Nothing Special   »   [go: up one dir, main page]

JP2000108201A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JP2000108201A
JP2000108201A JP11203292A JP20329299A JP2000108201A JP 2000108201 A JP2000108201 A JP 2000108201A JP 11203292 A JP11203292 A JP 11203292A JP 20329299 A JP20329299 A JP 20329299A JP 2000108201 A JP2000108201 A JP 2000108201A
Authority
JP
Japan
Prior art keywords
film
temperature
biaxially oriented
stretching
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11203292A
Other languages
Japanese (ja)
Other versions
JP4390025B2 (en
Inventor
Masayoshi Asakura
正芳 朝倉
Kenichi Egashira
賢一 江頭
Tetsuya Tsunekawa
哲也 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20329299A priority Critical patent/JP4390025B2/en
Publication of JP2000108201A publication Critical patent/JP2000108201A/en
Application granted granted Critical
Publication of JP4390025B2 publication Critical patent/JP4390025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially oriented polyester film suitable for a base film for a high density magnetic recording tape in which cutting or stress elongation deformation are scarcely generated at the time of using as the base film for the magnetic recording tape, and which has excellent running durability and preservability. SOLUTION: In the biaxially oriented polyester film having 7 GPa or more of either Young's modulus (YmMD) of a lengthwise direction or Young's modulus (YmTD) of a width direction, a half-value width of a diffraction peak of a crystal surface of a main chain direction of a polyester in a circumferential direction obtained at the time of rotating the film at its normal as an axis is in a range of 55 to 85 degrees by means of a crystal orientation analysis according to a wide angle X-ray diffractometer method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二軸配向ポリエス
テルフィルムに関する。さらに詳しくは、フィルム面内
の全方位に対して剛性が高く、磁気記録用テープとして
使用した時にテープの走行耐久性、テープ使用環境での
保存性が改良される、高密度磁気記録媒体用ベースフィ
ルムとして好適な二軸配向ポリエステルフィルムに関す
る。
[0001] The present invention relates to a biaxially oriented polyester film. More specifically, a base for high-density magnetic recording media that has high rigidity in all directions in the film plane and improves the running durability of the tape when used as a tape for magnetic recording and the storage stability in the environment where the tape is used. The present invention relates to a biaxially oriented polyester film suitable as a film.

【0002】[0002]

【従来の技術】 近年、磁気記録テープは、小型化と長
時間記録化のために薄膜化と高密度記録化が進められて
おり、張力によるテープの伸び変形、使用環境での寸法
変化の改善要求がますます強くなっている。磁気記録テ
ープ分野におけるこれらの開発状況から、ベースフィル
ムに対しては、高強度化、使用環境での形態および寸法
安定性の改善要求がますます高まっている。
2. Description of the Related Art In recent years, magnetic recording tapes have been reduced in thickness and recording density for miniaturization and long-term recording. Requests are getting stronger. Due to these developments in the field of magnetic recording tapes, there is an increasing demand for base films to have higher strength and to improve morphology and dimensional stability in use environments.

【0003】上記の要求に応え得るベースフィルムとし
て、従来からアラミドフィルムが、強度、寸法安定性の
点から使用されている。高価格でコストの点では不利で
あるが、代替品が無いため、使用されているのが現状で
ある。一方、従来技術で得られている高強度化ポリエス
テルフィルム(例えば、特公昭42−9270号公報、
特公昭43−3040号公報、特公昭46−1119号
公報、特公昭46−1120号公報、特開昭50−13
3276号公報、特開昭55−22915号公報等のフ
ィルム)では、使用時にテープが切断する、幅方向
の剛性不足によりエッジダメージが発生する、応力伸
び変形あるいは環境条件によって寸法変化し、記録トラ
ックにずれが生じて記録再生時にエラーが発生する、
強度が不十分で薄膜対応が難しく、所望の電磁変換特性
が得られない等の問題があり、大容量の高密度磁気記録
テープへの適用に際して多くの課題が残されているのが
現状である。
[0003] As a base film that can meet the above requirements, an aramid film has been conventionally used in view of strength and dimensional stability. Although it is expensive and disadvantageous in terms of cost, it is currently used because there is no substitute. On the other hand, a high-strength polyester film obtained by a conventional technique (for example, Japanese Patent Publication No. 42-9270,
JP-B-43-3040, JP-B-46-1119, JP-B-46-1120, and JP-A-50-13
No. 3,276, Japanese Patent Application Laid-Open No. 55-22915), the tape is cut during use, edge damage occurs due to lack of rigidity in the width direction, dimensional change due to stress elongation deformation or environmental conditions, and recording tracks Error occurs during recording and playback,
There are problems such as insufficient strength, difficulty in handling thin films, and the inability to obtain desired electromagnetic conversion characteristics, and many problems remain when applied to large-capacity, high-density magnetic recording tapes. .

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、磁気
記録テープ用のベースフィルムとして使用した時に、テ
ープの切断、応力伸び変形が生じにくく、走行耐久性お
よび保存性に優れている、高密度磁気記録テープ用ベー
スフィルムとして好適な二軸配向ポリエステルフィルム
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a tape which is hardly cut or stress-elongated when used as a base film for a magnetic recording tape, and has excellent running durability and storage stability. An object of the present invention is to provide a biaxially oriented polyester film suitable as a base film for a high density magnetic recording tape.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意に検討した結果、二軸延伸熱処理後の
フィルムの構造と物性をある特定のものとすることによ
り、ポリエステルフィルムを使用した磁気記録テープの
エッジダメージを低減し、走行耐久性、保存性を改良で
きることを見出し、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, by making the structure and physical properties of the film after the biaxial stretching heat treatment specific, the polyester film The present inventors have found that edge damage of a magnetic recording tape using the same can be reduced and running durability and storage stability can be improved, and the present invention has been completed.

【0006】すなわち、本発明の骨子は、長手方向のヤ
ング率(YmMD)あるいは幅方向のヤング率(YmT
D)のいずれか一方のヤング率が7GPa以上である二
軸配向ポリエステルフィルムであって、広角X線ディフ
ラクトメータ法による結晶配向解析で、該ポリエステル
フィルムをその法線を軸として回転した時に得られる、
該ポリエステル主鎖方向の結晶面の回折ピークの円周方
向の半価幅が55度以上から85度以下の範囲にあるこ
とを特徴とする二軸配向ポリエステルフィルムである。
That is, the gist of the present invention is that the Young's modulus in the longitudinal direction (YmMD) or the Young's modulus in the width direction (YmT
D) A biaxially oriented polyester film having a Young's modulus of 7 GPa or more, which is obtained by rotating the polyester film about its normal line in a crystal orientation analysis by a wide-angle X-ray diffractometer method. Can be
A biaxially oriented polyester film, wherein a half-width in a circumferential direction of a diffraction peak of a crystal plane in a polyester main chain direction is in a range of 55 degrees or more to 85 degrees or less.

【0007】そして本発明の二軸配向ポリエステルフィ
ルムは次のような好ましい実施態様を含んでいる (a)ポリエステル主鎖方向の結晶サイズが、45Å以
上から90Å以下の範囲にあること。 (b)長手方向のヤング率(YmMD)と幅方向のヤン
グ率(YmTD)の和が13GPa以上から25GPa
以下、かつ斜め方向(長手方向を90度、幅方向を0度
としたときの45度または135度方向)のヤング率が
6GPa以上から10GPa以下の範囲にあること。 (c)温度50℃、荷重28MPaの条件下で30分経
過後のクリープコンプライアンスが0.11GPa-1
上から0.35GPa-1以下の範囲にあること。 (d)フィルム厚みを5μmに換算した幅方向の引裂伝
播抵抗が0.7g以上から1.8g以下の範囲にあるこ
と。 (e)ポリエステルがポリエチレンテレフタレートであ
ること。 (f)厚み方向の屈折率(nZD)が1.470以上から
1.485以下、面配向係数(fn)が0.175以上
から0.195以下の範囲にあること。 (g)フィルムの密度が1.385以上から1.400
以下の範囲にあること。 (h)フィルムの熱収縮開始温度が70℃以上、温度8
0℃の熱収縮率が、0.5%以下であること。 上記のような本発明に係る二軸配向ポリエステルフィル
ムは、とくに高密度磁気記録媒体のベースフィルムとし
て好適なものである。
The biaxially oriented polyester film of the present invention includes the following preferred embodiments: (a) The crystal size in the polyester main chain direction is in the range of 45 ° to 90 °. (B) The sum of the Young's modulus in the longitudinal direction (YmMD) and the Young's modulus in the width direction (YmTD) is from 13 GPa or more to 25 GPa.
The Young's modulus in an oblique direction (45 ° or 135 ° when the longitudinal direction is 90 ° and the width direction is 0 °) is in the range of 6 GPa to 10 GPa. (C) Creep compliance after 30 minutes at a temperature of 50 ° C. and a load of 28 MPa is in the range of 0.11 GPa −1 or more and 0.35 GPa −1 or less. (D) The tear propagation resistance in the width direction when the film thickness is converted to 5 μm is in the range of 0.7 g or more to 1.8 g or less. (E) The polyester is polyethylene terephthalate. (F) The refractive index (n ZD ) in the thickness direction is from 1.470 to 1.485, and the plane orientation coefficient (f n ) is from 0.175 to 0.195. (G) The density of the film is from 1.385 or more to 1.400.
Be in the following range. (H) The temperature at which the film begins to contract heat is 70 ° C. or higher, and the temperature is
The heat shrinkage at 0 ° C. is 0.5% or less. The biaxially oriented polyester film according to the present invention as described above is particularly suitable as a base film for a high-density magnetic recording medium.

【0008】[0008]

【発明の実施の形態】以下、本発明について、望ましい
実施の形態とともに詳細に説明する。本発明で言うポリ
エステルとは、ジオールとジカルボン酸とからの縮重合
により得られるポリマーである。ジカルボン酸とは、テ
レフタル酸、イソフタル酸、フタル酸、ナフタレンジカ
ルボン酸、アジピン酸、セバチン酸などで代表されるも
のであり、また、ジオールとは、エチレングリコール、
トリメチレングリコール、テトラメチレングリコール、
シクロヘキサンジメタノールなどで代表されるものであ
る。具体的には、例えば、ポリメチレンテレフタレー
ト、ポリエチレンテレフタレート、ポリプロピレンテレ
フタレート、ポリエチレンイソフタレート、ポリテトラ
メチレンテレフタレート、ポリエチレン−p−オキシベ
ンゾエート、ポリ−1,4−シクロヘキシレンジメチレ
ンテレフタレート、ポリエチレン−2,6−ナフタレー
トなどを用いることができる。もちろん、これらのポリ
エステルは、ホモポリマーであってもコポリマーであっ
てもよく、共重合成分としては、例えば、ジエチレング
リコール、ネオペンチルグリコール、ポリアルキレング
リコールなどのジオール成分、アジピン酸、セバチン
酸、フタル酸、イソフタル酸、2,6−ナフタレンジカ
ルボン酸などのジカルボン酸成分を10モル%以下で共
重合することができる。本発明の場合、特に、ポリエチ
レンテレフタレート、ポリプロピレンテレフタレート、
ポリエチレンイソフタレート、ポリエチレンナフタレー
ト(ポリエチレン−2,6−ナフタレート)およびこれ
らの共重合体より選ばれた少なくとも一種であることが
機械的強度、耐熱性、耐薬品性、耐久性などの観点から
好ましく、中でも本発明では、フィルム特性、価格面か
らポレエチレンテレフタレートが特に好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail together with preferred embodiments. The polyester referred to in the present invention is a polymer obtained by condensation polymerization of a diol and a dicarboxylic acid. Dicarboxylic acids are represented by terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid and the like, and diols are ethylene glycol,
Trimethylene glycol, tetramethylene glycol,
It is represented by cyclohexanedimethanol and the like. Specifically, for example, polymethylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, polyethylene-p-oxybenzoate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6 -Naphthalate or the like can be used. Of course, these polyesters may be homopolymers or copolymers. Examples of copolymerization components include diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, sebacic acid, and phthalic acid. A dicarboxylic acid component such as isophthalic acid and 2,6-naphthalenedicarboxylic acid can be copolymerized in an amount of 10 mol% or less. In the case of the present invention, in particular, polyethylene terephthalate, polypropylene terephthalate,
It is preferably at least one selected from polyethylene isophthalate, polyethylene naphthalate (polyethylene-2,6-naphthalate) and a copolymer thereof from the viewpoint of mechanical strength, heat resistance, chemical resistance, durability and the like. Among them, in the present invention, polyethylene terephthalate is particularly preferred in view of film properties and cost.

【0009】ポリエステルの固有粘度(IV)は、0.
6dl/g以上から1.0dl/g以下の範囲が好まし
く、特に0.65dl/g以上から0.80dl/g以
下の範囲がフィルムの製膜性、寸法安定性、耐引裂性の
観点からより好ましい。
The intrinsic viscosity (IV) of the polyester is 0.1.
The range from 6 dl / g to 1.0 dl / g is preferred, and the range from 0.65 dl / g to 0.80 dl / g is more preferred from the viewpoints of film forming properties, dimensional stability and tear resistance. preferable.

【0010】本発明の二軸配向ポリエステルフィルムで
は、長手方向のヤング率(YmMD)あるいは幅方向の
ヤング率(YmTD)のいずれか一方のヤング率は7G
Pa以上であり、広角X線ディフラクトメータ法による
結晶配向解析で、該ポリエステルフィルムをその法線を
軸として回転した時に得られる、該ポリエステル主鎖方
向の結晶面の回折ピークの円周方向の半価幅が55度以
上から85度以下の範囲にあることが必要である。ポリ
エステル主鎖方向の結晶面の回折ピークの円周方向の半
価幅は二軸配向ポリエステルフィルムの結晶の配向の方
向の分布の広がりを表すものであり、この半価幅が55
度未満の場合、フィルムの面内の全方位に高強度である
フィルムが得られず、また半価幅が85度を越える場合
には、フィルムの引裂伝播抵抗が小さくなってテープ破
断が生じ易く、本発明の目的を達成できないからであ
る。ここで、ポリエステル主鎖方向の結晶面とは、広角
X線ディフラクトメータ法によって回折ピークとして検
知される結晶面の中で、その法線がポリエステル主鎖方
向に最も近い結晶面であり、ポリエチレンテレフタレー
トでは(−105)面、ポリエチレン−2,6−ナフタ
レートでは(−306)面である。前記半価幅は、60
度以上から85度以下の範囲がより好ましく、65度以
上から80度以下の範囲が、本発明の効果を得る上で最
も好ましい。
In the biaxially oriented polyester film of the present invention, one of the Young's modulus in the longitudinal direction (YmMD) and the Young's modulus in the width direction (YmTD) is 7G.
Pa or more, in the crystal orientation analysis by the wide-angle X-ray diffractometer method, obtained when the polyester film is rotated about its normal line, the circumferential direction of the diffraction peak of the crystal plane in the polyester main chain direction. It is necessary that the half width is in the range of 55 degrees or more and 85 degrees or less. The circumferential half width of the diffraction peak of the crystal plane in the polyester main chain direction indicates the spread of the distribution in the direction of crystal orientation of the biaxially oriented polyester film, and this half width is 55%.
If the degree is less than 80 degrees, a film having high strength in all directions in the plane of the film cannot be obtained, and if the half width exceeds 85 degrees, the tear propagation resistance of the film becomes small and the tape is easily broken. This is because the object of the present invention cannot be achieved. Here, the crystal plane in the polyester main chain direction is a crystal plane whose normal line is closest to the polyester main chain direction among the crystal planes detected as diffraction peaks by the wide-angle X-ray diffractometer method. The (-105) plane is used for terephthalate, and the (-306) plane is used for polyethylene-2,6-naphthalate. The half width is 60
The range of not less than 85 ° and not more than 85 ° is more preferable, and the range of not less than 65 ° and not more than 80 ° is most preferable for obtaining the effects of the present invention.

