同様にイオン強度の増加に伴
い免疫反応は抑制されることが判明した。この2つの状
態の違いは前者はMK分子のコンフォメーションが変化可
能な状態で後者は変化しにくい状態と考えられる。つま
り、今回のMK測定における高いイオン強度による免疫反
応増強効果はイオン強度の増大に伴ってMKのコンフォメ
ーションが変化し、その結果、抗体との反応性が向上し
たものと推察され、MKのコンフォメーションが変化しに
くい状態ではその効果が現れなかったものと考えられ
る。以上の検討により本発明法の効果はイオン強度の増
大によりMK抗原自体が変化することに起因し、イオンの
種類による効果の強弱はあるにせよ、イオンの種類に限
定されるものではないといえる。
In this case, the reactivity of the chicken anti-human MK antibody to the immobilized MK antigen decreased as the KCl concentration increased. From the above, in the measurement of MK, the reactivity between the MK antigen and the antibody is improved with an increase in the ionic strength when MK is present in the liquid phase or when it is bound on the antibody, MK It was found that such an effect was not exerted when was directly immobilized on a solid phase, and that an immune reaction was suppressed with an increase in ionic strength, similarly to a normal antigen. The difference between the two states is considered that the former is a state in which the conformation of the MK molecule can be changed, and the latter is a state in which it is difficult to change. In other words, the effect of enhancing the immune response due to the high ionic strength in the present MK measurement was presumed to be that the conformation of MK changed with the increase in ionic strength, and as a result, the reactivity with the antibody was improved. It is probable that the effect did not appear when the formation was hard to change. From the above examination, it can be said that the effect of the method of the present invention is due to the fact that the MK antigen itself changes due to an increase in ionic strength, and the effect is not limited to the type of ion, even though the effect depends on the type of ion. .

【0016】[0016]

【発明の効果】MKを免疫反応を用いた測定系で測定する
場合、MKと抗体との反応に用いられる免疫反応用緩衝液
のイオン強度を通常より高い0.3から1.5の範囲に設定す
ることによって、免疫反応の効率が生理的条件下にくら
べて大幅に改善されると共に非特異的な反応も減少し、
高感度で再現性の良い測定が可能となる。
According to the present invention, when MK is measured by a measurement system using an immunoreaction, the ionic strength of an immunoreaction buffer used for the reaction between MK and an antibody is set to a higher than usual range of 0.3 to 1.5. , The efficiency of the immune response is significantly improved compared to physiological conditions, and non-specific responses are reduced,
Measurement with high sensitivity and good reproducibility is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MKを1ステップサンドイッチ法で測定する際
の免疫反応用緩衝液のイオン強度を各種の塩を用いて変
動させた場合のレスポンスとブランクレベルを検討した
結果である。
FIG. 1 shows the results of examining the response and blank level when the ionic strength of an immunoreaction buffer was varied using various salts when MK was measured by the one-step sandwich method.

【図2】 MKを2ステップサンドイッチ法で測定する際
の第一反応と第二反応の免疫反応用緩衝液のイオン強度
をKClを用いて変動させた場合のレスポンスとブランク
レベルを検討した結果である(A:第一反応用緩衝液、B:
第二反応用緩衝液)。
FIG. 2 shows the results of examining the response and blank level when the ionic strength of the immune reaction buffer for the first reaction and the second reaction was varied using KCl when measuring MK by the two-step sandwich method. Yes (A: first reaction buffer, B:
Second reaction buffer).

