Nothing Special   »   [go: up one dir, main page]

JP2000251870A - Layered type polymer electrolyte battery - Google Patents

Layered type polymer electrolyte battery

Info

Publication number
JP2000251870A
JP2000251870A JP11050515A JP5051599A JP2000251870A JP 2000251870 A JP2000251870 A JP 2000251870A JP 11050515 A JP11050515 A JP 11050515A JP 5051599 A JP5051599 A JP 5051599A JP 2000251870 A JP2000251870 A JP 2000251870A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
negative electrode
positive electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050515A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
恒美 大岩
Tetsuo Kawai
徹夫 川合
Osamu Ishida
修 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP11050515A priority Critical patent/JP2000251870A/en
Publication of JP2000251870A publication Critical patent/JP2000251870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture layered electrodes by contriving shapes for current collecting members of electrodes which constitute the lower and upper outermost layers of a layered electrode group. SOLUTION: This battery is a layered type polymer electrolyte battery, wherein a layered electrode group, in which positive electrodes 6 with a positive electrode mixture layer formed on a current collecting member and negative electrodes 7 with a negative electrode mixture layer formed on a current collecting member are layered via polymer electrolyte layers therebetween, is sheathed by a facing member. The lower and upper outermost layers constituting the layered electrode group are made to have the same polarity, and electrode leads 8, 9 are formed in a central part in the electrode-width direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層形ポリマー電
解質電池に関し、さらに詳しくは、特に携帯用電子機
器、電気自動車、ロードレベリングなどの電源として使
用するのに適した積層形ポリマー電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked polymer electrolyte battery, and more particularly, to a stacked polymer electrolyte battery suitable for use as a power source for portable electronic devices, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】ポリマー電解質電池では、電解質をシー
ト状にすることができ、それによって、A4版、B5版
などの大面積でしかも薄形の電池の作製が可能になり、
各種薄形製品への適用が可能になって、電池の使用範囲
が大きく広がっている。このポリマー電解質を用いた電
池は、耐漏液性を含めた安全性、貯蔵性が優れており、
しかも薄く、フレキシブルであることから、機器の形状
に合わせた電池を設計できるという、今までの電池にな
い特徴を持っている。
2. Description of the Related Art In a polymer electrolyte battery, the electrolyte can be made into a sheet shape, thereby making it possible to produce a large-area and thin battery such as an A4 size plate or a B5 size plate.
Application to various thin products has become possible, and the range of use of batteries has been greatly expanded. Batteries using this polymer electrolyte have excellent safety and storage properties including leakage resistance,
Moreover, because it is thin and flexible, it has the unique feature of batteries that can be designed to match the shape of the device.

【0003】このポリマー電解質電池は、通常、アルミ
ニウムフィルムを芯材にし、外装体として使用した際に
内面側になる面に接着層としての樹脂フィルムを配置し
たラミネートフィルムを外装体に用い、シート状の電極
とシート状のポリマー電解質層とを積層したユニットセ
ルを上記外装体で外装することによって、薄いシート形
電池に仕上げられる。
[0003] This polymer electrolyte battery usually uses a laminate film in which an aluminum film is used as a core material, and a resin film as an adhesive layer is disposed on a surface on the inner side when used as an exterior body, as a sheet. By packaging the unit cell having the above electrode and a sheet-like polymer electrolyte layer laminated with the above-mentioned package, a thin sheet-type battery is completed.

【0004】この種の積層形電池を構成するシート状電
極は、図1(積層電極群の断面構造を模式的に示したも
のである)に示すように、容量密度を向上させることを
目的として、集電体の両面に活物質層を塗布形成した、
いわゆる両面塗布電極が多く採用される。すなわち、集
電体1枚でその両面(2面)の活物質層への電子の授受
を担わせている。そして、かかる電極構成において電池
反応を進行させるには、当然のことながら中心となる電
極1の両面に、ポリマー電解質層2を介して、他極性を
有する電極3を存在させておく必要がある。
As shown in FIG. 1 (which schematically shows a cross-sectional structure of a stacked electrode group), a sheet-like electrode constituting this type of stacked battery is intended to improve the capacity density. , An active material layer was formed on both sides of the current collector by applying,
So-called double-sided coated electrodes are often used. That is, one current collector serves to transfer electrons to and from the active material layers on both surfaces (two surfaces). In order to allow the battery reaction to proceed in such an electrode configuration, it is, of course, necessary to provide electrodes 3 having other polarities on both surfaces of the central electrode 1 via the polymer electrolyte layer 2.

【0005】ところが、上記電極1同様、電極3も集電
体の両面に活物質層を形成した電極構成とすると、積層
電極群を構成する上下最外層に相当する電極で、電極1
と対向していない電極3の活物質層部分が電池反応に寄
与しないことになり、容量密度向上のために活物質を両
面に設けた電極構成が活かされないという問題が生じ
る。
However, as in the case of the electrode 1, if the electrode 3 has an electrode structure in which active material layers are formed on both surfaces of the current collector, the electrodes 3 correspond to the upper and lower outermost layers constituting the stacked electrode group.
The active material layer portion of the electrode 3 that is not opposed to the above does not contribute to the battery reaction, and there is a problem that the electrode configuration in which the active material is provided on both surfaces to improve the capacity density is not utilized.

【0006】かかる問題を解決するためには、図2(積
層電極群の断面構造を模式的に示したものである)に示
すように、積層電極群を構成する上下最外層に相当する
電極3を、集電体の片面のみに活物質層を設けたいわゆ
る片面塗布電極とし、その活物質層3がポリマー電解質
層2を介して電極1と対向するように構成することで、
上記で述べた容量密度の低下という問題を解決すること
が可能となる。
In order to solve such a problem, as shown in FIG. 2 (which schematically shows a cross-sectional structure of the stacked electrode group), electrodes 3 corresponding to upper and lower outermost layers constituting the stacked electrode group are used. Is a so-called single-sided coated electrode provided with an active material layer only on one side of the current collector, and the active material layer 3 is configured to face the electrode 1 with the polymer electrolyte layer 2 interposed therebetween.
It is possible to solve the problem of the decrease in the capacitance density described above.

【0007】しかしながら、従来の積層形電池では図3
(電極1と電極3を重ねた状態を模式的に示した平面図
である)に示すように、電池反応に伴い発生した電流を
外部に取り出すために電極1には集電体上に活物質層が
形成されていないリード部4、同様に電極3にも集電体
上に活物質層が形成されていないリード部5が形成され
ており、このリード部4、5は、シート状の電極1、3
を打ち抜き型によって打ち抜くことによって形成される
が、形状的にはほぼ相似形で形成されている。
[0007] However, in the conventional laminated battery, FIG.
As shown in FIG. 1 (a plan view schematically showing a state in which the electrode 1 and the electrode 3 are overlapped), an active material is provided on the current collector on the electrode 1 in order to take out the current generated by the battery reaction to the outside. A lead portion 4 on which no active material layer is formed on the current collector is also formed on the electrode 3 similarly to the lead portion 4 on which no layer is formed. 1,3
Is formed by punching with a punching die, but the shape is substantially similar.