【0011】フィルムの長手方向のヤング率(YmM
D)あるいは幅方向のヤング率(YmTD)のいずれか
一方のヤング率が7GPa未満では、フィルムの剛性が
不足し、薄膜テープ状態で応力伸び変形(特に長手方
向)やエッジダメージ(特に幅方向)が起こりやすくな
るので好ましくない。YmMDおよびYmTDのいずれ
か一方のヤング率は、テープの伸び変形、エッジダメー
ジの観点から、8GPa以上がより好ましい。また、フ
ィルムの長手方向のヤング率(YmMD)あるいは幅方
向のヤング率(YmTD)のいずれか一方のヤング率の
上限は、磁気テープの破断を避ける点から14GPaを
越えないことが好ましい。
The Young's modulus (YmM) in the longitudinal direction of the film
If one of the Young's modulus D) or the Young's modulus in the width direction (YmTD) is less than 7 GPa, the rigidity of the film is insufficient, and the stress elongation deformation (especially in the longitudinal direction) and the edge damage (especially in the width direction) in the state of the thin film tape. This is not preferable because the occurrence of the susceptibility tends to occur. The Young's modulus of one of YmMD and YmTD is more preferably 8 GPa or more from the viewpoint of elongation deformation and edge damage of the tape. It is preferable that the upper limit of either the Young's modulus in the longitudinal direction (YmMD) or the Young's modulus in the width direction (YmTD) of the film does not exceed 14 GPa from the viewpoint of avoiding breakage of the magnetic tape.

【0012】本発明のフィルムのポリエステル主鎖方向
の結晶サイズは、45Å以上から90Å以下の範囲にあ
ることが好ましい。ここで、ポリエステル主鎖方向と
は、ポリエステル主鎖方向に最も近い、結晶面の法線方
向であり、ポリエチレンテレフタレートでは(−10
5)面、ポリエチレンー2,6−ナフタレートでは(−
306)面の法線方向である。該結晶サイズが45Å未
満では、テープの伸び変形が大きくなって、エッジダメ
ージも発生し易く、またテープ加工後の保存安定性が悪
化する。また、結晶サイズが90Åを越えるとテープ破
断の発生頻度が高くなるので注意すべきである。該結晶
サイズは、使用するポリエステルによって変わるが、ポ
リエチレンテレフタレートの場合、50Å以上から85
Å以下の範囲が好ましく、55Å以上から80Å以下の
範囲がより好ましい。また使用するポリエステルがポリ
エチレンー2,6−ナフタレートの場合には、50Å以
上から65Å以下の範囲がさらに好ましい。
The crystal size in the polyester main chain direction of the film of the present invention is preferably in the range of 45 ° to 90 °. Here, the polyester main chain direction is the normal direction of the crystal plane closest to the polyester main chain direction, and in polyethylene terephthalate, (−10)
5) In the case of polyethylene 2,6-naphthalate,
306) The normal direction of the plane. When the crystal size is less than 45 °, elongation and deformation of the tape become large, and edge damage is liable to occur, and storage stability after tape processing is deteriorated. It should be noted that when the crystal size exceeds 90 °, the frequency of tape breakage increases. The crystal size varies depending on the polyester to be used.
The range is preferably equal to or less than Å, and more preferably, equal to or more than 55 ° and equal to or less than 80 °. When the polyester used is polyethylene-2,6-naphthalate, the range is more preferably from 50 ° to 65 °.

【0013】本発明のフィルムの長手方向のヤング率
(YmMD)と幅方向のヤング率(YmTD)の和(Y
mMD+YmTD)は、13GPa以上から25GPa
以下の範囲にあり、かつ、斜め方向のヤング率は、6G
Pa以上から10GPa以下の範囲にあることが好まし
い。ここで斜め方向のヤング率とは、フィルムの長手方
向を90度、幅方向を0度としたときの、フィルム面内
における45度または135度の方向のヤング率であ
る。前記ヤング率の和が13GPa未満で、斜め方向の
ヤング率が6GPa未満の場合、応力による伸び変形が
起こりやすい。また、これとは逆に、ヤング率の和が2
5GPaを越え、斜め方向のヤング率が10GPaを越
えると、フィルムの耐引裂性、熱収縮特性が悪化し、本
発明の効果が得られにくくなるので注意すべきである。
フィルムの長手方向のヤング率(YmMD)と幅方向の
ヤング率(YmTD)の和(YmMD+YmTD)が、
14GPa以上から20GPa以下、斜め方向のヤング
率は、7GPa以上から9GPa以下の範囲がより好ま
しい。
The sum of the Young's modulus (YmMD) in the longitudinal direction and the Young's modulus (YmTD) in the width direction (YmTD) of the film of the present invention.
mMD + YmTD) is from 13 GPa or more to 25 GPa
The following range, and the Young's modulus in the oblique direction is 6G
It is preferably in the range from Pa or more to 10 GPa or less. Here, the Young's modulus in the oblique direction is the Young's modulus in the direction of 45 degrees or 135 degrees in the film plane when the longitudinal direction of the film is 90 degrees and the width direction is 0 degrees. When the sum of the Young's modulus is less than 13 GPa and the Young's modulus in the oblique direction is less than 6 GPa, elongation deformation due to stress is likely to occur. On the contrary, the sum of Young's modulus is 2
If the modulus exceeds 5 GPa and the Young's modulus in the oblique direction exceeds 10 GPa, it should be noted that the tear resistance and heat shrinkage characteristics of the film deteriorate, and the effect of the present invention is hardly obtained.
The sum of the Young's modulus (YmMD) in the longitudinal direction of the film and the Young's modulus (YmTD) in the width direction (YmMD + YmTD) is:
More preferably, the Young's modulus in the oblique direction is in the range of 7 GPa to 9 GPa.

【0014】また、ベースフィルムにコートする磁性層
の剛性、テープの使用条件によるが、YmMDとYmT
Dの比(YmMD/YmTD)は、0.6〜1.3の範
囲がテープのエッジダメージ抑制の観点で好ましく、
0.7〜1.2の範囲がさらに好ましい。ベースフィル
ムに磁性層を付加して磁性層による剛性アップを図る場
合には、YmMDは6.0GPa以上が好ましく、(Y
mMD/YmTD)は0.6〜0.9の範囲が好まし
い。
Further, depending on the rigidity of the magnetic layer coated on the base film and the use conditions of the tape, YmMD and YmT
The ratio of D (YmMD / YmTD) is preferably in the range of 0.6 to 1.3 from the viewpoint of suppressing edge damage of the tape,
The range of 0.7 to 1.2 is more preferable. When a magnetic layer is added to the base film to increase the rigidity of the magnetic layer, the YmMD is preferably 6.0 GPa or more.
mMD / YmTD) is preferably in the range of 0.6 to 0.9.

【0015】本発明では、温度50℃、荷重28MPa
の条件下で30分経過後のクリープコンプライアンス
が、0.11GPa-1以上から0.35GPa-1以下の
範囲にあることが好ましい。本発明のクリープコンプラ
イアンスが0.35GPa-1を越える場合は、テープの
走行時あるいは保存時の張力によって、テープの伸び変
形が起こりやすくなり、記録再生時にトラックずれを発
生し易くなる。また、これとは逆にクリープコンプライ
アンスが0.11未満の場合には、テープ破断が頻発す
る。本発明のクリープコンプライアンスが、0.15G
Pa-1以上から0.30GPa-1以下の範囲がより好ま
しい。ここで、本発明のクリープコンプライアンスと
は、「高分子化学序論(第2版)」((株)化学同人発
行)150頁に記載されたものである。
In the present invention, the temperature is 50 ° C., the load is 28 MPa.
The creep compliance after a lapse of 30 minutes under the above condition is preferably in the range of 0.11 GPa -1 or more and 0.35 GPa -1 or less. When the creep compliance of the present invention exceeds 0.35 GPa -1 , the tape is easily stretched and deformed due to the tension during the running or storage of the tape, and the track is easily shifted during recording and reproduction. Conversely, when the creep compliance is less than 0.11, the tape frequently breaks. The creep compliance of the present invention is 0.15 G
The range from Pa -1 or more to 0.30 GPa -1 or less is more preferable. Here, the creep compliance of the present invention is described in “Introduction to Polymer Chemistry (Second Edition)”, page 150 (published by Kagaku Dojin).

【0016】本発明の二軸配向ポリエステルフィルムで
は、テープの切断および走行耐久性の観点から、フィル
ム厚みを5μmに換算した幅方向の引裂伝播抵抗は、
0.7g以上から1.8g以下の範囲が好ましい。本発
明の幅方向の引裂伝播抵抗は、0.8g以上から1.5
g以下の範囲がより好ましい。
In the biaxially oriented polyester film of the present invention, the tear propagation resistance in the width direction when the film thickness is converted to 5 μm from the viewpoint of tape cutting and running durability is as follows:
The range is preferably from 0.7 g or more to 1.8 g or less. The tear propagation resistance in the width direction of the present invention is from 0.8 g or more to 1.5 g.
g or less is more preferable.

【0017】上述したように、本発明では、使用するポ
リエステルがポリエチレンテレフタレートであることが
好ましいが、この場合、フィルムの厚み方向の屈折率
(nZD)は、1.470以上から1.485以下、面配
向係数(fn)は0.175以上から0.195以下の
範囲が好ましい。本発明の厚み方向の屈折率(nZD)が
1.485を越え、面配向係数(fn)が0.175未
満の場合は、磁気テープの走行時に、テープにかかる応
力による伸び変形が起こりやすくなり、トラックずれを
起こしやすくなる。また厚み方向の屈折率(nZD)が
1.470未満で、面配向係数(fn)が0.195を
越える場合は、フィルムの引裂伝播抵抗が小さくなり、
テープ破断が生じ易くなるので注意すべきである。本発
明のフィルムの厚み方向の屈折率(nZD)は、1.47
3以上から1.482以下、面配向係数(fn)は0.
180以上から0.193以下の範囲がより好ましい。
As described above, in the present invention, the polyester used is preferably polyethylene terephthalate. In this case, the refractive index (n ZD ) in the thickness direction of the film is from 1.470 or more to 1.485 or less. The plane orientation coefficient (f n ) preferably ranges from 0.175 or more to 0.195 or less. When the refractive index (n ZD ) in the thickness direction of the present invention exceeds 1.485 and the plane orientation coefficient (f n ) is less than 0.175, elongation deformation occurs due to stress applied to the magnetic tape during running of the magnetic tape. Track misalignment. When the refractive index (n ZD ) in the thickness direction is less than 1.470 and the plane orientation coefficient (f n ) exceeds 0.195, the tear propagation resistance of the film decreases,
It should be noted that the tape is likely to break. The refractive index (n ZD ) in the thickness direction of the film of the present invention is 1.47.
3 or more to 1.482 or less, and a plane orientation coefficient (f n ) of 0.4 or more.
A range from 180 or more to 0.193 or less is more preferable.

【0018】本発明の二軸配向ポリエチレンテレフタレ
ートフィルムの密度は、1.385以上から1.400
以下の範囲が好ましい。本発明のフィルムの密度が1.
385未満では、フィルムの構造固定が不十分であるた
め、テープの保存性が悪化し易くなり、またフィルムの
密度が1.400を越えると、フィルムの引裂伝播抵抗
が低下し、テープ切断が発生し易くなるからである。
The density of the biaxially oriented polyethylene terephthalate film of the present invention is from 1.385 or more to 1.400.
The following ranges are preferred. The density of the film of the present invention is 1.
If it is less than 385, the structure of the film is insufficiently fixed, so that the preservability of the tape tends to deteriorate. If the density of the film exceeds 1.400, the tear propagation resistance of the film decreases, and tape cutting occurs. This is because it becomes easier.

【0019】本発明の二軸配向ポリエチレンテレフタレ
ートフィルムでは、テープの伸び変形性および保存性の
観点から、熱収縮開始温度が70℃以上、温度80℃で
の熱収縮率が0.5%以下が好ましい。より好ましく
は、熱収縮開始温度が75℃以上、温度80℃の熱収縮
率が0.3%以下である。本発明の熱収縮開始温度が7
0℃未満であったり、温度80℃の熱収縮率が0.5%
を越える場合は、寸法安定性が損なわれやすく、走行時
の磁気テープと記録ヘッドとの摩擦熱による磁気テープ
の昇温時に熱変形が起こりやすくなったり、テープの保
存性が悪化する傾向があるので注意すべきである。また
熱収縮開始温度の上限は、寸法安定性の点で高い方が好
ましいが、二軸配向ポリエチレンテレフタレートフィル
ムの場合、105℃を越えるようにすると、フィルムの
ヤング率が本発明の範囲とするのが困難になるので好ま
しくない。また温度80℃での熱収縮率が−0.2%
(熱伸びの方向)を越える場合は、磁気テープの加工工
程で皺発生の原因になるので好ましくない。
In the biaxially oriented polyethylene terephthalate film of the present invention, the heat shrinkage initiation temperature is 70 ° C. or more and the heat shrinkage rate at a temperature of 80 ° C. is 0.5% or less from the viewpoints of elongation and deformability of the tape and storage stability. preferable. More preferably, the heat shrinkage initiation temperature is 75 ° C. or more, and the heat shrinkage at a temperature of 80 ° C. is 0.3% or less. The heat shrinkage starting temperature of the present invention is 7
Less than 0 ° C or 0.5% thermal shrinkage at 80 ° C
In the case of exceeding, the dimensional stability tends to be impaired, and thermal deformation tends to occur when the temperature of the magnetic tape rises due to frictional heat between the magnetic tape and the recording head during running, and the storage stability of the tape tends to deteriorate. So be careful. The upper limit of the heat shrinkage initiation temperature is preferably higher from the viewpoint of dimensional stability, but in the case of a biaxially oriented polyethylene terephthalate film, if the temperature exceeds 105 ° C., the Young's modulus of the film falls within the range of the present invention. Is not preferable because it becomes difficult. The heat shrinkage at a temperature of 80 ° C. is -0.2%.
If it exceeds (the direction of thermal elongation), it is not preferable because it causes wrinkles in the processing step of the magnetic tape.