【図3】 MK抗原を直接プレートに固定化したMK抗原固
相にニワトリ抗ヒトMK-POD標識抗体を反応させる際の免
疫反応用緩衝液のイオン強度をKClを用いて変動させた
場合のレスポンスとブランクレベルを検討した結果であ
る。この場合、ブランク用にBSA固相を使用している。
Fig. 3 Response when the ionic strength of the immune reaction buffer was varied using KCl when reacting chicken anti-human MK-POD-labeled antibody with the MK antigen solid phase in which the MK antigen was directly immobilized on a plate. And the blank level. In this case, a BSA solid phase is used for the blank.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ミッドカイン(Midkine;MK)を定量的に測
定する免疫学的測定法において、抗MK抗体とMKとを反応
させる際の免疫反応用緩衝液のイオン強度を0.3から1.5
に設定することを特徴とするMKの免疫学的測定方法
In an immunoassay for quantitatively measuring Midkine (MK), the ionic strength of an immunoreaction buffer for reacting an anti-MK antibody and MK is adjusted to 0.3 to 1.5.
MK immunological assay method characterized by setting
【請求項2】 反応系のイオン強度を塩化カリウムで調
整する請求項1記載のMKの免疫学的測定方法
2. The method according to claim 1, wherein the ionic strength of the reaction system is adjusted with potassium chloride.
JP11070734A 1999-03-16 1999-03-16 Immunoassay of midkine Pending JP2000266750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070734A JP2000266750A (en) 1999-03-16 1999-03-16 Immunoassay of midkine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070734A JP2000266750A (en) 1999-03-16 1999-03-16 Immunoassay of midkine

Publications (2)

Publication Number Publication Date
JP2000266750A true JP2000266750A (en) 2000-09-29
JP2000266750A5 JP2000266750A5 (en) 2005-11-04

Family

ID=13440065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070734A Pending JP2000266750A (en) 1999-03-16 1999-03-16 Immunoassay of midkine

Country Status (1)

Country Link
JP (1) JP2000266750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078809A1 (en) * 2006-12-27 2008-07-03 Japan Science And Technology Agency Immunological detection method using avian antibody
WO2009107384A1 (en) * 2008-02-29 2009-09-03 国立大学法人名古屋大学 Biomarker for the estimation of acute renal disorder and prognosis of the disorder, and use of the biomarker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078809A1 (en) * 2006-12-27 2008-07-03 Japan Science And Technology Agency Immunological detection method using avian antibody
JPWO2008078809A1 (en) * 2006-12-27 2010-04-30 独立行政法人科学技術振興機構 Immunological detection method using avian antibodies
WO2009107384A1 (en) * 2008-02-29 2009-09-03 国立大学法人名古屋大学 Biomarker for the estimation of acute renal disorder and prognosis of the disorder, and use of the biomarker

Similar Documents

Publication Publication Date Title
US5747273A (en) Immunoassay of total insulin-like growth factor binding protein-1
JP2619549B2 (en) Antigen quantification method and solid phase used for it
JP3447010B2 (en) Elimination of rheumatoid factor interference using anti-Fd antibody
JPWO2008012944A1 (en) Aggregation inhibition measurement method and aggregation inhibition measurement reagent
US20040023309A1 (en) Immunoassay and kit for an early and simultaneous detection of biochemical markers in a patient's sample
US20040248216A1 (en) Method of examining cancer by assaying autoantibody against mdm2 and reagent therefor
KR101325427B1 (en) Reagent for assaying antigen and method of assaying antigen
JPH1090268A (en) Immiunological particle agglutination method
CA2002470A1 (en) Method of assay for antigen
US9541550B2 (en) Method for immunologically measuring soluble LR11
JP2000266750A (en) Immunoassay of midkine
JPH03170058A (en) Reagent complex for immunoassay
CN117417452B (en) Monoclonal antibody of anti-human interferon alpha receptor 1 (IFNAR 1) monoclonal antibody, kit containing same and detection method thereof
JPH06148193A (en) Anti-phospholipid antibody bonding carrier and immunological measuring method using this carrier
JPH07198720A (en) Determination of fibrin
JPH05232109A (en) Method for measuring human osteocalcine pro-proten
AU2002346529B2 (en) Immunoassay and kit for an early and simulataneous detection of biochemical markers in a patient's sample
Cernoch et al. Production and analytical characterization of neopterin immunoreagents for biosensor developments
JPH0466871A (en) High sensitive immunoassay
JPH09189698A (en) Immunoassay
JP3995316B2 (en) Method for detecting cancer by measuring autoantibodies to hormone receptors
WO1991019982A1 (en) Determination of polypeptides and proteins in solutions and biological fluids
JPH08509064A (en) Immobilization of chemically crosslinked proteins on a solid support
CN118359697A (en) Beta amyloid 40 and beta amyloid 42 specific recognition polypeptide and application thereof
CN117031011A (en) Chemiluminescent immunoassay kit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060920