【0008】[0008]

【発明が解決しようとする課題】積層形電池の容量密度
を向上させるためには、上記で述べたように、積層電極
群の上下最外層の電極に片面塗布電極を採用する必要が
ある。ところが、積層電極群の作製にあたっては、電池
反応に寄与させるため最外層を構成する2枚の片面塗布
電極のみ活物質層形成面が内側を向くように、言い換え
れば電極3のリード部5の位置を一定方向に揃えた形で
積層電極群作製工程へと搬送する必要があり、作業が繁
雑になるばかりでなく、正規以外の面に活物質層を形成
した電極を誤って積層電極群作製工程に供給するという
問題もを惹起する。
In order to improve the capacity density of a stacked battery, as described above, it is necessary to employ single-side coated electrodes as the upper and lower outermost electrodes of the stacked electrode group. However, in producing the stacked electrode group, only the two single-sided coated electrodes constituting the outermost layer have the active material layer forming surface facing inward to contribute to the battery reaction, in other words, the position of the lead portion 5 of the electrode 3. Must be transported to the stacked electrode group manufacturing process in a uniform direction, which not only complicates the work, but also incorrectly replaces the electrode with the active material layer formed on the non-regular surface by mistake. The problem of supply to the factory also raises the problem.

【0009】本発明は、上記のような問題点を解決する
もので、積層電極群の上下最外層を構成する電極の集電
体形状に工夫を凝らすことにより積層形電池の作製を効
率良く行えるようにすることを目的とする。
The present invention solves the above-mentioned problems, and a stacked battery can be efficiently manufactured by devising the shape of the current collector of the electrodes constituting the upper and lower outermost layers of the stacked electrode group. The purpose is to be.

【0010】[0010]

【課題を解決するための手段】本発明は、集電体上に正
極合剤層を形成してなる正極と、集電体上に負極合剤層
を形成してなる負極とを、それぞれの間にポリマー電解
質層を介在させて積層した積層電極群を外装体で外装す
る積層形ポリマー電解質電池であって、上記積層電極群
を構成する上下最外層の電極を同一極性とし、かつ、当
該電極のリード部を電極幅方向の中央に形成したことを
特徴とする積層形ポリマー電解質電池を提供することを
目的とする。
Means for Solving the Problems The present invention comprises a positive electrode having a positive electrode mixture layer formed on a current collector and a negative electrode having a negative electrode mixture layer formed on the current collector. A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween is packaged with a package, wherein the upper and lower outermost electrodes constituting the laminated electrode group have the same polarity, and It is an object of the present invention to provide a laminated polymer electrolyte battery characterized in that the lead portion is formed at the center in the electrode width direction.

【0011】[0011]

【発明の実施の形態】本発明において、正極の集電体と
してはアルミニウム製の箔、パンチングメタル、網、エ
キスパンドメタルなどを用い得るが、通常、アルミニウ
ム箔が用いられる。この正極の集電体は、正極全体の厚
みを薄くする関係上、厚みが30μm以下のものが好ま
しく、本発明では、そのように薄いものであっても、そ
の露出部が外装体のシール部分より外部に出ないので、
破損する恐れが少ない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an aluminum foil, a punched metal, a net, an expanded metal, or the like can be used as a current collector for a positive electrode, and an aluminum foil is usually used. The current collector of the positive electrode preferably has a thickness of 30 μm or less from the viewpoint of reducing the overall thickness of the positive electrode. Because I do n’t go out more,
Less risk of damage.

【0012】ただし、あまりにも薄すぎると、正極の作
製にあたって、正極合剤含有ペーストを塗布した際に皺
が発生したり、引っ張りにより破れが生じる恐れがある
ので、その厚みが上記のように30μm以下で10μm以
上が好ましい。
However, if the thickness is too small, wrinkles may occur when the positive electrode mixture-containing paste is applied, or the film may be broken by pulling in the preparation of the positive electrode. Below, 10 μm or more is preferable.

【0013】正極側のリード部は、通常、正極作製時に
アルミニウム製の集電体の一部に正極合剤層を形成せず
に集電体の露出部を残し、そこをリード部とすることに
よって設けられる。ただし、リード部は必ずしも当初か
ら集電体と一体化されたものであることは要求されず、
集電体にアルミニウム製の箔などを後から接続すること
によって設けても良い。
Usually, the lead portion on the positive electrode side is formed by leaving an exposed portion of the current collector without forming a positive electrode mixture layer on a part of the current collector made of aluminum at the time of manufacturing the positive electrode, and using that as the lead portion. Provided by However, the lead portion is not necessarily required to be integrated with the current collector from the beginning,
The current collector may be provided by connecting an aluminum foil or the like later.

【0014】本発明において、負極の集電体としては銅
製の箔、パンチングメタル、網、エキスパンドメタルな
どを用い得るが、通常、銅箔が用いられる、この負極の
集電体は、負極全体の厚みを薄くする関係上、厚みが3
0μm以下のものが好ましく、本発明では、そのように
薄いものであっても、その露出部が外装体のシール部分
より外部に出ないので、破損するおそれが少ない。
In the present invention, as the current collector of the negative electrode, copper foil, punched metal, mesh, expanded metal, and the like can be used. Usually, a copper foil is used. Due to thickness reduction, thickness is 3
The thickness is preferably 0 μm or less, and in the present invention, even with such a thin thickness, the exposed portion does not come out of the sealing portion of the exterior body, so that there is little possibility of breakage.

【0015】ただし、あまりにも薄すぎると、負極の作
製にあたって、負極合剤含有ペーストを塗布した際に皺
が発生したり、引っ張りにより破れが生じる恐れがある
ので、その厚みは上記のように30μm以下で5μm以上
が好ましい。
However, if it is too thin, wrinkles may occur when the negative electrode mixture-containing paste is applied, or the film may be broken by pulling, so that the thickness is 30 μm as described above. Below, 5 μm or more is preferable.

【0016】また、負極側のリード部も、通常、負極作
製時に銅製の集電体の一部に負極合剤層を形成せずに集
電体の露出部を残し、そこをリード部とすることによっ
て設けられる。ただし、この負極側のリード部は必ずし
も当初から集電体と一体化されたものであることは要求
されず、集電体に銅製の箔などを後から接続することに
よって設けても良い。
Also, the lead portion on the negative electrode side is usually left as a lead portion while leaving the exposed portion of the current collector without forming the negative electrode mixture layer on a part of the copper current collector at the time of producing the negative electrode. It is provided by. However, the lead portion on the negative electrode side is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

【0017】本発明においては、正極または負極の少な
くとも一方の電極をポリマー電解質質層で包囲して、電
極とポリマー電解質層とを一体化しておくことが好まし
い。この場合の態様としては、ポリマー電解質層の支持
体となる多孔質シートを袋状にして電極を包囲した後、
その全体をポリマー電解質の前駆体であるゲル化成分を
含有する電解液を保持、ゲル化して、ポリマー電解質を
含有した電極とポリマー電解質層との一体化物を作製す
る場合や、ポリマー電解質を含有した電極を、多孔質シ
ートの支持体を内在した、短冊状のポリマー電解質シー
トで挟み込むことによって、電極とポリマー電解質層と
を一体化する場合などが挙げられる。さらに、後者の電
極を短冊状のポリマー電解質シートで挟み込むことによ
り電極を電解質層で包囲する場合、1枚の短冊状のポリ
マー電解質シートをそのほぼ中央部で折り返してそのポ
リマー電解質シートの間に電極を挟み込むことにより電
極をポリマー電解質層で包囲する場合と、2枚の短冊状
のポリマー電解質シートの間に電極を挟み込むことによ
り電極をポリマー電解質層で包囲する場合とがある。
In the present invention, it is preferable that at least one of the positive electrode and the negative electrode is surrounded by a polymer electrolyte layer so that the electrode and the polymer electrolyte layer are integrated. As an embodiment in this case, after surrounding the electrodes in a bag-like porous sheet serving as a support for the polymer electrolyte layer,
In the case where an electrolyte solution containing a gelling component which is a precursor of a polymer electrolyte is entirely retained and gelled, and an integrated product of an electrode containing a polymer electrolyte and a polymer electrolyte layer is produced, or a polymer electrolyte is contained. A case in which the electrode and the polymer electrolyte layer are integrated by sandwiching the electrode between strip-shaped polymer electrolyte sheets in which a porous sheet support is provided. Further, when the electrode is surrounded by an electrolyte layer by sandwiching the latter electrode between strip-shaped polymer electrolyte sheets, one strip-shaped polymer electrolyte sheet is folded at almost the center thereof to form an electrode between the polymer electrolyte sheets. May be surrounded by the polymer electrolyte layer, or the electrode may be surrounded by the polymer electrolyte layer by sandwiching the electrode between two strip-shaped polymer electrolyte sheets.