【0020】本発明の二軸配向ポリエステルフィルム
は、例えばデータ・ストレージ用磁気テープ、デジタル
ビデオカセット磁気テープなどの高密度磁気記録用テー
プのベースフィルムに適し、特にデータ・ストレージ用
磁気テープとしては、アドバンスドインテリジェントテ
ープ(AIT)、デジタルリニアテープ(DLT)、リ
ニアテープオープン(LTO)などのベースフィルムに
適したものであり、磁気記録密度としては、好ましくは
30GB(ギガバイト)以上、より好ましくは70G
B、さらにより好ましくは100GB以上である。
The biaxially oriented polyester film of the present invention is suitable for a base film of a high-density magnetic recording tape such as a magnetic tape for data storage and a magnetic tape for digital video cassette. It is suitable for base films such as Advanced Intelligent Tape (AIT), Digital Linear Tape (DLT), and Linear Tape Open (LTO). The magnetic recording density is preferably 30 GB (gigabyte) or more, more preferably 70 Gb.
B, even more preferably 100 GB or more.

【0021】本発明の二軸配向ポリエステルフィルムの
厚みは、用途、目的に応じて適宜決定できる。通常磁気
記録媒体用途では1μm以上から20μm以下の範囲が
好ましい。データ用塗布型磁気記録媒体用途では2μm
以上から15μm以下の範囲が好ましく、データ用蒸着
型磁気記録媒体用途では3μm以上から9μm以下の範
囲が好ましい。
The thickness of the biaxially oriented polyester film of the present invention can be appropriately determined according to the use and purpose. Usually, for use in magnetic recording media, the range is preferably from 1 μm to 20 μm. 2 μm for coated magnetic recording media for data
The range is preferably from 15 μm to 15 μm, and more preferably from 3 μm to 9 μm for data evaporation magnetic recording media.

【0022】本発明の二軸配向ポリエステルフィルムの
磁気記録面の表面粗さ(Ra)(中心線平均粗さ)は、
0.2〜15nmの範囲が磁気ヘッドと磁気テープとの
間隔が近くなり、電磁変換特性が良くなるので好まし
い。また磁気記録面の反対側のテープ走行面の表面粗さ
(Ra)は、5〜30nmの範囲が、ベースフィルムの
取扱い性、フィルムのロール状への巻き上げ性などの観
点から好ましい。このようにフィルムの表裏の表面粗さ
を個別にコントロールすることは、テープの走行性と電
磁変換特性を両立させるのに非常に好ましい。これを達
成する方法としては、径の異なる粒子をそれぞれポリエ
ステルに添加した2種類の樹脂を共押出し、2層以上の
積層フィルムとする方法が好ましく、磁気記録面側に薄
膜を積層して3層積層とすることも好適に行うことがで
きる。2層積層フィルムの場合、磁気記録面となる層の
厚み(A)とテープ走行面の層の厚み(B)の比(A/
B)は、80/1から3/1の範囲が好ましい。
The surface roughness (Ra) (center line average roughness) of the magnetic recording surface of the biaxially oriented polyester film of the present invention is:
The range of 0.2 to 15 nm is preferable because the distance between the magnetic head and the magnetic tape is reduced and the electromagnetic conversion characteristics are improved. Further, the surface roughness (Ra) of the tape running surface opposite to the magnetic recording surface is preferably in the range of 5 to 30 nm from the viewpoints of handleability of the base film, winding of the film into a roll, and the like. It is very preferable to individually control the surface roughness of the front and back surfaces of the film in order to achieve both the tape running property and the electromagnetic conversion characteristics. As a method for achieving this, a method of coextruding two kinds of resins each having particles having different diameters added to polyester to form a laminated film of two or more layers is preferable. Lamination can also be suitably performed. In the case of a two-layer laminated film, the ratio (A / A) of the thickness (A) of the layer to be the magnetic recording surface and the thickness (B) of the layer on the tape running surface.
B) is preferably in the range of 80/1 to 3/1.

【0023】本発明のポリエステルフィルム中には、無
機粒子や有機粒子、その他の各種添加剤、例えば酸化防
止剤、帯電防止剤、結晶核剤などを添加してもかまわな
い。また、他の樹脂、例えば主鎖にメソゲン基(液晶性
の構造単位)を有する共重合ポリエステル樹脂を少量添
加してもよい。
In the polyester film of the present invention, inorganic particles, organic particles and other various additives such as an antioxidant, an antistatic agent and a crystal nucleating agent may be added. Further, a small amount of another resin, for example, a copolymerized polyester resin having a mesogen group (a liquid crystalline structural unit) in the main chain may be added.

【0024】無機粒子の具体例としては、酸化ケイ素、
酸化アルミニウム、酸化マグネシウム、酸化チタンなど
の酸化物、カオリン、タルク、モンモリロナイトなどの
複合酸化物、炭酸カルシウム、炭酸バリウムなどの炭酸
塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、チタ
ン酸バリウム、チタン酸カリウムなどのチタン酸塩、リ
ン酸第3カルシウム、リン酸第2カルシウム、リン酸第
1カルシウムなどのリン酸塩などを用いることができる
が、これらに限定されるわけではない。また、これらは
目的に応じて2種以上用いてもかまわない。
Specific examples of the inorganic particles include silicon oxide,
Oxides such as aluminum oxide, magnesium oxide, and titanium oxide; complex oxides such as kaolin, talc, and montmorillonite; carbonates such as calcium carbonate and barium carbonate; sulfates such as calcium sulfate and barium sulfate; barium titanate; Titanate such as potassium, phosphate such as tertiary calcium phosphate, dibasic calcium phosphate, and monocalcium phosphate can be used, but not limited thereto. These may be used in combination of two or more depending on the purpose.

【0025】有機粒子の具体例としては、ポリスチレン
もしくは架橋ポリスチレン粒子、スチレン・アクリル系
及びアクリル系架橋粒子、スチレン・メタクリル系及び
メタクリル系架橋粒子などのビニル系粒子、ベンゾグア
ナミン・ホルムアルデヒド、シリコーン、ポリテトラフ
ルオロエチレンなどの粒子を用いることができるが、こ
れらに限定されるものではなく、粒子を構成する部分の
うち少なくとも一部がポリエステルに対し不溶の有機高
分子微粒子であれば如何なる粒子でもよい。また有機粒
子は、易滑性、フィルム表面の突起形成の均一性から粒
子形状が球形状で均一な粒度分布のものが好ましい。
Specific examples of the organic particles include polystyrene or crosslinked polystyrene particles, vinyl particles such as styrene / acrylic / acrylic crosslinked particles, styrene / methacrylic / methacrylic crosslinked particles, benzoguanamine / formaldehyde, silicone, and polytetrafluoroethylene. Although particles such as fluoroethylene can be used, the particles are not limited thereto, and any particles may be used as long as at least a part of the particles constituting the particles is organic polymer fine particles insoluble in polyester. The organic particles preferably have a spherical particle shape and a uniform particle size distribution from the viewpoint of smoothness and uniformity of formation of projections on the film surface.

【0026】これらの粒子の粒径、配合量、形状などは
用途、目的に応じて選ぶことが可能であるが、通常は、
平均粒子径としては0.01μm以上2μm以下の範
囲、配合量としては、0.002重量%以上2重量%以
下の範囲が好ましい。
The particle size, blending amount, shape and the like of these particles can be selected according to the application and purpose.
The average particle diameter is preferably in the range of 0.01 μm to 2 μm, and the blending amount is preferably in the range of 0.002% by weight to 2% by weight.

【0027】主鎖にメソゲン基を有する共重合ポリエス
テル樹脂の具体例としては、モノオキシ−モノカルボン
酸化合物、芳香族ジヒドロキシ化合物、芳香族ジカルボ
ン酸、アルキレンジオールから得られる共重合ポリエス
テルが挙げられる。モノオキシ−モノカルボン酸化合物
としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−
2−ナフトエ酸が挙げられる。芳香族ジヒドロキシ化合
物としては、4,4´−ジヒドロキシビフェニル、ハイ
ドロキノン、2,6−ジヒドロキシナフタレン、芳香族
ジカルボン酸としては、テレフタル酸、イソフタル酸、
4,4´−ジフェニルジカルボン酸、2,6−ナフタレ
ンジカルボン酸、1,2−ビス(フェノキシ)エタン−
4,4´−ジカルボン酸などが挙げられる。アルキレン
ジオールとしては、エチレングリコール、ブタンジオー
ルが挙げられる。モノオキシ−モノカルボン酸化合物お
よび芳香族ジヒドロキシ化合物の共重合量の和(M)と
アルキレンジオールの共重合量(N)のモル比(M/
N)は、80/20〜50/50の範囲が好ましい。ポ
リエチレンテレフタレートフィルムまたはポリエチレン
ナフタレートフィルムに添加する共重合ポリエステルの
好ましい例としては、p−ヒドロキシ安息香酸、4,
4´−ジヒドロキシビフェニル、エチレングリコール、
テレフタル酸または2,6−ナフタレンジカルボン酸か
らなる共重合ポリエステルが挙げられる。ポリエステル
フィルムへの添加量としては0.5〜10.0重量%の
範囲が好ましい。
Specific examples of the copolyester resin having a mesogen group in the main chain include copolyesters obtained from monooxy-monocarboxylic acid compounds, aromatic dihydroxy compounds, aromatic dicarboxylic acids, and alkylene diols. Monooxy-monocarboxylic acid compounds include p-hydroxybenzoic acid, 6-hydroxy-
2-naphthoic acid is exemplified. As the aromatic dihydroxy compound, 4,4′-dihydroxybiphenyl, hydroquinone, 2,6-dihydroxynaphthalene, and as the aromatic dicarboxylic acid, terephthalic acid, isophthalic acid,
4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-
4,4'-dicarboxylic acid and the like. Examples of the alkylene diol include ethylene glycol and butane diol. The molar ratio (M / M) of the sum (M) of the copolymerization amounts of the monooxy-monocarboxylic acid compound and the aromatic dihydroxy compound and the copolymerization amount (N) of the alkylene diol.
N) is preferably in the range of 80/20 to 50/50. Preferred examples of the copolymerized polyester added to the polyethylene terephthalate film or the polyethylene naphthalate film include p-hydroxybenzoic acid,
4'-dihydroxybiphenyl, ethylene glycol,
Copolymerized polyesters composed of terephthalic acid or 2,6-naphthalenedicarboxylic acid are exemplified. The amount added to the polyester film is preferably in the range of 0.5 to 10.0% by weight.

【0028】以上、特定の構造と物性を有する二軸配向
ポリエステルフィルムが、テープの破断を低減し、走行
耐久性、保存性を改善できるため、高密度磁気記録テー
プ用のベースフィルムとして極めて好適であることを示
した。次に本発明の二軸配向ポリエステルフィルムの製
造法について説明する。但し、本発明の要旨を越えない
限り、本発明は以下の説明によって限定されるものでな
いことは無論である。
As described above, the biaxially oriented polyester film having a specific structure and physical properties can reduce the breakage of the tape, improve the running durability and the storage stability, and is therefore extremely suitable as a base film for a high-density magnetic recording tape. It was shown. Next, a method for producing the biaxially oriented polyester film of the present invention will be described. However, it is a matter of course that the present invention is not limited by the following description unless the gist of the present invention is exceeded.

【0029】本発明の二軸配向ポリエステルフィルム
は、ポリエステル樹脂を溶融成形したシートを、長手方
向と幅方向に逐次二軸延伸または/および同時二軸延伸
により延伸配向を付与したフィルムであり、二軸延伸を
多段階の温度で順次に延伸を重ねて、高度に配向させる
ことにより得られる。
The biaxially oriented polyester film of the present invention is a film in which a sheet obtained by melt-molding a polyester resin is stretched in the longitudinal direction and the width direction by sequential biaxial stretching or / and simultaneous biaxial stretching. Axial stretching can be obtained by successively stretching the film at a multi-stage temperature and highly orienting the film.

【0030】以下では、まず好ましい製造法をポリエチ
レンテレフタレート(以後、PETと略称する。)フィ
ルムの逐次二軸延伸を具体例として説明する。
In the following, a preferred production method will be described as a specific example of sequential biaxial stretching of a polyethylene terephthalate (hereinafter abbreviated as PET) film.

【0031】PETのペレット(ガラス転移温度Tg;
75℃、融解温度Tm;255℃)を真空下で十分に乾
燥して、270〜300℃の温度に加熱された押出機に
供給し、T型口金よりシート状に押し出す。この溶融さ
れたシートを、表面温度10〜40℃に冷却されたドラ
ム上に静電気力で密着させて冷却固化し、実質的に非晶
状態の未延伸キャストフィルムを得る。この際、長手方
向の屈折率および幅方向の屈折率は、好ましくは1.5
70〜1.575にコントロールし、結晶化度は、好ま
しくは1.5%以下、より好ましくは1.0%以下に保
つことが、次の延伸の効果を発揮する点から好ましい。
さらに、この未延伸フィルムのエッジ部の最大厚み
(A)と幅方向中央部厚み(B)との比(A/B)は好
ましくは2〜6、より好ましくは3〜5が、これ以降の
延伸に好ましく用いられる。
PET pellets (glass transition temperature Tg;
(75 ° C., melting temperature Tm; 255 ° C.) is sufficiently dried under vacuum, fed to an extruder heated to a temperature of 270 to 300 ° C., and extruded from a T-type die into a sheet. The melted sheet is brought into close contact with a drum cooled to a surface temperature of 10 to 40 ° C. by electrostatic force and cooled and solidified to obtain a substantially amorphous unstretched cast film. At this time, the refractive index in the longitudinal direction and the refractive index in the width direction are preferably 1.5
It is preferable to control the crystallinity to 70 to 1.575, and to maintain the crystallinity preferably at 1.5% or less, more preferably at 1.0% or less, from the viewpoint of exerting the effect of the next stretching.
Further, the ratio (A / B) of the maximum thickness (A) of the edge portion of the unstretched film to the thickness (B) of the central portion in the width direction is preferably 2 to 6, more preferably 3 to 5, and It is preferably used for stretching.

【0032】この未延伸フィルムを加熱された金属ロー
ル群(表面材質:シリコン)に導き、(Tg+25)℃
〜(Tg+45)℃の温度範囲で1.5〜2.5倍に長
手方向に延伸する(MD延伸1)。この際、長手方向の
延伸は倍率を2段階に分割して延伸するのが好ましい。
次いで、そのフィルムの両端部を走行するクリップで把
持してテンターに導き、フィルムを予熱した後、(Tg
+25)℃〜(Tg+45)℃の温度範囲で1.5〜
2.5倍に幅方向に延伸し(TD延伸1)、引き続き、
(Tg−15)℃〜(Tg+10)℃の温度で3〜5倍
に幅方向に延伸する(TD延伸2)。MD延伸1とTD
延伸1が終了した段階のフィルムの長手方向および幅方
向の屈折率は、好ましくは1.590以下、より好まし
くは1.580以下である。この時の複屈折としては、
好ましくは0〜0.02、より好ましくは0〜0.0
1、さらに好ましくは0〜0.005である。密度法に
よる結晶化度を好ましくは6%以下、より好ましくは3
%以下、さらに好ましくは2%以下とするのがこれ以降
の延伸に好ましい。このように、延伸によって配向およ
び結晶化度が高まらない温度で長手方向および幅方向に
1.5〜2.5倍に延伸することが好ましい。このよう
な延伸を行うと、高分子鎖の絡み合いが解れ、ベンゼン
環が相互に面配向して、2〜3個上下に積層し重なった
構造(スタック構造)を形成させることができ、この構
造を形成させた後、再度、延伸を多段階で行う方法が、
本発明で開示するフィルムを得る上で好ましいのであ
る。
This unstretched film is led to a heated metal roll group (surface material: silicon), and (Tg + 25) ° C.
The film is stretched in the longitudinal direction 1.5 to 2.5 times in the temperature range of (Tg + 45) ° C. (MD stretching 1). In this case, the stretching in the longitudinal direction is preferably performed by dividing the magnification into two stages.
Next, the film was held at both ends by running clips and guided to a tenter, and after preheating the film, (Tg
+25) ° C to (Tg + 45) ° C in a temperature range of 1.5 to
Stretched 2.5 times in the width direction (TD stretching 1).
The film is stretched 3 to 5 times in the width direction at a temperature of (Tg-15) ° C to (Tg + 10) ° C (TD stretching 2). MD stretching 1 and TD
The refractive index in the longitudinal direction and the width direction of the film at the stage when stretching 1 is completed is preferably 1.590 or less, more preferably 1.580 or less. As birefringence at this time,
Preferably 0 to 0.02, more preferably 0 to 0.0
1, more preferably 0 to 0.005. The crystallinity by the density method is preferably 6% or less, more preferably 3% or less.
% Or less, more preferably 2% or less, is preferred for subsequent stretching. As described above, it is preferable that the film is stretched 1.5 to 2.5 times in the longitudinal direction and the width direction at a temperature at which the orientation and crystallinity are not increased by the stretching. When such stretching is performed, the entanglement of the polymer chains is released, and the benzene rings are oriented in plane with each other, so that a structure (stack structure) in which two or three benzene rings are vertically stacked can be formed. After forming, again, a method of performing stretching in multiple stages,
This is preferable for obtaining the film disclosed in the present invention.

【0033】上記TD延伸2の延伸温度は、(Tg−1
5)℃〜(Tg+10)℃の温度範囲で行うことが好ま
しい。このように(Tg+10)℃以下の温度で延伸を
行う場合、幾分かネッキングを伴う延伸(疑似ネッキン
グ延伸)となるので、延伸倍率は3倍以上に設定するの
が好ましい。TD延伸2の延伸倍率を3倍未満とする
と、フィルムに厚みむらが発生しやすくなるので注意す
べきである。このようにTg近傍の温度で高倍率に延伸
が可能とするには、上記のMD延伸1とTD延伸1の延
伸を上記の好ましい温度、倍率を組み合わせて行い、得
られるフィルムの特性を上記の好ましい範囲とすること
が重要である。
The stretching temperature of the TD stretching 2 is (Tg-1
5) It is preferable to carry out in a temperature range of from 0 ° C. to (Tg + 10) ° C. When the stretching is performed at a temperature of (Tg + 10) ° C. or less as described above, stretching with some necking (pseudo necking stretching) is performed. Therefore, the stretching ratio is preferably set to 3 times or more. It should be noted that if the stretching ratio of TD stretching 2 is less than 3 times, the film tends to have uneven thickness. As described above, in order to enable stretching at a high temperature at a temperature near Tg, the stretching of the MD stretching 1 and the TD stretching 1 is performed by combining the above-mentioned preferable temperature and the stretching ratio, and the characteristics of the obtained film are adjusted as described above. It is important to have a preferred range.

【0034】次にこのフィルムを加熱された金属ロール
群(表面材質=ハードクロムメッキ鏡面仕上げ)に導
き、(Tg−15)℃〜(Tg+10)℃の温度と
{(Tg+10)℃を越える温度}〜(Tm−45)℃
の温度範囲に加熱された金属ロール群間で長手方向に3
〜8倍に2段階以上の温度で再延伸する(MD延伸
2)。(Tg−15)℃〜(Tg+10)℃の温度での
1段目の長手方向の再延伸倍率は、MD延伸2の工程の
トータル倍率の70〜95%程度延伸するのが好まし
い。またこの長手方向の再延伸の1段目の延伸倍率
{(Tg−15)℃〜(Tg+10)℃の温度の延伸}
を2段階以上に分割して延伸するのが好ましい。
Next, this film is guided to a heated metal roll group (surface material = hard chrome plating mirror-finished), and a temperature of (Tg−15) ° C. to (Tg + 10) ° C. and a temperature exceeding (Tg + 10) ° C.} ~ (Tm-45) ℃
Between the metal rolls heated to a temperature range of
The film is stretched again at a temperature of two or more stages up to 8 times (MD stretching 2). The first-stage longitudinal redrawing ratio at a temperature of (Tg-15) ° C to (Tg + 10) ° C is preferably approximately 70 to 95% of the total ratio in the MD stretching step. Also, the stretching ratio of the first stage of the re-stretching in the longitudinal direction {stretching at a temperature of (Tg-15) ° C to (Tg + 10) ° C}
Is preferably divided into two or more stages and stretched.

【0035】次いで、フィルムの両端部を走行するクリ
ップで把持してテンターに導き、フィルムを予熱した
後、{(Tg+10)℃を越える温度}〜(Tm−4
5)℃の温度範囲で温度を徐々に高めながら、1.2〜
2.5倍の倍率で、幅方向に1段階もしくは2段以上の
多段階で延伸する(TD延伸3)。TD延伸3の延伸温
度は、フィルムの結晶化が上昇し始める温度(Tm−1
20)〜(Tm−45)℃が好ましい。このフィルムを
引き続き(Tm−75)℃〜(Tm−35)℃の温度範
囲で熱固定を行い、熱固定温度からの冷却過程で幅方向
および/または長手方向に弛緩処理を行う。この場合2
段階以上の温度で(例えば180〜130℃と130〜
90℃)で弛緩処理するのが好ましい。幅方向の弛緩処
理は、クリップを走行させるレールを幅方向に順次縮小
させる方法、長手方向のの弛緩処理は、フィルム端部を
把持しているクリップの間隔を順次縮小させる方法を適
宜好ましく用いて行うことができる。
Next, the film is gripped by clips running on both ends and guided to a tenter, and after preheating the film, {temperature exceeding (Tg + 10) ° C.} to (Tm−4)
5) While gradually increasing the temperature in the temperature range of
The film is stretched at a magnification of 2.5 times in one or two or more stages in the width direction (TD stretching 3). The stretching temperature of TD stretching 3 is a temperature at which crystallization of the film starts to rise (Tm-1).
20) to (Tm-45) ° C. This film is subsequently heat-set in a temperature range of (Tm-75) ° C. to (Tm-35) ° C., and is subjected to relaxation treatment in the width direction and / or the longitudinal direction in a cooling process from the heat setting temperature. In this case 2
At a temperature higher than the stage (for example, 180-130 ° C and 130-
(90 ° C.). In the widthwise relaxation process, a method of sequentially reducing the rail in which the clip travels in the widthwise direction, and in the longitudinal relaxation process, a method of sequentially reducing the interval between the clips gripping the film end portion is preferably used as appropriate. It can be carried out.

【0036】さらに、このフィルムを(Tg−30)℃
〜(Tg+110)℃の温度範囲で再熱処理してもよ
い。再熱処理の方法としては、加熱オーブンにより再熱
処理する方法、加熱ロール群により再熱処理する方法を
適宜好適に用いることができる。加熱オーブンにより再
熱処理する方法としては、例えばエッジ(製膜時に形成
されるフィルム両端部の厚みの厚い部分のこと)付きフ
ィルムを2MPa以上の張力与えて長手方向に応力をか
け、さらに加熱オーブン装置の入り口の幅だし装置(例
えばエキスパンダーロールなど)で幅方向のフィルムた
るみを伸ばした後、加熱オーブンの前後に付設したニッ
プロールを介して、熱処理する方法が好ましい。この
時、前のニップロールの走行速度より後のニップロール
の走行速度を減速することで、長手方向の弛緩処理をし
てもよい。また加熱ロール群により再熱処理する方法と
しては、例えば加熱ロール群の前後に付設したニップロ
ールを介して、熱処理する方法が好ましい。この時、前
のニップロールの走行速度より後のニップロールの走行
速度を減速することにより、長手方向の弛緩処理をして
もよい。
Further, the film was heated at (Tg-30) ° C.
The heat treatment may be performed again in the temperature range of (Tg + 110) ° C. As a method of the reheat treatment, a method of performing a heat treatment again with a heating oven or a method of performing a heat treatment again with a group of heating rolls can be suitably used as appropriate. As a method of performing re-heat treatment by a heating oven, for example, a film having an edge (a portion having a large thickness at both ends of a film formed at the time of film formation) is applied with a tension of 2 MPa or more to apply a stress in a longitudinal direction, and further, a heating oven device is used. It is preferable to stretch the film slack in the width direction by a width-developing device (for example, an expander roll or the like) at the entrance, and then heat-treat the film through nip rolls provided before and after a heating oven. At this time, the relaxation process in the longitudinal direction may be performed by reducing the traveling speed of the nip roll after the traveling speed of the preceding nip roll. As a method of performing the heat treatment again by the heating roll group, for example, a method of performing the heat treatment via nip rolls provided before and after the heating roll group is preferable. At this time, the relaxation process in the longitudinal direction may be performed by reducing the traveling speed of the nip roll after the traveling speed of the preceding nip roll.

【0037】さらに製膜したフィルムのエッジを切り除
き、小幅にスリットしてロール状に巻き上げたロールフ
ィルムを(Tg−30)℃〜(Tg+30)℃の温度で
1〜10日間エージング処理をしてもよい。
Further, the edge of the formed film was cut off, the roll film was slit into a small width and rolled up in a roll shape, and subjected to an aging treatment at a temperature of (Tg−30) ° C. to (Tg + 30) ° C. for 1 to 10 days. Is also good.

【0038】次に、同時二軸延伸法を適用した製造例に
ついて説明する。基本的なフィルムの製造思想および延
伸条件は、上記の逐次二軸延伸と変わることはなく、逐
次二軸延伸工程の一部、あるいは全工程を同時二軸延伸
する方法が適用できる。例えば、MD延伸1とTD延伸
1を同時二軸延伸した後、それ以降を逐次延伸する方
法、MD延伸1とTD延伸1、TD延伸2とMD延伸2
の1段目の延伸をそれぞれ同時二軸延伸した後、それ以
降を逐次延伸する方法、MD延伸1とTD延伸1を逐次
二軸延伸した後、それ以降のTD延伸2とMD延伸2の
1段目の延伸、およびMD延伸2の2段目の延伸とTD
延伸3を同時延伸する方法、MD延伸1、TD延伸1、
TD延伸2、MD延伸2の1段目の延伸をそれぞれ逐次
延伸した後、それ以降のMD延伸2の2段目の延伸とT
D延伸3を同時二軸延伸する方法、MD延伸1とTD延
伸1、TD延伸2とMD延伸2の1段目の延伸、MD延
伸2の2段目の延伸とTD延伸3のそれぞれの工程を同
時二軸延伸する方法が挙げられる。
Next, a production example to which the simultaneous biaxial stretching method is applied will be described. The basic manufacturing concept and stretching conditions of the film are the same as those in the above-described sequential biaxial stretching, and a method in which a part or all of the sequential biaxial stretching steps are simultaneously biaxially stretched can be applied. For example, a method in which MD stretching 1 and TD stretching 1 are simultaneously biaxially stretched and subsequently stretched sequentially, MD stretching 1 and TD stretching 1, TD stretching 2 and MD stretching 2
Is a method in which the first-stage stretching is simultaneously biaxially stretched, and then the subsequent stretching is sequentially performed. MD stretching 1 and TD stretching 1 are sequentially biaxially stretched, and thereafter TD stretching 2 and MD stretching 2 are performed. Stretching at the second stage, and stretching at the second stage of MD stretching 2 and TD
A method of simultaneously stretching 3, MD stretching 1, TD stretching 1,
After each of the first-stage stretching of TD stretching 2 and MD stretching 2 is sequentially stretched, the subsequent stretching of the second stage of MD stretching 2 and T
A method of simultaneously biaxially stretching D stretch 3, MD stretch 1 and TD stretch 1, first stretch of TD stretch 2 and MD stretch 2, first stretch of MD stretch 2 and each process of TD stretch 3 Are simultaneously biaxially stretched.

【0039】以下では、MD延伸1とTD延伸1、TD
延伸2とMD延伸2の1段目の延伸、MD延伸2の2段
目の延伸とTD延伸3のそれぞれの工程、すなわち全工
程を同時二軸延伸する方法を例に説明する。
In the following, MD stretching 1 and TD stretching 1, TD
The following describes, as an example, a method in which each of the first-stage stretching of the stretching 2 and the MD stretching 2, the second-stage stretching of the MD stretching 2 and the TD stretching 3, that is, the simultaneous biaxial stretching of all the processes.