【0018】本発明において、ポリマー電解質の支持体
となる多孔質シートとしては、例えば、不織布や微孔性
フィルムなどが用いられる。上記不織布としては、例え
ば、ポリプロピレン、ポリエチレン、ポリエチレンテレ
フタレート、ポリブチレンテレフタレートなどの不織布
などが挙げられる。また、微孔性フィルムとしては、例
えば、ポリプロピレン、ポリエチレン、エチレン−プロ
ピレン共重合体の微孔性フィルムなどが挙げられる。
In the present invention, as the porous sheet serving as a support for the polymer electrolyte, for example, a nonwoven fabric or a microporous film is used. Examples of the nonwoven fabric include nonwoven fabrics such as polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate. Examples of the microporous film include microporous films of polypropylene, polyethylene, and ethylene-propylene copolymer.

【0019】不織布は、空孔率が高く、ゲル化成分を含
有する電解液を保持させやすいので、本発明においては
不織布を支持体として用いる場合について詳述する。こ
の不織布についてさらに詳しく説明すると、例えば、坪
量が12g/m2で厚さが30μmという非常に薄い不織
布を用いることができる。
Since the nonwoven fabric has a high porosity and can easily hold an electrolytic solution containing a gelling component, the case of using the nonwoven fabric as a support in the present invention will be described in detail. To describe this nonwoven fabric in more detail, for example, a very thin nonwoven fabric having a basis weight of 12 g / m 2 and a thickness of 30 μm can be used.

【0020】このような不織布は、薄いために引張り強
度をはじめとする機械的強度が低く、単体では取り扱い
にくいが、例えば、袋状にし、その袋状の不織布に電極
を収容することにより電極を包囲して、不織布と電極と
を一体化させることにより、電極の強度で不織布の強度
不足を補うことができる。また、袋状にしなくても、短
冊状の不織布をそのほぼ中央部で折り返してその不織布
の間に電極を挟み込むことにより電極を不織布で包囲し
て電極と不織布とを一体化させることや2枚の短冊状の
不織布を重ね合せその一端をシールしてその不織布の間
に電極を挟み込むことにより電極を支持体で包囲して電
極と不織布とを一体化させることによっても、電極の強
度で不織布の強度不足を補うことができ、電池組立時の
作業性の向上や内部抵抗の減少、負荷特性の向上を達成
できるので好適に使用される。また、支持体として微孔
性フィルムを用いる場合も、上記不織布の場合と同様で
ある。
Since such a nonwoven fabric is thin, it has low mechanical strength including tensile strength, and is difficult to handle alone. For example, the nonwoven fabric is formed into a bag, and the electrodes are accommodated in the bag-shaped nonwoven fabric. By surrounding and unifying the nonwoven fabric and the electrode, the strength of the electrode can compensate for the insufficient strength of the nonwoven fabric. Also, without forming a bag shape, the strip-shaped non-woven fabric is folded almost at the center, and the electrode is sandwiched between the non-woven fabrics to surround the electrode with the non-woven fabric and integrate the electrode and the non-woven fabric. By laminating strip-shaped non-woven fabrics, sealing one end of the non-woven fabric, sandwiching the electrodes between the non-woven fabrics, surrounding the electrodes with a support, and integrating the electrodes and the non-woven fabrics, the strength of the It is suitable for use because it can compensate for insufficient strength, improve workability during battery assembly, reduce internal resistance, and improve load characteristics. The case where a microporous film is used as the support is the same as the case of the nonwoven fabric.

【0021】上記のように、不織布などの多孔質シート
からなる支持体で電極を包囲して電極と支持体とを一体
化し、それにゲル化成分を含有する電解液を保持させて
ゲル化することにより、電極とポリマー電解質層との間
が、それぞれ単独でゲル化して電極とポリマー電解質シ
ートにしてから積層するよりも、界面の接着状態が良好
で、層間に気泡、異物などが介在することがないので、
界面でのイオン移動がスムーズになり、正負極間の反応
性が向上する。また、正極、負極のいずれか一方の電極
を支持体で包囲することによって、物理的セパレートの
役割も果たすことができる。
As described above, the electrode and the support are integrated by surrounding the electrode with a support made of a porous sheet such as a non-woven fabric, and gelling is performed by holding an electrolyte containing a gelling component. Thereby, the adhesion between the electrodes and the polymer electrolyte layer is better than when the electrodes and the polymer electrolyte sheet are individually gelled to form the electrode and the polymer electrolyte sheet and then laminated, and bubbles, foreign substances, and the like can be interposed between the layers. Since there is no,
Ion transfer at the interface becomes smooth, and reactivity between the positive and negative electrodes improves. In addition, by surrounding either one of the positive electrode and the negative electrode with a support, it can also serve as a physical separator.

【0022】本発明においては、正極または負極のいず
れか一方の電極を電解質層で包囲して電極と電解質層と
を一体化させればよいが、その際、正極を電解質層で包
囲して正極と電解質層とを一体化させると、負極を電解
質層で包囲する場合より、電池容量を大きくすることが
できる。すなわち、通常、デンドライトの発生の防止や
安全性の確保から負極を正極より大きくすることが一般
に行われているので、正極を電解質層で包囲すれば、負
極を電解質層で包囲するより、電解質層の寸法を小さく
でき、その結果、電池容量を大きくすることができる。
また、負極を電解質層で包囲して負極と電解質層とを一
体化させる場合も、負極と電解質層との界面状態を均一
にすることができるので、正極と同様、反応性向上の効
果がある。
In the present invention, either the positive electrode or the negative electrode may be surrounded by the electrolyte layer to integrate the electrode and the electrolyte layer. At this time, the positive electrode is surrounded by the electrolyte layer and When the battery and the electrolyte layer are integrated, the battery capacity can be increased as compared with the case where the negative electrode is surrounded by the electrolyte layer. That is, since it is common practice to make the negative electrode larger than the positive electrode in order to prevent the occurrence of dendrite and ensure safety, if the positive electrode is surrounded by the electrolyte layer, the negative electrode is surrounded by the electrolyte layer rather than the electrolyte layer. Can be reduced, and as a result, the battery capacity can be increased.
Also, in the case where the negative electrode is surrounded by the electrolyte layer and the negative electrode and the electrolyte layer are integrated, the interface state between the negative electrode and the electrolyte layer can be made uniform, so that, similarly to the positive electrode, there is an effect of improving the reactivity. .

【0023】さらに、正極および負極の両電極を電解質
層で包囲すると、そのぶん電解質層の厚みは増加する
が、両電極とも電解質層とが一体化するので、正極、負
極のいずれについても分極を減少させることができ、充
放電時の反応をスムーズに進行させることができるの
で、負荷特性を大幅に向上させることができる。
Further, if both the positive electrode and the negative electrode are surrounded by the electrolyte layer, the thickness of the electrolyte layer is increased by an amount. However, since both the electrodes are integrated with the electrolyte layer, both the positive electrode and the negative electrode are polarized. Since the reaction can be reduced and the reaction at the time of charging and discharging can smoothly proceed, the load characteristics can be greatly improved.

【0024】本発明において、電極と電解質層との一体
化とは、電極と電解質層との間に気泡や異物などを含ま
ないで、電極と電解質層とを密接させることを意味して
いて、不可分に接着させることなどを意味するものでは
ない。
In the present invention, the term “integration of the electrode and the electrolyte layer” means that the electrode and the electrolyte layer are brought into close contact with each other without bubbles or foreign matter between the electrode and the electrolyte layer. It does not mean that it is inseparably bonded.

【0025】上記不織布などの多孔質シートからなる支
持体を袋状にする場合、その袋状体は、例えば、四角形
状のものとして説明すると、通常、一辺が開口し、他の
三辺がシールされているが、そのシールにあたって、連
続的にシールすることは必ずしも要求されず、不連続に
シールしたものであってもよい。
When the support made of a porous sheet such as the nonwoven fabric is made into a bag shape, if the bag shape is described as a square shape, for example, one side is usually open and the other three sides are sealed. However, the sealing is not always required to be continuously performed, and the sealing may be discontinuously performed.

【0026】また、電極を袋状の支持体に収容するにあ
たって、あらかじめ支持体を袋状にしておくことは要求
されず、電極を短冊状の支持体(例えば、長さが電極の
長さの2倍以上で、幅が電極の幅より広いサイズの短冊
状の支持体)の長さ方向のほぼ中央部より一方の側に載
置し、他方の側を折り返し(つまり、電極がほぼ中央部
で折り返した支持体間に挟み込まれる状態にし)、その
幅方向の両側部を連続的または不連続的にシールして、
電極が袋状の支持体に収容された状態にすればよい。
When the electrode is accommodated in the bag-like support, it is not required that the support be made into a bag-like shape in advance, and the electrode is made into a strip-like support (for example, the length is equal to the length of the electrode). (A strip-shaped support having a size of twice or more and a width larger than the width of the electrode) is placed on one side from the substantially central portion in the longitudinal direction, and the other side is folded back (that is, the electrode is substantially at the central portion). In a state sandwiched between the folded support), and continuously or discontinuously seal both sides in the width direction,
What is necessary is just to make the electrode accommodated in the bag-shaped support body.

【0027】また、2枚の支持体を重ね合せてその一端
をシールしてその間に電極を挟み込む場合も、あらかじ
めシールしておくことは要求されず、電極を1枚の短冊
状の支持体(例えば、長さが電極の長さより長く、幅が
電極の幅より広いサイズの短冊状の支持体)に載置し、
もう1枚の短冊状の支持体をその上にのせ、それらの支
持体の一端を連続的または不連続的にシールして、電極
が支持体の間に挟み込まれた状態にすればよい。
Also, in the case where two supports are overlapped and one end thereof is sealed and an electrode is sandwiched between them, it is not required to seal in advance, and the electrodes are formed in a single strip-like support ( For example, placed on a strip-shaped support whose length is longer than the length of the electrode and whose width is larger than the width of the electrode),
Another strip-shaped support may be placed thereon, and one end of the support may be continuously or discontinuously sealed so that the electrode is sandwiched between the supports.

【0028】ポリマー電解質層を形成する電解液として
は、例えば、ジメチルカーボネート、ジエチルカーボネ
ート、メチルエチルカーボネート、プロピオン酸メチ
ル、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ガンマーブチロラクトン、エチ
レングリコールサルファイト、1,2−ジメトキシエタ
ン、1,3−ジオキソラン、テトラヒドロフラン、2−
メチル−テトラヒドロフラン、ジエチルエーテルなどの
有機溶媒に、例えば、LiClO4、LiPF6、LiB
4、LiAsF6、LiSbF6、LiCF3SO3、L
iC49SO3、LiCF3CO2、Li224(S
3)2、LiN(CF3SO2)2、LiC(CF3SO2)3
LiCn2n+1SO3(n≧2)、LiN(RfOSO2)2
〔ここでRfはフルオロアルキル基〕などの無機イオン
塩を溶解させることによって調製したものが使用され
る。この無機イオン塩の電解液中の濃度としては、0.
5〜1.5mol/l、特に0.9〜1.25mol/lが好
ましい。
Examples of the electrolyte for forming the polymer electrolyte layer include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, and the like.
Butylene carbonate, gamma-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-
Organic solvents such as methyl-tetrahydrofuran and diethyl ether include, for example, LiClO 4 , LiPF 6 , LiB
F 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , L
iC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (S
O 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 ,
LiC n F 2n + 1SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2
What is prepared by dissolving an inorganic ion salt such as [here, Rf is a fluoroalkyl group] is used. The concentration of the inorganic ion salt in the electrolytic solution is set to 0.1.
It is preferably from 5 to 1.5 mol / l, particularly preferably from 0.9 to 1.25 mol / l.

【0029】同様に、電解液をポリマー電解質に変化さ
せるゲル化成分としては、例えば、ポリフッ化ビニリデ
ン、ポリエチレンオキサイド、ポリアクリロニトリル、
フッ化ビニリデン−六フッ化プロピレン共重合体などの
ように直鎖状のポリマーを加熱することにより電解液に
溶解させた後、冷却することによって電解液をゲル化さ
せるポリマーや、活性光線で重合可能な二重結合を一分
子あたり2個以上含むモノマーまたはプレポリマーを主
成分とする架橋性組成物などが挙げられる。
Similarly, as the gelling component for converting the electrolytic solution into a polymer electrolyte, for example, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile,
After dissolving a linear polymer such as a vinylidene fluoride-propylene hexafluoride copolymer in an electrolytic solution by heating and then cooling it to polymerize the electrolytic solution, or polymerizing with actinic rays Examples include a crosslinkable composition containing a monomer or prepolymer containing two or more possible double bonds per molecule as a main component.

【0030】上記活性光線で重合可能なモノマーとして
は、まず、二重結合を一分子あたり2個有するモノマー
(二官能架橋性モノマー)として、例えば、1,3−ブ
タンジオールジアクリレート、1,4−ブタンジオール
ジアクリレート、1,6−ヘキサンジオールジアクリレ
ート、エチレングリコールジアクリレート、ジエチレン
グリコールジアクリレート、トリエチレングリコールジ
アクリレート、テトラエチレングリコールジアクリレー
ト、ポリエチレングリコールジアクリレート、プロピレ
ングリコールジアクリレート、ジプロピレングリコール
ジアクリレート、トリプロピレングリコールジアクリレ
ート、エトキシ化ビスフェノールAジアクリレート、ノ
ボラックジアクリレート、プロポキシ化ネオペンチルグ
ルコールジアクリレートなどの二官能アクリレートおよ
び上記アクリレートと同様の二官能メタクリレートなど
が挙げられる。
Examples of the monomer capable of being polymerized by actinic light include monomers having two double bonds per molecule (bifunctional crosslinkable monomers) such as 1,3-butanediol diacrylate and 1,4 -Butanediol diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate Acrylate, tripropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, novolak diacrylate, propoxylated neopentyl glycol diacrylate Such as difunctional acrylates and the acrylate and similar difunctional methacrylates such as chromatography bets and the like.