【0040】逐次二軸延伸法の製造例で述べた方法と同
様にして、実質的に非晶状態の未延伸キャストフィルム
を得る。この際、長手方向の屈折率および幅方向の屈折
率は、好ましく1.570〜1.575にコントロール
し、結晶化度は、好ましくは1.5%以下、より好まし
くは1.0%以下に保つことが、次の延伸の効果を発揮
する点からも好ましい。さらに、この未延伸キャストフ
ィルムのエッジ部の最大厚み(A)と幅方向中央部厚み
(B)との比(A/B)は、好ましくは2.0〜6.
0、より好ましくは3〜5、さらに好ましくは3〜4の
範囲が、これ以降の延伸に好ましく用いられる。
A substantially amorphous unstretched cast film is obtained in the same manner as described in the production example of the sequential biaxial stretching method. At this time, the refractive index in the longitudinal direction and the refractive index in the width direction are preferably controlled to 1.570 to 1.575, and the crystallinity is preferably 1.5% or less, more preferably 1.0% or less. It is preferable to keep it from the viewpoint of exerting the effect of the next stretching. Further, the ratio (A / B) of the maximum thickness (A) of the edge portion of the unstretched cast film to the thickness (B) of the center portion in the width direction is preferably 2.0 to 6.
A range of 0, more preferably 3 to 5, and even more preferably 3 to 4 is preferably used for subsequent stretching.

【0041】このキャストフィルムの両端部をクリップ
(把持具)で把持して同時二軸延伸装置に導き、(Tg
+25)℃〜(Tg+45)℃の温度で長手方向および
幅方向に1.5〜2.5倍に同時二軸延伸する。この同
時二軸延伸フィルムの長手方向および幅方向の屈折率
は、好ましくは1.590以下、より好ましくは1.5
80以下である。この時の複屈折としては、好ましくは
0〜0.02、より好ましくは0〜0.01、さらに好
ましくは0〜0.005である。密度法による結晶化度
は好ましくは6%以下、より好ましくは3%以下、さら
に好ましくは2%以下とするのがこれ以降の延伸に好ま
しい。引き続き、この二軸延伸フィルムを(Tg−1
5)℃〜(Tg+10)℃の温度で長手方向および幅方
向に3〜5倍に同時二軸延伸する。引き続き、このフィ
ルムを{(Tg+10)℃を越える温度}〜(ポリエス
テルの融点Tm−45)℃の温度で長手方向および幅方
向に1.2〜2.5倍に1段階もしくは2段以上の多段
階で同時二軸延伸する。この工程の同時二軸延伸温度
は、フィルムの結晶化が上昇し始める温度(Tm−12
0)〜(Tm−45)℃がより好ましい。このフィルム
を引き続き(Tm−75)℃〜(Tm−35)℃の温度
範囲で熱固定を行い、熱固定温度からの冷却過程で幅方
向および長手方向に弛緩処理を行う。この場合2段階以
上の温度で(例えば180〜130℃と130〜90
℃)で弛緩処理するのが好ましい。幅方向の弛緩処理
は、クリップを走行させるレールを幅方向に順次縮小さ
せ、長手方向のの弛緩処理は、フィルム端部を把持して
いるクリップの間隔を順次縮小させる方法で行う。
Both ends of the cast film are gripped with clips (gripping tools) and guided to a simultaneous biaxial stretching device, where (Tg
+25) ° C. to (Tg + 45) ° C. The film is simultaneously biaxially stretched 1.5 to 2.5 times in the longitudinal and width directions. The refractive index of the simultaneous biaxially stretched film in the longitudinal direction and the width direction is preferably 1.590 or less, more preferably 1.5
80 or less. The birefringence at this time is preferably 0 to 0.02, more preferably 0 to 0.01, and still more preferably 0 to 0.005. The degree of crystallinity according to the density method is preferably 6% or less, more preferably 3% or less, and further preferably 2% or less. Subsequently, this biaxially stretched film was subjected to (Tg-1
5) Simultaneous biaxial stretching is performed 3 to 5 times in the longitudinal direction and the width direction at a temperature of from 0 ° C. to (Tg + 10) ° C. Subsequently, the film was heated at a temperature of {(Tg + 10) ° C.}} (Melting point of polyester Tm−45) ° C. in the longitudinal and width directions 1.2 to 2.5 times in one or more stages. Simultaneous biaxial stretching is performed at the stage. The simultaneous biaxial stretching temperature in this step is a temperature (Tm-12) at which crystallization of the film starts to rise.
0) to (Tm-45) ° C is more preferable. This film is subsequently heat-set in a temperature range of (Tm-75) ° C. to (Tm-35) ° C., and relaxed in a width direction and a longitudinal direction in a cooling process from the heat setting temperature. In this case, at two or more stages of temperature (for example, 180-130 ° C. and 130-90 ° C.)
C.). The relaxation process in the width direction is performed by sequentially reducing the rail on which the clip travels in the width direction, and the relaxation process in the longitudinal direction is performed by a method of sequentially reducing the interval between the clips gripping the film edge.

【0042】本発明で好ましく用いる同時二軸延伸装置
としては、把持具(クリップ)の長手方向の走行具の駆
動方式がリニアモータ方式である同時二軸延伸テンター
が好ましい。またフィルムの端部と把持具とが接触する
面の形状が、長手方向の長さ(LMD)と幅方向の長さ
(LTD)の比(LMD/LTD)が3〜15が、フィルムの
端部の長手方向の均一延伸性の点から好ましい。また延
伸に提供されるフィルム端部の把持具の温度は、(Tg
+15)〜(Tg+50)℃の温度とするのがフィルム
の端部の長手方向の均一延伸性の点から好ましい。
As the simultaneous biaxial stretching apparatus preferably used in the present invention, a simultaneous biaxial stretching tenter in which the driving system of the running tool in the longitudinal direction of the gripper (clip) is a linear motor system is preferable. The shape of the surface and the end and the gripper contacts the film, the longitudinal length (L MD) and the width direction length ratio (L TD) (L MD / L TD) is from 3 to 15 It is preferable from the viewpoint of uniform stretchability in the longitudinal direction of the end of the film. The temperature of the gripper at the film end provided for stretching is (Tg
+15) to (Tg + 50) ° C is preferred from the viewpoint of uniform stretchability in the longitudinal direction at the end of the film.

【0043】尚、本発明では、フィルムの表面特性を付
与するため、例えば易接着性、易滑性、離型性、制電性
を付与するために、フィルムの延伸の前または後の工程
で、ポリエステルフィルムの表面に塗材をコーテングす
ることができる。
In the present invention, in order to impart surface characteristics of the film, for example, to impart easy adhesion, easy slipping, releasing property, and antistatic property, the film is formed before or after the stretching of the film. A coating material can be coated on the surface of the polyester film.

【0044】本発明の二軸配向ポリエステルフィルム
は、好適に磁気記録媒体に用いられるが、そのほか、電
気コンデンサー、熱転写リボンとして用いることもでき
る。
The biaxially oriented polyester film of the present invention is suitably used for a magnetic recording medium, but can also be used as an electric capacitor or a thermal transfer ribbon.

【0045】〔物性値の評価法〕 (1)広角X線回折法によるフィルムの結晶面回折ピー
クの円周方向の半価幅 X線回折装置((株)理学電機社製 4036A2型
(管球型))を用いて下記の条件で、ディフラクトメー
タ法により測定した。 X線回折装置 : (株)理学電機社製 4036A2型(管球型) X線源 :CuKα線(Niフィルター使用) 出力 :40kV 20mA ゴニオメータ : (株)理学電機社製 スリット :2mmφ−1゜−1゜ 検出器 :シンチレーションカウンター 計数記録装置 : (株)理学電機社製 RAD−C型 2θ/θスキャンで得られた結晶面の回折ピーク位置
に、2cm×2cmに切出して、方向をそろえて重ね合
わせた試料およびカウンターを固定し、試料を面内回転
させることにより円周方向のプロファイルを得る(βス
キャン)。βスキャンで得られたピークプロファイルの
うち、ピークの両端の谷部分をバックグランドとして、
ピークの半価幅(deg)を計算した。
[Evaluation Method of Physical Properties] (1) Half width at circumferential direction of crystal plane diffraction peak of film by wide angle X-ray diffraction method X-ray diffractometer (Model 4036A2 manufactured by Rigaku Corporation) ) Was measured by the diffractometer method under the following conditions. X-ray diffractometer: 4036A2 type (tube type) manufactured by Rigaku Corporation X-ray source: CuKα ray (using Ni filter) Output: 40 kV 20 mA Goniometer: Slit manufactured by Rigaku Corporation: 2 mmφ-1 ゜- 1 ゜ Detector: Scintillation counter Counting and recording device: RAD-C type manufactured by Rigaku Denki Co., Ltd. 2cm × 2cm is cut out at the diffraction peak position of the crystal plane obtained by 2θ / θ scan, and aligned in the same direction. The combined sample and counter are fixed, and a circumferential profile is obtained by rotating the sample in-plane (β scan). Of the peak profiles obtained in the β scan, the valleys at both ends of the peak are used as background,
The half width (deg) of the peak was calculated.

【0046】(2)広角X線回折法から得られる結晶サ
イズ X線回折装置((株)理学電機社製 4036A2型)
を用いて下記の条件で、透過法により測定した。 X線回折装置 : (株)理学電機社製 4036A2型 X線源 :CuKα線(Niフィルター使用) 出力 :40kV 20mA ゴニオメータ : (株)理学電機社製 スリット :2mmφ−1゜−1゜ 検出器 :シンチレーションカウンター 計数記録装置 : (株)理学電機社製 RAD−C型 2cm×2cmに切り出して、方向をそろえて重ね合わ
せ、コロジオン・エタノール溶液で固めた試料をセット
して、広角X線回折測定で得られた2θ/θ強度データ
のうち、各方向の面の半価幅から、下記のScherr
erの式を用いて計算した。ここで結晶サイズは、配向
主軸方向を測定した。 結晶サイズL(Å)=Kλ/β0cosθB K :定数(=1.0) λ :X線の波長(=1.5418Å) θB :ブラッグ角 β0=(βE 2−βI 21/2 βE :見かけの半価幅(実測値) βI :装置定数(=1.046×10-2
(2) Crystal size obtained by wide-angle X-ray diffraction method X-ray diffractometer (Model 4036A2 manufactured by Rigaku Corporation)
Was measured by the transmission method under the following conditions. X-ray diffractometer: 4036A2 type manufactured by Rigaku Denki Co., Ltd. X-ray source: CuKα ray (using Ni filter) Output: 40 kV 20 mA Goniometer: Slit made by Rigaku Denki Co., Ltd. Detector: 2 mmφ-1 ゜ -1 ゜Scintillation counter Count recording device: RAD-C type manufactured by Rigaku Denki Co., Ltd. Cut out into 2 cm x 2 cm, superimposed in the same direction, set a sample fixed with a collodion-ethanol solution, and set it by wide-angle X-ray diffraction measurement. From the obtained 2θ / θ intensity data, the following Scherr is calculated from the half width of the surface in each direction.
It was calculated using the equation of er. Here, the crystal size was measured in the direction of the principal axis of orientation. Crystal size L (Å) = Kλ / β 0 cos θ B K: constant (= 1.0) λ: wavelength of X-ray (= 1.5418 °) θ B : Bragg angle β 0 = (β E 2 −β I 2 ) 1/2 β E : Apparent half width (actual value) β I : Instrument constant (= 1.046 × 10 -2 )

【0047】(3)ヤング率 ASTM−D882に規定された方法に従って、インス
トロンタイプの引張試験機を用いて測定した。測定は下
記の条件とした。 測定装置 :オリエンテック(株)製フィルム強伸度自
動測定装置“テンシロンAMF/RTA−100” 試料サイズ:幅10mm×試長間100mm、 引張り速度:200mm/分 測定環境 :温度23℃、湿度65%RH
(3) Young's modulus Measured using an Instron type tensile tester according to the method specified in ASTM-D882. The measurement was performed under the following conditions. Measuring device: Automatic film strength and elongation measuring device "Tensilon AMF / RTA-100" manufactured by Orientec Co., Ltd. Sample size: width 10 mm x test length 100 mm, pulling speed: 200 mm / min Measurement environment: temperature 23 ° C, humidity 65 % RH

【0048】(4)クリープコンプライアンス フィルムを幅4mmにサンプリングし、試長15mmに
なるように、真空理工(株)製TMA TM−3000
および加熱制御部TA−1500にセットした。50
℃、65%RHの条件下、28MPaの荷重をフィルム
にかけて、30分間保ち、その時のフィルム伸び量を測
定した。フィルムの伸縮量(%表示、ΔL)は、カノー
プス電子(株)製ADコンバータADX−98Eを介し
て、日本電気(株)製パーソナルコンピューターPC−
9801により求め、次式からクリープコンプライアン
スを算出した。 クリープコンプライアンス(GPa-1)=(ΔL/10
0)/0.028
(4) Creep Compliance The film was sampled to a width of 4 mm, and TMA TM-3000 manufactured by Vacuum Riko Co., Ltd. was set to a sample length of 15 mm.
And the heating controller TA-1500. 50
A load of 28 MPa was applied to the film under the conditions of a temperature of 65 ° C. and 65% RH for 30 minutes, and the film elongation at that time was measured. The amount of expansion and contraction (% display, ΔL) of the film can be measured by a personal computer PC-manufactured by NEC Corporation through an AD converter ADX-98E manufactured by Canopus Electronics Co., Ltd.
9801, and the creep compliance was calculated from the following equation. Creep compliance (GPa -1 ) = (ΔL / 10
0) /0.028

【0049】(5)引裂伝播抵抗 軽荷重引裂試験機(東洋精機製作所製)を用いてAST
M−D1922に従って測定した。サンプルサイズは、
64×51mmとし、13mmの切り込みを入れ、残り
の51mmを引き裂いた時の指示値を読みとった。
(5) Tear Propagation Resistance AST was measured using a light load tear tester (manufactured by Toyo Seiki Seisakusho).
Measured according to MD1922. Sample size is
It was 64 x 51 mm, a 13 mm cut was made, and the indicated value when the remaining 51 mm was torn was read.