【0031】また、活性光線で重合可能な二重結合を一
分子あたり3個有するモノマー(三官能架橋性モノマ
ー)としては、例えば、トリス(2−ヒドロキシエチル)
イソシアヌレートトリアクリレート、トリメチロールプ
ロパントリアクリレート、エトキシ化トリメチロールプ
ロパントリアクリレート、ペンタエリスリトールトリア
クリレート、プロポキシ化トリメチロールプロパントリ
アクリレート、プロポキシ化グリセリルトリアクリレー
ト、カプロラクトン変性トリメチロールプロパントリア
クリレートなどの三官能アクリレートおよび上記アクリ
レートと同様の三官能メタクリレートなどが挙げられ
る。
As a monomer having three double bonds per molecule which can be polymerized by actinic rays (trifunctional crosslinkable monomer), for example, tris (2-hydroxyethyl)
Trifunctional acrylates such as isocyanurate triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glyceryl triacrylate, and caprolactone-modified trimethylolpropane triacrylate And the same trifunctional methacrylate as the above acrylate.

【0032】そして、活性光線で重合可能な二重結合を
一分子あたり4個以上有するモノマー(四官能以上の架
橋性モノマー)としては、例えば、ペンタエリスリトー
ルテトラアクリレート、ジトリメチロールプロパンテト
ラアクリレート、エトキシ化ペンタエリスリトールテト
ラアクリレート、ジペンタエリスリトールヒドロキシペ
ンタアクリレート、ジペンタエリスリトールヘキサアク
リレートなどの四官能以上のアクリレートおよび上記ア
クリレートと同様の四官能以上のメタクリレートなどが
挙げられる。
Examples of monomers having four or more double bonds per molecule which can be polymerized by actinic rays (tetrafunctional or more crosslinkable monomers) include, for example, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated Examples include tetrafunctional or higher acrylates such as pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates.

【0033】また、活性光線で重合可能な二重結合を2
個以上、好ましくは4個以上有するプレポリマーとして
は、例えば、ウレタンアクリレート、エポキシアクリレ
ート、ポリエステルアクリレートのプレポリマーなどが
挙げられ、前記のモノマーに代えて用いることができ
る。
Further, two double bonds polymerizable by actinic rays
Examples of the prepolymer having at least 4, preferably at least 4, include prepolymers of urethane acrylate, epoxy acrylate, and polyester acrylate, and can be used in place of the above-mentioned monomers.

【0034】本発明において、上記の活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーは、主成分として用いられておればよ
く、例えばゲル硬さなどの物性調整のために一官能モノ
マーなどとも併用することができる。また、二官能モノ
マーと六官能モノマーとを混合するというような使い方
もできる。
In the present invention, the monomer or prepolymer having two or more double bonds polymerizable by actinic light per molecule may be used as a main component, and may be used for adjusting physical properties such as gel hardness. For this purpose, a monofunctional monomer or the like can be used in combination. Further, a usage such as mixing a bifunctional monomer and a hexafunctional monomer is also possible.

【0035】本発明において、活性光線で重合可能な二
重結合を一分子あたり2個以上有するモノマーまたはプ
レポリマーを主成分とする架橋性組成物とは、上記架橋
性組成物を活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーのみで構
成する場合と、一官能モノマーなどと活性光線で重合可
能な二重結合を一分子あたり2個以上有するモノマーま
たはプレポリマーとを併用する場合の両者を含むが、後
者のように活性光線で重合可能な二重結合を一分子あた
り2個以上有するモノマーまたはプレポリマーを一官能
モノマーなどと併用する場合、その架橋性組成物におい
て、活性光線で重合可能な二重結合を一分子あたり2個
以上有するモノマーまたはプレポリマーが50重量%以
上、特に70重量%以上であることが好ましい。また、
架橋性組成物はそれを構成するものがすべて架橋性でな
くてもよく、全体として架橋性であればよく、例えば、
必要に応じて他の成分を添加することができる。
In the present invention, the term "crosslinkable composition comprising a monomer or prepolymer having at least two double bonds per molecule capable of being polymerized by actinic light" as a main component refers to the above-mentioned crosslinkable composition polymerized by actinic light. Monomers or prepolymers containing only possible monomers or prepolymers having two or more double bonds per molecule, and monomers or prepolymers having two or more double bonds per molecule that can be polymerized with actinic rays with monofunctional monomers In the case where a monomer or a prepolymer having two or more double bonds per molecule capable of being polymerized by actinic rays is used in combination with a monofunctional monomer or the like as in the latter case, the crosslinkable composition Of a monomer or a prepolymer having two or more double bonds per molecule which can be polymerized by actinic light, more than 50% by weight, especially 70% by weight. Or more at a wavelength of 550 nm. Also,
The crosslinkable composition does not have to be all crosslinkable as long as the constituents thereof are not crosslinkable, as long as it is entirely crosslinkable.
Other components can be added as needed.

【0036】そして、必要に応じ、重合開始剤として、
例えば、ベンゾイン類、ベンゾインアルキルエーテル
類、ベンゾフェノン類、ベンゾイルフェニルフォスフィ
ンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類などを使用することができる。さ
らに重合開始剤の増感剤としてアルキルアミン類、アミ
ノエステル類なども使用することができる。
And, if necessary, as a polymerization initiator,
For example, benzoins, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthones, anthraquinones, and the like can be used. Further, alkylamines, aminoesters and the like can be used as a sensitizer of the polymerization initiator.

【0037】本発明において、活性光線としては、例え
ば、紫外線(UV)、電子線(EB)、可視光線、遠紫
外線などを使用することができる。
In the present invention, for example, ultraviolet (UV), electron beam (EB), visible light, far ultraviolet and the like can be used as the active light.

【0038】[0038]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明は実施例に例示のもののみ
に限定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to those illustrated in the embodiments.

【0039】・正極の作製:正極活物質であるLiCo
2 80重量部、導電助剤であるアセチレンブラック
10重量部、バインダーであるポリフッ化ビニリデン1
0重量部とをN−メチルピロリドンを溶剤として均一に
なるように混合し、正極合剤含有ペーストを調製した。
そのペーストを集電体となる厚さ20μmのアルミニウ
ム箔の両面に塗布し、乾燥した後、カレンダー処理を行
って、全厚が130μmになるように正極合剤層の厚み
を調整し、活物質塗布面積部分が70mm×40mmになる
ように切断して正極を作製した。ただし、上記正極の作
製にあたっては、アルミニウム箔の一部に正極合剤含有
ペーストを塗布せず、アルミニウム箔の露出部をリード
部として残し、そのリード部を正極端子との接続部分と
した。
Preparation of positive electrode: LiCo as positive electrode active material
80 parts by weight of O 2, 10 parts by weight of acetylene black as a conductive additive, and polyvinylidene fluoride 1 as a binder
0 parts by weight were uniformly mixed using N-methylpyrrolidone as a solvent to prepare a positive electrode mixture-containing paste.
The paste was applied to both sides of a 20 μm-thick aluminum foil serving as a current collector, dried, and calendered. The thickness of the positive electrode mixture layer was adjusted to a total thickness of 130 μm. The positive electrode was manufactured by cutting so that the application area was 70 mm × 40 mm. However, in producing the positive electrode, the paste containing the positive electrode mixture was not applied to part of the aluminum foil, the exposed portion of the aluminum foil was left as a lead portion, and the lead portion was used as a connection portion with the positive electrode terminal.

【0040】・負極Aの作製:負極活物質である黒鉛9
0重量部とポリフッ化ビニリデン10重量部とをN−メ
チルピロリドンを溶剤として均一になるように混合して
負極合剤含有ペーストを調製し、銅箔からなる厚さ10
μmの集電体の両面に塗布し、乾燥した後、カレンダー
処理を行って全厚が130μmになるように負極合剤層
の厚みを調整し、活物質塗布面積部分が72mm×42mm
になるように切断して負極Aを作製した。切断は、負極
端子との接続部分となるリード部を、電極の幅方向に対
して中央位置になるようにした。また、上記正極同様、
負極Aの作製にあたっても、リード部分には負極合剤含
有ペーストを塗布せず、銅箔の露出部をリード部として
残した。
Preparation of negative electrode A: graphite 9 as a negative electrode active material
0 parts by weight and 10 parts by weight of polyvinylidene fluoride are mixed uniformly using N-methylpyrrolidone as a solvent to prepare a paste containing the negative electrode mixture, and a thickness of 10
After coating on both sides of a μm current collector and drying, the thickness of the negative electrode mixture layer was adjusted to a total thickness of 130 μm by calendering, and the active material application area was 72 mm × 42 mm.
To obtain a negative electrode A. The cutting was performed so that the lead portion serving as a connection portion with the negative electrode terminal was located at the center position in the width direction of the electrode. Also, similar to the above positive electrode,
In producing the negative electrode A, the paste containing the negative electrode mixture was not applied to the lead portion, and the exposed portion of the copper foil was left as the lead portion.

【0041】・負極Bの作製:上記同様の負極合剤含有
ペーストを、銅箔からなる厚さ10μmの集電体の片面
に塗布し、乾燥した後、カレンダー処理を行って全厚が
70μmになるように負極合剤層の厚みを調整し、活物
質塗布面積部分が72mm×42mmになるように切断して
負極Bを作製した。上記正極同様、負極Bの作製にあた
っても、リード部分には負極合剤含有ペーストを塗布せ
ず、銅箔の露出部をリード部として残した。
Preparation of negative electrode B: The same negative electrode mixture-containing paste as described above was applied to one side of a current collector made of copper foil and having a thickness of 10 μm, dried, and then calendered to a total thickness of 70 μm. The thickness of the negative electrode mixture layer was adjusted so as to obtain a negative electrode B. The negative electrode B was prepared by cutting the negative electrode mixture layer so that the active material application area became 72 mm × 42 mm. Similarly to the above-described positive electrode, in producing the negative electrode B, the negative electrode mixture-containing paste was not applied to the lead portion, and the exposed portion of the copper foil was left as the lead portion.

【0042】・ゲル化成分含有電解液の調製:プロピレ
ンカーボネートとエチレンカーボネートとの体積比1:
1の混合溶媒にLiPF6を1.22mol/l溶解させる
ことによって調製した電解液に開始剤として2,4,6
−トリメチルベンゾイルジフェニルフォスフィンオキサ
イド〔商品名:ルシリンTPO、ビーエーエスエフジャ
パン(株)製〕をあらかじめモノマー成分に対して2重量
%加えて溶解しておき、そこにジペンタエリスリトール
ヘキサアクリレートを使用開始10分前に濃度が6重量
%になるように加えて混合し、ゲル化成分を含有する電
解液を調製した。このゲル化成分を含有する電解液を以
下においては上記標題のように「ゲル化成分含有電解
液」と簡略化して表現する。
Preparation of gelling component-containing electrolyte: volume ratio of propylene carbonate to ethylene carbonate 1:
2,4,6 as an initiator in an electrolyte prepared by dissolving 1.22 mol / l of LiPF 6 in the mixed solvent of
-Trimethylbenzoyldiphenylphosphine oxide (trade name: Lucirin TPO, manufactured by BSF Japan Co., Ltd.) was added to 2% by weight of the monomer component in advance and dissolved, and dipentaerythritol hexaacrylate was used therein. One minute before, the mixture was added to a concentration of 6% by weight and mixed to prepare an electrolytic solution containing a gelling component. Hereinafter, the electrolyte containing the gelling component is simply referred to as a “gelling component-containing electrolyte” as described above.

【0043】この実施例では、正極をポリマー電解質層
の支持体となる不織布で包んで。正極と支持体とを一体
化しておき、その全体にゲル化成分含有電解液を保持、
ゲル化して、ポリマー電解質含有正極ユニットを得た。
負極は不織布で包むことなく、ゲル化成分含有電解液を
保持、ゲル化して、ポリマー電解質含有負極を得た。
In this embodiment, the positive electrode is wrapped with a nonwoven fabric serving as a support for the polymer electrolyte layer. The positive electrode and the support are integrated, and the gelling component-containing electrolyte is retained throughout the
It was gelled to obtain a polymer electrolyte-containing positive electrode unit.
The negative electrode held the gelled component-containing electrolyte solution without being wrapped in a nonwoven fabric and gelled to obtain a polymer electrolyte-containing negative electrode.

【0044】・ポリマー電解質含有正極ユニットの作
製:支持体としては、厚さ30μm、坪量12g/m2
ポリブチレンテレフタレート不織布〔NKK社製、MB
1230(商品名)〕を用い、これを長さ×幅が144mm
×42mmの短冊状に切断した。
Preparation of polymer electrolyte-containing positive electrode unit: As a support, a polybutylene terephthalate nonwoven fabric having a thickness of 30 μm and a basis weight of 12 g / m 2 [manufactured by NKK, MB
1230 (trade name)], and the length × width is 144 mm.
It was cut into strips of × 42 mm.

【0045】正極の活物質層塗布位置とリード部にまた
がるように、厚さ50μm、幅3mmのポリイミドテープ
をその両面から貼着し、短絡の防止および端子の強度保
持とした。また、端子の溶接に用いる部分のすべての表
面を、熱により接着面の粘着性が失なわれる熱剥離テー
プで被覆した後、上記ポリブチレンテレフタレート不織
布の長さ方向の中央部より左側の部分に載置し、右側の
部分を折り返して正極を覆った後、その幅方向の両側部
を熱融着器〔商品名:ポリシーラー、富士インパルス
(株)製〕でシールして支持体としてのポリブチレンテレ
フタレート不織布を袋状にし、両者を密接させて正極と
支持体とを一体化した。この一体化したものを前記ゲル
化成分含有電解液に減圧下で1分間浸漬して正極ユニッ
トにゲル化成分含有電解液を保持させた後、ポリエチレ
ン製の袋に入れ、密閉した。つぎに、ポリエチレン製袋
の両面から、フュージョンUVシステムズ・ジャパン
(株)製の紫外線照射装置を用いて、紫外線を1W/cm2
の照度で10秒間照射し、電解液中のモノマー成分を重
合させるとともに、電解液をゲル化してゲル状ポリマー
電解質とした。ゲル化してゲル状ポリマー電解質を保持
させた、ポリマー電解質層と正極との一体化物を袋から
取り出し、その端子部分に150℃の熱風を吹きつける
ことによって熱剥離テープを端子部分から剥がし、ポリ
マー電解質保持正極ユニットを得た。
A polyimide tape having a thickness of 50 μm and a width of 3 mm was attached to both sides of the active material layer application position of the positive electrode and the lead portion so as to prevent short-circuit and maintain the strength of the terminal. In addition, after covering all surfaces of the portion used for welding of the terminal with a thermal release tape from which the adhesiveness of the adhesive surface is lost due to heat, the surface of the polybutylene terephthalate nonwoven fabric is located on the left side of the longitudinal center portion. After mounting, the right side is folded back to cover the positive electrode, and both sides in the width direction are heat-sealed [trade name: POLYLER, Fuji Impulse
(Manufactured by Co., Ltd.), and a polybutylene terephthalate nonwoven fabric as a support was formed into a bag, and both were brought into close contact with each other to integrate the positive electrode and the support. This integrated product was immersed in the gelling component-containing electrolyte for 1 minute under reduced pressure to hold the gelling component-containing electrolyte in the positive electrode unit, and then placed in a polyethylene bag and sealed. Next, from both sides of the polyethylene bag, Fusion UV Systems Japan
Using an ultraviolet irradiator manufactured by Co., Ltd., the ultraviolet light was applied to 1 W / cm 2
Irradiation was performed for 10 seconds at an illuminance of 10 to polymerize the monomer components in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The integrated body of the polymer electrolyte layer and the positive electrode, which has been gelled to retain the gel polymer electrolyte, is taken out of the bag, and the terminal portion is blown with hot air at 150 ° C. to peel off the thermal release tape from the terminal portion, and the polymer electrolyte is removed. A holding positive electrode unit was obtained.