【0050】(6)屈折率および面配向係数(fn) 屈折率は、JIS−K7105に規定された方法に従っ
て、ナトリウムD線を光源として、(株)アタゴ製のア
ッペ屈折率計4型を用いて測定した。なおマウント液は
ヨウ化メチレンを用いて、23℃、65%RHにて測定
した。面配向係数(fn)は、測定した各屈折率から次
式から求めた。 面配向係数(fn)=(nMD+nTD)/2−nZDMD:長手方向の屈折率 nTD:幅方向の屈折率 nZD:厚み方向の屈折率
(6) Refractive Index and Plane Orientation Coefficient (f n ) The refractive index was measured using an Appe refractometer type 4 manufactured by Atago Co., Ltd. using sodium D line as a light source according to the method specified in JIS-K7105. It measured using. The mounting liquid was measured using methylene iodide at 23 ° C. and 65% RH. The plane orientation coefficient (f n ) was determined from each of the measured refractive indices according to the following equation. Plane orientation coefficient (f n ) = (n MD + n TD ) / 2−n ZD n MD : refractive index in the longitudinal direction n TD : refractive index in the width direction n ZD : refractive index in the thickness direction

【0051】(7)複屈折 NIKON製偏光顕微鏡にベレックコンペンセータを使
用してフィルムのリターデーション(R)を測定して、
次式により複屈折(Δn)を求めた。 Δn=R/d R:リターデーション(μm) d:フィルム厚さ(μm)
(7) Birefringence The retardation (R) of the film was measured using a Berek compensator with a NIKON polarizing microscope.
The birefringence (Δn) was determined by the following equation. Δn = R / d R: retardation (μm) d: film thickness (μm)

【0052】(8)密度および結晶化度 JIS−K7112の密度勾配管法により、臭化ナトリ
ウム水溶液を用いてフィルムの密度を測定した。また、
この密度を用いて、ポリエステルの結晶密度、非晶密度
から次式で結晶化度(%)を求めた。 結晶化度(%)=[(フィルム密度−非晶密度)/(結
晶密度−非晶密度)]×100
(8) Density and Crystallinity The density of the film was measured using a sodium bromide aqueous solution by a density gradient tube method according to JIS-K7112. Also,
Using this density, the crystallinity (%) was determined from the crystal density and the amorphous density of the polyester by the following formula. Crystallinity (%) = [(film density−amorphous density) / (crystal density−amorphous density)] × 100

【0053】(9)熱収縮開始温度 (4)項のTMA装置に幅4mmにサンプリングしたフ
ィルムを試長15mmにセットし、荷重1gをかけて、
昇温速度2℃/分で120℃まで昇温し、その時の収縮
量(%表示)を測定した。このデータを出力して温度と
収縮量を記録したグラフから、収縮によって、0%のベ
ースラインから離れる温度を読みとり、その温度を熱収
縮開始温度とした。
(9) Thermal Shrinkage Onset Temperature A film sampled to a width of 4 mm was set to a test length of 15 mm in the TMA apparatus of the item (4), and a load of 1 g was applied thereto.
The temperature was raised to 120 ° C. at a rate of 2 ° C./min, and the amount of shrinkage (% display) at that time was measured. From the graph in which the data was output and the temperature and the amount of shrinkage were recorded, the temperature at which the shrinkage deviated from the 0% baseline was read, and that temperature was defined as the heat shrink start temperature.

【0054】(10)熱収縮率 JIS−C2318に従って、測定した。 試料サイズ:幅10mm、標線間隔200mm 測定条件 :温度80℃、処理時間30分、無荷重状態 80℃熱収縮率を次式より求めた。 熱収縮率(%)=[(L0−L)/L0]×100 L0:加熱処理前の標線間隔 L:加熱処理後の標線間隔(10) Heat Shrinkage Measured according to JIS-C2318. Sample size: width 10 mm, mark line interval 200 mm Measurement conditions: temperature 80 ° C., processing time 30 minutes, no load state 80 ° C. The heat shrinkage was determined by the following formula. Heat shrinkage (%) = [(L 0 −L) / L 0 ] × 100 L 0 : Marking line interval before heat treatment L: Marking line interval after heat treatment

【0055】(11)ガラス転移温度Tg、融解温度T
m、 示差走査熱量計として、セイコー電子工業(株)製“ロ
ボットDSC−RDC220”を用い、データ解析装置
として、同社製“ディスクセッション”SSC/520
0を用い、サンプルを5mg採取し、室温から昇温速度
20℃/分で280℃まで昇温して5分間保持後、液体
窒素で急冷し、再度室温から昇温速度20℃/分で28
0℃まで昇温した時に得られた熱カーブより、Tg、T
mを求めた。
(11) Glass transition temperature Tg, melting temperature T
m, using a “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. as a differential scanning calorimeter, and “Disk Session” SSC / 520 manufactured by the company as a data analyzer.
Using 0, 5 mg of a sample was collected, heated from room temperature to 280 ° C. at a temperature rising rate of 20 ° C./min, held for 5 minutes, quenched with liquid nitrogen, and cooled again from room temperature to 28 ° C. at a rate of 20 ° C./min.
From the heat curve obtained when the temperature was raised to 0 ° C., Tg, T
m was determined.

【0056】(12)中心線平均表面粗さ(Ra) (株)小坂研究所製の高精度薄膜段差計ET−10を用
いて、JIS−B−0601に準じて中心線平均表面粗
さ(Ra)を求めた。触針先端半径0.5μm、針圧5
mg、測定長1mm、カットオフ0.08mmとした。
(12) Center Line Average Surface Roughness (Ra) The center line average surface roughness (Ra) was measured according to JIS-B-0601 using a high-precision thin film step meter ET-10 manufactured by Kosaka Laboratory Co., Ltd. Ra) was determined. Stylus tip radius 0.5 μm, stylus pressure 5
mg, measurement length 1 mm, cutoff 0.08 mm.

【0057】(13)磁気テープの走行耐久性および保
存性 発明のフィルムの表面に、下記組成の磁性塗料を塗布厚
さ2.0μmになる塗布し、磁気配向させ、乾燥させ
る。次いで反対面に下記組成のバックコート層を形成し
た後、カレンダー処理した後、60℃で、48時間キュ
アリングする。上記テープ原反を1/2インチ幅にスリ
ットし、磁気テープとして、長さ670m分を、カセッ
トに組み込んでカセットテープとした。 (磁性塗料の組成) ・強磁性金属粉末 : 100重量部 ・変成塩化ビニル共重合体 : 10重量部 ・変成ポリウレタン : 10重量部 ・ポリイソシアネート : 5重量部 ・ステアリン酸 : 1.5重量部 ・オレイン酸 : 1重量部 ・カーボンブラック : 1重量部 ・アルミナ : 10重量部 ・メチルエチルケトン : 75重量部 ・シクロヘキサノン : 75重量部 ・トルエン : 75重量部 (バックコートの組成) ・カーボンブラック(平均粒径20nm) : 95重量部 ・カーボンブラック(平均粒径280nm): 10重量部 ・αアルミナ : 0.1重量部 ・変成ポリウレタン : 20重量部 ・変成塩化ビニル共重合体 : 30重量部 ・シクロヘキサノン : 200重量部 ・メチルエチルケトン : 300重量部 ・トルエン : 100重量部
(13) Running Durability and Preservability of the Magnetic Tape A magnetic paint having the following composition is applied to the surface of the film of the present invention to a coating thickness of 2.0 μm, magnetically oriented, and dried. Next, after forming a back coat layer having the following composition on the opposite surface, performing a calendering treatment, and curing at 60 ° C. for 48 hours. The raw tape was slit into a 1/2 inch width, and a 670 m long magnetic tape was assembled into a cassette to form a cassette tape. (Magnetic paint composition)-Ferromagnetic metal powder: 100 parts by weight-Modified vinyl chloride copolymer: 10 parts by weight-Modified polyurethane: 10 parts by weight-Polyisocyanate: 5 parts by weight-Stearic acid: 1.5 parts by weight- Oleic acid: 1 part by weight-Carbon black: 1 part by weight-Alumina: 10 parts by weight-Methyl ethyl ketone: 75 parts by weight-Cyclohexanone: 75 parts by weight-Toluene: 75 parts by weight (composition of the back coat)-Carbon black (average particle size) 20 nm): 95 parts by weight Carbon black (average particle size 280 nm): 10 parts by weight α-alumina: 0.1 part by weight Modified polyurethane: 20 parts by weight Modified vinyl chloride copolymer: 30 parts by weight Cyclohexanone: 200 Parts by weight ・ Methyl ethyl ketone: 300 parts by weight ・ Toluene: 100 The amount part

【0058】作成したカセットテープを、IBM製Ma
gstar3590 MODELB1A Tape D
riveを用い、100時間走行させ、次の基準でテー
プの走行耐久性を評価した。 ○:テープ端面の伸び、折れ曲がりがなく、削れ跡が見
られない。 △:テープ端面の伸び、折れ曲がりがないが、一部削れ
跡が見られる。 ×:テープ端面の一部が伸び、ワカメ状の変形が見ら
れ、削れ跡が見られる。
The cassette tape thus prepared was transferred to an IBM Ma
gstar3590 MODELB1A Tape D
The tape was run for 100 hours, and the running durability of the tape was evaluated according to the following criteria. :: No tape end surface elongation or bending, no scraping marks Δ: There is no elongation or bending of the tape end face, but a trace of scraping is observed. ×: A part of the tape end face is elongated, wakame-like deformation is observed, and scraping marks are observed.

【0059】また、上記作成したカセットテープをIB
M製Magstar3590 MODEL B1A T
ape Driveに、データを読み込んだ後、カセッ
トテープを40℃、80%RHの雰囲気中に100時間
保存した後、データを再生して次の基準で、テープの保
存性を評価した。 ○:トラックずれも無く、正常に再生した。 △:テープ幅に異常が無いが、一部に読みとり不可が見
られる。 ×:テープ幅に変化があり、読みとり不可が見られる。
Further, the cassette tape created above is inserted into the IB
M Magstar 3590 Model B1A T
After the data was read into the ape drive, the cassette tape was stored in an atmosphere of 40 ° C. and 80% RH for 100 hours, and then the data was reproduced to evaluate the preservability of the tape according to the following criteria. :: Normal reproduction without track deviation. Δ: There is no abnormality in the tape width, but reading is impossible in some parts. X: There is a change in the tape width, and reading is impossible.

【0060】[0060]

【実施例】以下に、本発明のより具体的な実施例につい
て説明する。 実施例1〜3、比較例1〜4 押出機A,B2台を用い、280℃に加熱された押出機
Aには、PET−I(固有粘度0.65、ガラス転移温
度75℃、融解温度255℃、平均径0.07μmの球
状シリカ粒子0.16重量%配合)のペレットを180
℃で3時間真空乾燥した後に供給し、同じく280℃に
加熱された押出機Bには、PET−II(固有粘度0.
65、ガラス転移温度75℃、融解温度255℃、平均
径0.3μmの球状架橋ポリスチレン粒子0.2重量%
と平均径0.8μmの球状架橋ポリスチレン粒子0.0
1重量%配合)のペレットを180℃で3時間真空乾燥
した後に供給し、Tダイ中で合流し(積層比I/II=
10/1)、表面温度25℃のキャストドラム上に静電
気により密着させて冷却固化し積層未延伸フィルムを得
た。この積層未延伸フィルムの長手方向の屈折率は1.
571、幅方向の屈折率は1,570、結晶化度は0.
8%であった。この未延伸フィルムのエッジ部の最大厚
み(A)と幅方向中央部の厚み(B)の比(A/B)
は、3.8である。この未延伸フィルムを加熱ロール群
(表面材質;シリコンゴム)で加熱して、表1に示した
温度、倍率で長手方向に延伸を行い冷却した(MD延伸
1)。このフィルムの両端部をクリップで把持して、テ
ンターに導き、表1に示した温度と倍率により、2段階
で幅方向に延伸した(TD延伸1、2)。このフィルム
を加熱金属ロールで加熱して、表2に示した温度と倍率
で長手方向に延伸した(MD延伸2)。次いで、このフ
ィルムの両端部をクリップで把持しテンターに導き表2
に示した温度と倍率で2段階で幅方向に延伸し(TD延
伸3)、引き続き200℃の温度で熱固定を施した後、
150℃の冷却ゾーンで幅方向に3%の弛緩率で弛緩処
理を行い、さらに100℃のゾーンで幅方向に1.0%
弛緩率で弛緩処理してフィルムを室温まで徐冷して巻取
った。フィルム厚みは押出量を調節して6.7μmに合
わせた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, more specific embodiments of the present invention will be described. Examples 1 to 3 and Comparative Examples 1 to 4 Using two extruders A and B, PET-I (intrinsic viscosity 0.65, glass transition temperature 75 ° C., melting temperature) was used for extruder A heated to 280 ° C. A pellet of 255 ° C., containing 0.16% by weight of spherical silica particles having an average diameter of 0.07 μm)
The extruder B, which was supplied after being vacuum-dried for 3 hours at a temperature of 280 ° C. and also heated to 280 ° C., was supplied with PET-II (having an intrinsic viscosity of 0.
65, glass transition temperature 75 ° C., melting temperature 255 ° C., 0.2% by weight of spherical crosslinked polystyrene particles having an average diameter of 0.3 μm.
And spherical crosslinked polystyrene particles having an average diameter of 0.8 μm 0.0
(1% by weight) were supplied after vacuum drying at 180 ° C. for 3 hours, and were combined in a T-die (lamination ratio I / II =
10/1), it was brought into close contact with a cast drum having a surface temperature of 25 ° C. by static electricity and cooled and solidified to obtain a laminated unstretched film. The refractive index in the longitudinal direction of this laminated unstretched film was 1.
571, the refractive index in the width direction is 1,570, and the crystallinity is 0.5.
8%. Ratio (A / B) between the maximum thickness (A) of the edge portion of the unstretched film and the thickness (B) of the central portion in the width direction.
Is 3.8. This unstretched film was heated by a group of heating rolls (surface material: silicone rubber), stretched in the longitudinal direction at the temperature and magnification shown in Table 1, and cooled (MD stretching 1). Both ends of the film were gripped by clips and guided to a tenter, and stretched in the width direction in two stages at the temperature and magnification shown in Table 1 (TD stretching 1, 2). This film was heated by a heating metal roll and stretched in the longitudinal direction at the temperature and magnification shown in Table 2 (MD stretching 2). Next, both ends of the film were gripped with clips and guided to a tenter.
After stretching in the width direction in two stages at the temperature and magnification shown in (TD stretching 3), and subsequently heat-setting at a temperature of 200 ° C.,
In the cooling zone at 150 ° C., a relaxation treatment is performed at a relaxation rate of 3% in the width direction, and further in the zone at 100 ° C., 1.0% in the width direction
The film was relaxed at a relaxation rate, and the film was gradually cooled to room temperature and wound up. The film thickness was adjusted to 6.7 μm by adjusting the extrusion amount.