【0046】・ポリマー電解質含有負極Aの作製:正極
同様、負極Aの活物質塗布位置とリード部にまたがるよ
うに、厚さ50μm、幅3mmのポリイミドテープをその
両面から貼着し、短絡の防止および端子の強度保持とし
た。また、端子の溶接に用いる部分のすべての表面を、
熱により接着面の粘着性が失なわれる熱剥離テープで被
覆し、前記ゲル化成分含有電解液に減圧下で1分間浸漬
して、ゲル化成分含有電解液を保持させた後、ポリエチ
レン製の袋に入れ、密閉した。つぎに、ポリエチレン製
袋の両面から、フュージョンUVシステムズ・ジャパン
(株)製の紫外線照射装置を用いて、紫外線を1W/cm2
の照度で10秒間照射し、電解液中のモノマー成分を重
合させるとともに、電解液をゲル化してゲル状ポリマー
電解質とした。ゲル化してゲル状ポリマー電解質を保持
させたを負極Aを袋から取り出し、その端子部分に15
0℃の熱風を吹きつけることによって熱剥離テープを端
子部分から剥がし、ポリマー電解質含有負極Aを得た。
Preparation of negative electrode A containing polymer electrolyte: Like the positive electrode, a polyimide tape having a thickness of 50 μm and a width of 3 mm is attached to both sides of the negative electrode A so as to straddle the active material application position and the lead, thereby preventing short circuit. And the strength of the terminals was maintained. In addition, all surfaces of the part used for welding the terminals
After covering with a heat-releasing tape from which the adhesiveness of the adhesive surface is lost by heat, and immersing in the gelling component-containing electrolyte for 1 minute under reduced pressure to hold the gelling component-containing electrolyte, Placed in a bag and sealed. Next, from both sides of the polyethylene bag, Fusion UV Systems Japan
Using an ultraviolet irradiator manufactured by Co., Ltd., the ultraviolet light was applied to 1 W / cm 2
Irradiation was performed for 10 seconds at an illuminance of 10 to polymerize the monomer components in the electrolytic solution, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. After the gelled gel electrolyte was held, the negative electrode A was taken out of the bag, and 15
By blowing hot air of 0 ° C., the thermal release tape was peeled off from the terminal portion, and a negative electrode A containing a polymer electrolyte was obtained.

【0047】・ポリマー電解質含有負極Bの作製:負極
A同様、負極Bの活物質塗布位置とリード部にまたがる
ように、厚さ50μm、幅3mmのポリイミドテープをそ
の両面から貼着し、短絡の防止および端子の強度保持と
した。また、端子の溶接に用いる部分のすべての表面
を、熱により接着面の粘着性が失なわれる熱剥離テープ
で被覆し、前記ゲル化成分含有電解液に減圧下で1分間
浸漬して、ゲル化成分含有電解液を保持させた後、ポリ
エチレン製の袋に入れ、密閉した。つぎに、活物質層形
成面にあたるポリエチレン製袋の外側から、フュージョ
ンUVシステムズ・ジャパン(株)製の紫外線照射装置を
用いて、紫外線を1W/cm2の照度で10秒間照射し、
電解液中のモノマー成分を重合させるとともに、電解液
をゲル化してゲル状ポリマー電解質とした。ゲル化して
ゲル状ポリマー電解質を保持させたを負極Bを袋から取
り出し、その端子部分に150℃の熱風を吹きつけるこ
とによって熱剥離テープを端子部分から剥がし、ポリマ
ー電解質含有負極Bを得た。
Preparation of a negative electrode B containing a polymer electrolyte: As in the case of the negative electrode A, a polyimide tape having a thickness of 50 μm and a width of 3 mm is attached to both sides of the negative electrode B so as to straddle the active material application position and the lead portion. Prevention and maintenance of terminal strength. In addition, the entire surface of the portion used for welding the terminal is covered with a heat-peeling tape that loses the adhesiveness of the adhesive surface due to heat, and immersed in the gelled component-containing electrolyte for 1 minute under reduced pressure to obtain a gel. After holding the chemical component-containing electrolytic solution, it was placed in a polyethylene bag and sealed. Next, from the outside of the polyethylene bag corresponding to the active material layer forming surface, ultraviolet rays were irradiated for 10 seconds at an illuminance of 1 W / cm 2 using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd.
The monomer component in the electrolytic solution was polymerized, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The negative electrode B, which was gelled to hold the gel polymer electrolyte, was taken out of the bag, and the terminal portion was blown with hot air at 150 ° C. to peel off the thermal release tape from the terminal portion, thereby obtaining a polymer electrolyte-containing negative electrode B.

【0048】上記のようにして得た、ポリマー電解質保
持正極ユニットC5枚と、ポリマー電解質保持負極A
(負極A)4枚、および、ポリマー電解質保持負極B
(負極B)2枚をそれぞれ用意し、図4(積層電極群の
断面構造を模式的に示したものである)に示すように、
ポリマー電解質保持負極B、ポリマー電解質保持正極ユ
ニットC、ポリマー電解質保持負極A、ポリマー電解質
保持正極ユニットC、………、ポリマー電解質保持正極
ユニットC、ポリマー電解質保持負極Bの順に積み重ね
て積層電極群を得る。
The five polymer electrolyte holding positive electrode units C and the polymer electrolyte holding negative electrode A
(Negative electrode A) 4 sheets and negative electrode B holding polymer electrolyte
(Negative electrode B) Two sheets were prepared, and as shown in FIG. 4 (which schematically shows the cross-sectional structure of the laminated electrode group),
The polymer electrolyte holding negative electrode B, the polymer electrolyte holding positive electrode unit C, the polymer electrolyte holding negative electrode A, the polymer electrolyte holding positive electrode unit C,..., The polymer electrolyte holding positive electrode unit C, and the polymer electrolyte holding negative electrode B are stacked in this order to form a laminated electrode group. obtain.

【0049】この時、2枚のポリマー電解質保持負極B
の活物質層は、いずれも電極群中央方向に向かって載置
されている。すなわち、ポリマー電解質保持負極Bの集
電体は、いずれも最外層を向いていることになる。得ら
れた積層電極群をポリエステルフィルム−アルミニウム
フィルム−変性ポリオレフィンフィルムの三層構造のラ
ミネートフィルムからなる外装体で外装してポリマー電
解質電池を作製した。
At this time, the two sheets of the polymer electrolyte holding negative electrode B
Are placed toward the center of the electrode group. That is, the current collectors of the polymer electrolyte holding negative electrode B are all directed to the outermost layer. The obtained laminated electrode group was packaged with a package consisting of a laminate film having a three-layer structure of a polyester film-aluminum film-modified polyolefin film to prepare a polymer electrolyte battery.

【0050】得られた積層形電池を図5(積層形電池を
模式的に示す平面図である)に示す。図中8は正極端
子、9は負極端子、6は正極、7は負極、10は外装体
のシール部を示している。この図では内部構造を理解し
易くするために、外装体の一部を破断したものとなって
いる。なお、上記正極端子8および負極端子9は正極リ
ード部8'および負極リード部9'に対して溶により接続
され、外部に引出されたものである。
FIG. 5 (a plan view schematically showing the stacked battery) shows the obtained stacked battery. In the figure, reference numeral 8 denotes a positive electrode terminal, 9 denotes a negative electrode terminal, 6 denotes a positive electrode, 7 denotes a negative electrode, and 10 denotes a sealing portion of an exterior body. In this figure, a part of the exterior body is broken for easy understanding of the internal structure. The positive electrode terminal 8 and the negative electrode terminal 9 are connected to the positive electrode lead portion 8 'and the negative electrode lead portion 9' by melting, and are drawn out.

【0051】[0051]

【発明の効果】以上説明したように、本発明では、容量
密度の高い電池を電池組立時の作業性の低下を来すこと
なく製造することが可能となる。
As described above, according to the present invention, a battery having a high capacity density can be manufactured without deteriorating the workability in assembling the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】積層電極群の断面構造を示す模式図である。FIG. 1 is a schematic diagram illustrating a cross-sectional structure of a stacked electrode group.

【図2】改良された積層電極群の断面構造を示す模式図
である。
FIG. 2 is a schematic diagram showing a cross-sectional structure of an improved stacked electrode group.

【図3】電極を重ねた状態を模式的に示す平面図であ
る。
FIG. 3 is a plan view schematically showing a state in which electrodes are overlapped.

【図4】本発明の実施例の積層電極群を模式的に示す断
面図である。
FIG. 4 is a cross-sectional view schematically illustrating a stacked electrode group according to an example of the present invention.

【図5】本発明の実施例で得られた電池の概略を示す平
面図である。
FIG. 5 is a plan view schematically showing a battery obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

6 正極 7 負極 8 リード部 9 リード部 8’ 正極端子 9’ 負極端子 6 Positive electrode 7 Negative electrode 8 Lead 9 Lead 8 'Positive terminal 9' Negative terminal

フロントページの続き (72)発明者 石田 修 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H011 AA09 KK01 5H022 AA09 CC08 CC12 5H029 AK03 AL07 AM00 AM03 AM04 AM07 AM16 HJ04 HJ12 Continuation of the front page (72) Inventor Osamu Ishida 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell Co., Ltd. 5H011 AA09 KK01 5H022 AA09 CC08 CC12 5H029 AK03 AL07 AM00 AM03 AM04 AM07 AM16 HJ04 HJ12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 集電体上に正極合剤層を形成してなる正
極と、集電体上に負極合剤層を形成してなる負極とを、
それぞれの間にポリマー電解質層を介在させて積層した
積層電極群を外装体で外装する積層形ポリマー電解質電
池であって、上記積層電極群を構成する上下最外層の電
極を同一極性とし、かつ、当該電極のリード部を電極幅
方向の中央に形成したことを特徴とする積層形ポリマー
電解質電池。
1. A positive electrode having a positive electrode mixture layer formed on a current collector, and a negative electrode having a negative electrode mixture layer formed on a current collector,
A laminated polymer electrolyte battery in which a laminated electrode group laminated with a polymer electrolyte layer interposed therebetween is packaged with a package, and the upper and lower outermost electrodes constituting the laminated electrode group have the same polarity, and A laminated polymer electrolyte battery, wherein a lead portion of the electrode is formed at the center in the electrode width direction.
【請求項2】 上下最外層の電極活物質層が集電体の片
面のみに形成されていることを特徴とする請求項1記載
の積層形ポリマー電解質電池。
2. The stacked polymer electrolyte battery according to claim 1, wherein the upper and lower outermost electrode active material layers are formed only on one surface of the current collector.
JP11050515A 1999-02-26 1999-02-26 Layered type polymer electrolyte battery Pending JP2000251870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050515A JP2000251870A (en) 1999-02-26 1999-02-26 Layered type polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050515A JP2000251870A (en) 1999-02-26 1999-02-26 Layered type polymer electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007026366A Division JP2007149701A (en) 2007-02-06 2007-02-06 Manufacturing method of stacked polymer electrolyte battery and stacked polymer electrolyte battery manufactured by the manufacturing method

Publications (1)

Publication Number Publication Date
JP2000251870A true JP2000251870A (en) 2000-09-14

Family

ID=12861123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050515A Pending JP2000251870A (en) 1999-02-26 1999-02-26 Layered type polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000251870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260740A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and manufacturing method
JP2004342564A (en) * 2003-05-19 2004-12-02 Toyo Kohan Co Ltd Sheath material for battery
WO2013031891A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2016113656A1 (en) * 2015-01-16 2016-07-21 株式会社半導体エネルギー研究所 Flexible fuel cell and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260740A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and manufacturing method
JP2004342564A (en) * 2003-05-19 2004-12-02 Toyo Kohan Co Ltd Sheath material for battery
WO2013031891A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
CN103858254A (en) * 2011-08-31 2014-06-11 Nec能源元器件株式会社 Non-aqueous electrolyte secondary battery
JPWO2013031891A1 (en) * 2011-08-31 2015-03-23 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2016113656A1 (en) * 2015-01-16 2016-07-21 株式会社半導体エネルギー研究所 Flexible fuel cell and electronic device
JPWO2016113656A1 (en) * 2015-01-16 2017-12-14 株式会社半導体エネルギー研究所 Flexible storage battery and electronic device

Similar Documents

Publication Publication Date Title
JP2001068156A (en) Stacked polymer electrolyte battery
JP4162175B2 (en) Polymer electrolyte battery
JP2000133220A (en) Lithium-ion secondary battery
CN103843172B (en) Dividing plate with heat-resistant insulating layer
JP2003109666A (en) Structure of whole solid polymer battery, whole solid polymer battery and its manufacturing method
JP4132647B2 (en) Thin secondary battery
JP2000235850A (en) Layered polymer electrolyte battery
WO1999031751A1 (en) Lithium ion secondary battery and its manufacture
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP3992261B2 (en) Stacked polymer electrolyte battery
US20020110731A1 (en) Electrochemical cell separators with high crystallinity binders
JP2020140932A (en) All-solid-state battery and manufacturing method thereof
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP4070367B2 (en) Laminated polymer electrolyte battery and sheet battery manufacturing method
JP4108918B2 (en) Thin secondary battery
JP3821465B2 (en) Polymer electrolyte battery
JPH0521086A (en) Electrode and battery using this
JP2001126678A (en) Laminate polymer electrolyte battery
JP2000260470A (en) Polymer electrolyte battery
JP2000353504A (en) Laminate pack battery
JP2000251870A (en) Layered type polymer electrolyte battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same
JP4010521B2 (en) Stacked battery
JPH11307084A (en) Organic electrolyte battery
JP2001068161A (en) Stacked polymer electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070309

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330