【0061】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。ま
た、表3に得られたフィルムのヤング率、回折ピークの
半価幅、結晶サイズ、斜め方向のヤング率、幅方向の引
裂伝播抵抗、厚み方向の屈折率、面配向係数、密度、表
面粗さを、表4にクリープコンプライアンス、熱収縮開
始温度、80℃の熱収縮率、磁気テープの走行耐久性お
よび保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) at the edge portion of the unstretched film to the thickness (B) at the center in the width direction, and the refractive index and crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3 shows the Young's modulus, the half-width of the diffraction peak, the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness of the film obtained in Table 3. Table 4 shows the creep compliance, the heat shrinkage initiation temperature, the heat shrinkage at 80 ° C., the running durability of the magnetic tape, and the storage stability.

【0062】実施例2では、MD延伸1工程の延伸倍率
を2段階に分割延伸し、またMD延伸2の1段目の延伸
倍率を2段階に分割延伸した。比較例1は、長手方向の
PETの分子鎖の解きほぐしが不十分で、本発明の範囲
のフィルムが得られない。比較例2は、MD延伸1とT
D延伸1後のフィルムの配向、結晶化度が不適切とな
り、MD延伸2あるいはTD延伸3でフィルム破れが発
生し、延伸倍率が小さくなった。比較例3は縦方向のみ
PET分子鎖の解きほぐしが一方向のみで、本発明の範
囲のフィルムが得られない。比較例4は長手方向、幅方
向のPETの解きほぐしが無く、本発明の範囲のフィル
ムが得られない。
In Example 2, the stretching ratio in one step of MD stretching was divided into two stages, and the stretching ratio in the first stage of MD stretching 2 was divided into two stages. In Comparative Example 1, the release of the molecular chains of PET in the longitudinal direction was insufficient, and a film within the scope of the present invention could not be obtained. Comparative Example 2 shows that MD stretching 1 and T
The orientation and crystallinity of the film after the D stretching 1 became inappropriate, the film was broken in the MD stretching 2 or the TD stretching 3, and the stretching ratio was reduced. In Comparative Example 3, the release of the PET molecular chains was performed only in one direction in the longitudinal direction, and a film within the scope of the present invention could not be obtained. In Comparative Example 4, the PET was not unraveled in the longitudinal and width directions, and a film within the scope of the present invention could not be obtained.

【0063】比較例5 実施例1のPET原料を用いて、実施例1と同様にして
積層未延伸フィルムを得る際、押出機の押出量を上げた
条件で、成形シートを形成し、キャストドラムの表面温
度を60℃とし、ドラムの回転を上げてシートの引き取
り速度を上げた条件以外は、実施例1と同様にして積層
未延伸フィルムを得た。この積層未延伸フィルムの長手
方向の屈折率は1.574、幅方向の屈折率は1,57
2、結晶化度は1.8%であった。この未延伸フィルム
を表1に示した実施例1の逐次二軸延伸条件で延伸した
が、MD延伸2工程でフィルム破れが頻発したので、表
1に示した逐次二軸延伸条件で延伸し、厚み6.7μm
の延伸フィルムを得た。
COMPARATIVE EXAMPLE 5 When using the PET raw material of Example 1 to obtain a laminated unstretched film in the same manner as in Example 1, a molded sheet was formed under the conditions where the extrusion amount of the extruder was increased, and a cast drum was formed. A laminated unstretched film was obtained in the same manner as in Example 1 except that the surface temperature of was increased to 60 ° C., and the rotation speed of the drum was increased to increase the sheet take-up speed. The refractive index in the longitudinal direction of this laminated unstretched film was 1.574, and the refractive index in the width direction was 1,57.
2. The crystallinity was 1.8%. This unstretched film was stretched under the sequential biaxial stretching conditions of Example 1 shown in Table 1, but the film was frequently broken in the two MD stretching steps, and was stretched under the sequential biaxial stretching conditions shown in Table 1. 6.7μm thickness
Was obtained.

【0064】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。ま
た、表3に得られたフィルムのヤング率、回折ピークの
半価幅、結晶サイズ、斜め方向のヤング率、幅方向の引
裂伝播抵抗、厚み方向の屈折率、面配向係数、密度、表
面粗さを、表4にクリープコンプライアンス、熱収縮開
始温度、80℃の熱収縮率、磁気テープの走行耐久性お
よび保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) at the edge of the unstretched film to the thickness (B) at the center in the width direction, and the refractive index and crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3 shows the Young's modulus, the half-width of the diffraction peak, the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness of the film obtained in Table 3. Table 4 shows the creep compliance, the heat shrinkage initiation temperature, the heat shrinkage at 80 ° C., the running durability of the magnetic tape, and the storage stability.

【0065】比較例6 実施例1のPET原料を用いて、実施例1と同様にして
積層未延伸フィルムを得た。この未延伸フィルムを加熱
金属ロール群に導き、95℃の温度に加熱して、縦方向
に3.0倍の倍率で延伸し、この縦延伸フィルムをテン
ターに導き、フィルム端部をクリップで把持し、100
℃の温度に加熱して横方向に3.61倍の倍率で延伸し
た。この二軸延伸フィルムを加熱金属ロール群に導き、
105と140℃の2段階温度で、縦方向に1.3倍と
1.1倍の倍率で再延伸した。この延伸フィルムをテン
ターに導き、フィルム端部をクリップで把持して、19
0℃の温度に加熱して横方向に1.4倍の倍率で延伸
し、引続き200℃の温度で熱固定を施した後、150
℃の冷却ゾーンで幅方向に3%の弛緩率で弛緩処理を行
い、さらに100℃のゾーンで幅方向に1.0%弛緩率
で弛緩処理してフィルムを室温に徐冷して巻取った。フ
ィルム厚みは押出量を調節して6.7μmに合わせた。
Comparative Example 6 A laminated unstretched film was obtained in the same manner as in Example 1 except that the PET raw material of Example 1 was used. The unstretched film is guided to a group of heated metal rolls, heated to a temperature of 95 ° C., stretched in the longitudinal direction at a magnification of 3.0 times, guided to a tenter, and a film end is gripped with a clip. Then 100
The film was heated to a temperature of ° C and stretched in the transverse direction at a magnification of 3.61 times. Guide this biaxially stretched film to a group of heated metal rolls,
At two-stage temperatures of 105 and 140 ° C., the film was stretched in the longitudinal direction at a magnification of 1.3 and 1.1 times. This stretched film is guided to a tenter, and the end of the film is gripped with a clip.
After heating to a temperature of 0 ° C. and stretching in a transverse direction at a magnification of 1.4 times, and subsequently performing heat setting at a temperature of 200 ° C.,
The film was subjected to a relaxation treatment in a cooling zone at a temperature of 3 ° C. at a relaxation rate of 3% in the width direction, and further subjected to a relaxation treatment at a relaxation rate of 1.0% in the width direction in a zone at 100 ° C., and was gradually cooled to room temperature and wound up. . The film thickness was adjusted to 6.7 μm by adjusting the extrusion amount.

【0066】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。また
表3に得られたフィルムのヤング率、回折ピークの半価
幅、結晶サイズ、斜め方向のヤング率、幅方向の引裂伝
播抵抗、厚み方向の屈折率、面配向係数、密度、表面粗
さを、表4にクリープコンプライアンス、熱収縮開始温
度、80℃の熱収縮率、磁気テープの走行耐久性および
保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) at the edge of the unstretched film to the thickness (B) at the center in the width direction, and the refractive index and crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3 shows the Young's modulus of the film obtained, the half width of the diffraction peak, the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness. Table 4 shows the creep compliance, the heat shrinkage initiation temperature, the heat shrinkage at 80 ° C., the running durability of the magnetic tape, and the storage stability.

【0067】実施例4 押出機A,B2台を用い、280℃に加熱された押出機
AにはPET−III(固有粘度0.75、ガラス転移
温度76℃、融解温度256℃、平均径0.07μmの
球状シリカ粒子0.16重量%配合)のペレットを18
0℃で3時間真空乾燥した後に供給し、同じく280℃
に加熱された押出機Bには、PET−IV(固有粘度
0.75、ガラス転移温度76℃、融解温度256℃、
平均径0.3μmの球状架橋ポリスチレン粒子0.2重
量%と平均径0.8μmの球状架橋ポリスチレン粒子
0.01重量%配合)のペレットを180℃で3時間真
空乾燥した後に供給し、Tダイ中で合流し(積層比II
I/IV=10/1)、表面温度25℃のキャストドラ
ム上に静電気により密着させて冷却固化し、積層未延伸
フィルム(長手方向の屈折率;1.572、幅方向の屈
折率;1,570、結晶化度;0.6%)を得た。この
未延伸フィルムを加熱ロール群(表面材質;シリコンゴ
ム)で加熱して、表1に示した温度と倍率に長手方向に
延伸して冷却した(MD延伸1)。このフィルムの両端
部をクリップで把持して、テンターに導き、表1に示し
た温度と倍率で幅方向に延伸し、引き続き、表1に示し
た温度と倍率で幅方向に延伸した(TD延伸1、2)。
このフィルムを加熱金属ロールで加熱して、表1に示し
た2段階温度で、表1に示した倍率で長手方向に延伸し
た(MD延伸2)。このフィルムの両端部をクリップで
把持しテンターに導き、表1に示した2段階温度で、表
1に示した倍率で幅方向に延伸した(TD延伸3)以外
は、実施例1と同様にして、フィルム厚み6.7μmの
二軸延伸フィルムを得た。
Example 4 Using two extruders A and B, PET-III (intrinsic viscosity 0.75, glass transition temperature 76 ° C., melting temperature 256 ° C., average diameter 0) was heated to 280 ° C. Of 0.16% by weight of 0.07 μm spherical silica particles).
Supplied after vacuum drying at 0 ° C for 3 hours.
The extruder B heated to a temperature of PET-IV (intrinsic viscosity 0.75, glass transition temperature 76 ° C, melting temperature 256 ° C,
A pellet of 0.2% by weight of spherical cross-linked polystyrene particles having an average diameter of 0.3 μm and 0.01% by weight of spherical cross-linked polystyrene particles having an average diameter of 0.8 μm) was vacuum-dried at 180 ° C. for 3 hours, and supplied. In the stack (stacking ratio II
(I / IV = 10/1), adhered by static electricity on a cast drum having a surface temperature of 25 ° C., cooled and solidified, and laminated unstretched film (longitudinal refractive index: 1.572, width direction refractive index: 1, 1) 570, crystallinity; 0.6%). This unstretched film was heated by a group of heating rolls (surface material: silicone rubber), stretched in the longitudinal direction to the temperature and magnification shown in Table 1, and cooled (MD stretching 1). Both ends of the film were gripped with clips and guided to a tenter, stretched in the width direction at the temperature and magnification shown in Table 1, and subsequently stretched in the width direction at the temperature and magnification shown in Table 1 (TD stretching). 1, 2).
This film was heated by a heating metal roll and stretched in the longitudinal direction at the two-stage temperature shown in Table 1 at the magnification shown in Table 1 (MD stretching 2). Except that both ends of this film were gripped with clips and guided to a tenter, and stretched in the width direction at the two-stage temperature shown in Table 1 at the magnification shown in Table 1 (TD stretching 3), the same as in Example 1 was carried out. Thus, a biaxially stretched film having a film thickness of 6.7 μm was obtained.

【0068】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。ま
た、表3に得られたフィルムのヤング率、回折ピークの
半価幅、結晶サイズ、斜め方向のヤング率、幅方向の引
裂伝播抵抗、厚み方向の屈折率、面配向係数、密度、表
面粗さを、表4にクリープコンプライアンス、熱収縮開
始温度、80℃の熱収縮率、磁気テープの走行耐久性お
よび保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) at the edge of the unstretched film to the thickness (B) at the center in the width direction, and the refractive index and crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3 shows the Young's modulus, the half-width of the diffraction peak, the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness of the film obtained in Table 3. Table 4 shows the creep compliance, the heat shrinkage initiation temperature, the heat shrinkage at 80 ° C., the running durability of the magnetic tape, and the storage stability.

【0069】実施例5 押出機A,B2台を用い、290℃に加熱された押出機
Aにはポリエチレンナフタレート(以下、PENと略称
する)−I(固有粘度0.65、ガラス転移温度124
℃、融解温度265℃、平均径0.07μmの球状シリ
カ粒子0.16重量%配合)のペレットを180℃で3
時間真空乾燥した後に供給し、同じく290℃に加熱さ
れた押出機Bには、PEN−II(固有粘度0.65、
ガラス転移温度124℃、融解温度265℃、平均径
0.3μmの球状架橋ポリスチレン粒子0.2重量%と
平均径0.8μmの球状架橋ポリスチレン粒子0.01
重量%配合)のペレットを180℃で3時間真空乾燥し
た後に供給し、Tダイ中で合流し(積層比I/II=1
0/1)、表面温度25℃のキャストドラム上に静電気
により密着させて冷却固化し積層未延伸フィルムを得
た。この積層未延伸フィルムの長手方向の屈折率は1.
649、幅方向の屈折率は1,648、結晶化度は0.
7%であった。この未延伸フィルムを加熱ロール群(表
面材質;シリコンゴム)で加熱して、表1に示した温度
と倍率で長手方向に延伸を行い冷却した(MD延伸
1)。このフィルムの両端部をクリップで把持して、テ
ンターに導き、表1に示した温度と倍率により、2段階
で幅方向に延伸した(TD延伸1、2)。このフィルム
を加熱金属ロールで加熱して、表1に示した温度と倍率
で長手方向に延伸した(MD延伸2)。次いで、このフ
ィルムの両端部をクリップで把持しテンターに導き、表
1に示した温度と倍率で2段階で幅方向に延伸し(TD
延伸3)、引き続き210℃の温度で熱固定を施した
後、170℃の冷却ゾーンで幅方向に1%の弛緩率で弛
緩処理を行い、さらに130℃のゾーンで幅方向に0.
5%弛緩率で弛緩処理してフィルムを室温まで徐冷して
巻取った。フィルム厚みは押出量を調節して6.7μm
に合わせた。
Example 5 Using two extruders A and B, extruder A heated to 290 ° C. was provided with polyethylene naphthalate (hereinafter abbreviated as PEN) -I (intrinsic viscosity 0.65, glass transition temperature 124).
C., a melting temperature of 265.degree. C., and a spherical silica particle having an average diameter of 0.07 .mu.m (containing 0.16% by weight).
The extruder B, which was supplied after being vacuum-dried for hours and was also heated to 290 ° C., had PEN-II (having an intrinsic viscosity of 0.65,
Glass transition temperature 124 ° C., melting temperature 265 ° C., 0.2% by weight of spherical crosslinked polystyrene particles having an average diameter of 0.3 μm and 0.01 of spherical crosslinked polystyrene particles having an average diameter of 0.8 μm
(% By weight) after being vacuum-dried at 180 ° C. for 3 hours, supplied and merged in a T-die (stacking ratio I / II = 1).
0/1), it was brought into close contact with a cast drum having a surface temperature of 25 ° C. by static electricity and cooled and solidified to obtain a laminated unstretched film. The refractive index in the longitudinal direction of this laminated unstretched film was 1.
649, the refractive index in the width direction is 1,648, and the crystallinity is 0.5.
7%. The unstretched film was heated by a group of heating rolls (surface material: silicone rubber), stretched in the longitudinal direction at the temperature and magnification shown in Table 1, and cooled (MD stretching 1). Both ends of the film were gripped with clips and guided to a tenter, and stretched in the width direction in two stages at the temperature and magnification shown in Table 1 (TD stretching 1, 2). This film was heated by a heating metal roll and stretched in the longitudinal direction at the temperature and magnification shown in Table 1 (MD stretching 2). Next, both ends of the film were gripped with clips and guided to a tenter, and stretched in the width direction in two stages at the temperature and magnification shown in Table 1 (TD
Stretching 3) Then, after heat-setting at a temperature of 210 ° C., a relaxation treatment is carried out at a cooling zone of 170 ° C. at a relaxation rate of 1% in the width direction, and 0.1 mm in a width of 130 ° C. zone.
The film was relaxed at a relaxation rate of 5%, and the film was gradually cooled to room temperature and wound up. The film thickness is adjusted to 6.7 μm by controlling the extrusion amount.
I adjusted to.

【0070】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。ま
た、表3に得られたフィルムのヤング率、回折ピークの
半価幅、結晶サイズ、斜め方向のヤング率、幅方向の引
裂伝播抵抗、厚み方向の屈折率、面配向係数、密度、表
面粗さを、表4にクリープコンプライアンス、熱収縮開
始温度、80℃の熱収縮率、磁気テープの走行耐久性お
よび保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) at the edge portion of the unstretched film to the thickness (B) at the center in the width direction, and the refractive index and crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3 shows the Young's modulus, the half-width of the diffraction peak, the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness of the film obtained in Table 3. Table 4 shows the creep compliance, the heat shrinkage initiation temperature, the heat shrinkage at 80 ° C., the running durability of the magnetic tape, and the storage stability.

【0071】比較例7 実施例5と同様にして積層未延伸フィルムを得た。この
未延伸フィルムを加熱金属ロール群に導き、140℃の
温度に加熱して、縦方向に4倍の倍率で延伸し、この縦
延伸フィルムをテンターに導き、フィルム端部をクリッ
プで把持し、135℃の温度に加熱して横方向に3.8
倍の倍率で延伸した。この二軸延伸フィルムを加熱金属
ロール群に導き、160℃の温度で、縦方向に1.2倍
の倍率で再延伸した。この延伸フィルムをテンターに導
き、フィルム端部をクリップで把持して、190℃の温
度に加熱して横方向に1.3倍の倍率で延伸し、引続き
210℃の温度で熱固定を施した後、170℃の冷却ゾ
ーンで幅方向に1%の弛緩率で弛緩処理を行い、さらに
130℃のゾーンで幅方向に0.5%弛緩率で弛緩処理
してフィルムを室温に徐冷して巻取った。フィルム厚み
は押出量を調節して6.7μmに合わせた。
Comparative Example 7 A laminated unstretched film was obtained in the same manner as in Example 5. This unstretched film is guided to a group of heated metal rolls, heated to a temperature of 140 ° C., stretched in the longitudinal direction at a magnification of 4 times, guided to a tenter, and a film end is gripped with a clip. Heat to a temperature of 135 ° C. and 3.8
The film was stretched at twice the magnification. The biaxially stretched film was guided to a group of heated metal rolls and stretched again at a temperature of 160 ° C. in the longitudinal direction at a magnification of 1.2 times. The stretched film was guided to a tenter, and the end of the film was gripped with a clip, heated to a temperature of 190 ° C., stretched in a transverse direction at a magnification of 1.3 times, and subsequently heat-set at a temperature of 210 ° C. Thereafter, the film is subjected to a relaxation treatment in the cooling zone at 170 ° C. at a relaxation rate of 1% in the width direction, and further subjected to a relaxation treatment in the zone at 130 ° C. at a relaxation rate of 0.5% in the width direction, and the film is gradually cooled to room temperature. Wound up. The film thickness was adjusted to 6.7 μm by adjusting the extrusion amount.

【0072】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。表3
に得られたフィルムのヤング率、回折ピークの半価幅、
結晶サイズ、斜め方向のヤング率、幅方向の引裂伝播抵
抗、厚み方向の屈折率、面配向係数、密度、表面粗さ
を、表4にクリープコンプライアンス、熱収縮開始温
度、80℃の熱収縮率、磁気テープの走行耐久性および
保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) of the edge portion of the unstretched film to the thickness (B) of the central portion in the width direction, the refractive index, and the crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3
Young's modulus of the obtained film, half width of the diffraction peak,
Table 4 shows the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness. Table 4 shows the creep compliance, heat shrink initiation temperature, and heat shrinkage at 80 ° C. And the running durability and storability of the magnetic tape.

【0073】実施例6 実施例1と同様にして積層未延伸フィルムを得た。この
未延伸フィルムを加熱ロール群(表面材質;シリコンゴ
ム)で加熱して、110℃の温度で長手方向に1.5倍
×1.5倍の倍率に2段階で延伸して冷却した(MD延
伸1)。このフィルムの両端部をクリップで把持して、
テンターに導き、115℃の温度で、幅方向に2.0倍
の倍率に延伸し、引続き、75℃の温度で幅方向に3.
6倍の倍率に延伸を行った(TD延伸1、2)。このフ
ィルムを加熱金属ロールで加熱して80℃の温度で長手
方向に3.4倍の倍率に延伸して冷却した(MD延伸2
の1段目延伸)。さらに、このフィルムの両端部をクリ
ップで把持し同時二軸延伸テンターに導き160℃の温
度で長手方向に1.2倍、幅方向に1.3倍に同時二軸
延伸し、引き続き190℃の温度で長手方向に1.1
倍、幅方向に1.1倍に同時二軸延伸し、引き続き20
0℃の温度で熱固定を施した後、150℃の冷却ゾーン
で長手方向に2%、幅方向に3%の弛緩率で弛緩処理を
行い、さらに100℃のゾーンで長手方向に1%、幅方
向に1.0%弛緩率で弛緩処理してフィルムを室温に徐
冷して巻取った。この時の同時二軸延伸テンターのフィ
ルム把持具(クリップ)のテンター入り口での温度は、
105℃であった。フィルム厚みは押出量を調節して
6.7μmに合わせた。
Example 6 A laminated unstretched film was obtained in the same manner as in Example 1. This unstretched film was heated by a group of heating rolls (surface material: silicone rubber), stretched in a longitudinal direction at a temperature of 110 ° C. at a magnification of 1.5 × 1.5 in two stages, and cooled (MD Stretching 1). Hold both ends of this film with clips,
It was led to a tenter and stretched 2.0 times in the width direction at a temperature of 115 ° C., and then continuously stretched in the width direction at a temperature of 75 ° C.
Stretching was performed at a magnification of 6 times (TD stretching 1, 2). This film was heated with a heating metal roll, stretched at a temperature of 80 ° C. in the longitudinal direction at a magnification of 3.4 times, and cooled (MD stretching 2).
In the first step). Further, both ends of the film are gripped with clips and guided to a simultaneous biaxial stretching tenter, and simultaneously biaxially stretched 1.2 times in the longitudinal direction and 1.3 times in the width direction at a temperature of 160 ° C. 1.1 in the longitudinal direction at temperature
, And simultaneously biaxially stretched 1.1 times in the width direction.
After heat setting at a temperature of 0 ° C., a relaxation treatment of 2% in the longitudinal direction and a relaxation rate of 3% in the width direction in a cooling zone of 150 ° C., and further 1% in a longitudinal direction in a zone of 100 ° C. The film was relaxed in the width direction at a 1.0% relaxation rate, and the film was gradually cooled to room temperature and wound up. At this time, the temperature at the tenter entrance of the film gripper (clip) of the simultaneous biaxial stretching tenter is:
105 ° C. The film thickness was adjusted to 6.7 μm by adjusting the extrusion amount.

【0074】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。表3
に得られたフィルムのヤング率、回折ピークの半価幅、
結晶サイズ、斜め方向のヤング率、幅方向の引裂伝播抵
抗、厚み方向の屈折率、面配向係数、密度、表面粗さ
を、表4にクリープコンプライアンス、熱収縮開始温
度、80℃の熱収縮率、磁気テープの走行耐久性および
保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) of the edge portion of the unstretched film to the thickness (B) of the central portion in the width direction, the refractive index, and the crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3
Young's modulus of the obtained film, half width of the diffraction peak,
Table 4 shows the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness. Table 4 shows the creep compliance, heat shrink initiation temperature, and heat shrinkage at 80 ° C. And the running durability and storability of the magnetic tape.

【0075】実施例7 実施例1と同様にして積層未延伸フィルムを得た。但し
ダイ(口金)のリップの間隙を幅方向に調節して、積層
未延伸フィルムのエッジ部の最大厚み(A)と幅方向中
央部の厚み(B)の比(A/B)を3.0とした。この
未延伸フィルムの両端部をクリップで把持して、同時二
軸延伸テンターに導き、110℃の温度で、長手方向お
よび幅方向に2.0倍の倍率に同時二軸延伸し、引続
き、75℃の温度で長手方向および幅方向に3.3倍の
倍率に同時二軸延伸を行った。この時の同時二軸延伸テ
ンターの把持具のテンター入り口の温度は、100℃で
あった。このフィルムを加熱金属ロールで加熱して12
0℃と160の2段階の温度で長手方向に1.4倍と
1.1倍の倍率に延伸して冷却した。さらに、このフィ
ルムの両端部をクリップで把持し幅方向延伸テンターに
導き、160℃の温度で幅方向に1.3倍に延伸し、引
き続き190℃の温度で幅方向に1.1倍に延伸し、引
き続き200℃の温度で熱固定を施した後、150℃の
冷却ゾーンで幅方向に3%の弛緩率で弛緩処理を行い、
さらに100℃のゾーンで幅方向に1.0%弛緩率で弛
緩処理してフィルムを室温に徐冷して巻取った。フィル
ム厚みは押出量を調節して6.7μmに合わせた。
Example 7 A laminated unstretched film was obtained in the same manner as in Example 1. However, the gap (A / B) between the maximum thickness (A) of the edge portion of the laminated unstretched film and the thickness (B) of the central portion in the width direction is adjusted by adjusting the gap of the lip of the die (die) in the width direction. 0 was set. Both ends of the unstretched film are gripped by clips and guided to a simultaneous biaxial stretching tenter, and simultaneously biaxially stretched at a temperature of 110 ° C. to a magnification of 2.0 times in the longitudinal direction and the width direction. Simultaneous biaxial stretching was performed at a temperature of ° C in the longitudinal and width directions at a magnification of 3.3 times. At this time, the temperature at the entrance of the tenter of the gripper of the simultaneous biaxial stretching tenter was 100 ° C. This film is heated with a heating metal roll to form a film 12
The film was stretched at a temperature of two stages of 0 ° C. and 160 at a magnification of 1.4 times and 1.1 times in the longitudinal direction and cooled. Further, both ends of the film are gripped with clips and guided to a width stretching tenter, stretched 1.3 times in the width direction at a temperature of 160 ° C., and then stretched 1.1 times in the width direction at a temperature of 190 ° C. Then, after heat-setting at a temperature of 200 ° C., a relaxation treatment is performed at a relaxation rate of 3% in the width direction in a cooling zone of 150 ° C.,
Further, the film was subjected to a relaxation treatment at a relaxation rate of 1.0% in the width direction in a zone at 100 ° C., and the film was gradually cooled to room temperature and wound up. The film thickness was adjusted to 6.7 μm by adjusting the extrusion amount.

【0076】表1にフィルムの製造条件、表2に未延伸
フィルムのエッジ部の最大厚み(A)と幅方向中央部の
厚み(B)の比(A/B)および屈折率、結晶化度、製
膜工程における屈折率、複屈折、結晶化度を示す。表3
に得られたフィルムのヤング率、回折ピークの半価幅、
結晶サイズ、斜め方向のヤング率、幅方向の引裂伝播抵
抗、厚み方向の屈折率、面配向係数、密度、表面粗さ
を、表4にクリープコンプライアンス、熱収縮開始温
度、80℃の熱収縮率、磁気テープの走行耐久性および
保存性を示す。
Table 1 shows the film production conditions, and Table 2 shows the ratio (A / B) of the maximum thickness (A) of the edge portion of the unstretched film to the thickness (B) of the central portion in the width direction, the refractive index, and the crystallinity. And the refractive index, birefringence and crystallinity in the film forming process. Table 3
Young's modulus of the obtained film, half width of the diffraction peak,
Table 4 shows the crystal size, the Young's modulus in the oblique direction, the tear propagation resistance in the width direction, the refractive index in the thickness direction, the plane orientation coefficient, the density, and the surface roughness. Table 4 shows the creep compliance, heat shrink initiation temperature, and heat shrinkage at 80 ° C. And the running durability and storability of the magnetic tape.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【表3】 [Table 3]

【0080】[0080]

【表4】 [Table 4]

【0081】[0081]

【発明の効果】本発明で開示する、フィルムの長手方向
のヤング率(YmMD)あるいは幅方向のヤング率(Y
mTD)のいずれか一方のヤング率が7GPa以上であ
り、広角X線ディフラクトメータ法による結晶配向解析
で、該ポリエステルフィルムをその法線を軸として回転
した時に得られる、該ポリエステル主鎖方向の結晶面の
回折ピークの円周方向の半価幅が55度以上から85度
以下の範囲にある二軸配向ポリエステルフィルムは、高
密度磁気記録テープの走行耐久性、保存安定性を大幅に
改善するフィルムであり、その工業的価値は極めて高
い。
The Young's modulus (YmMD) in the longitudinal direction or the Young's modulus (Y in the width direction) of the film disclosed in the present invention.
mTD) has a Young's modulus of 7 GPa or more, and is obtained by rotating the polyester film around its normal line in a crystal orientation analysis by a wide-angle X-ray diffractometer method. A biaxially oriented polyester film having a half-width in the circumferential direction of the diffraction peak of the crystal plane in the range of 55 degrees or more and 85 degrees or less greatly improves the running durability and storage stability of a high-density magnetic recording tape. It is a film and its industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 9:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI theme coat ゛ (Reference) B29L 9:00

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 長手方向のヤング率(YmMD)あるい
は幅方向のヤング率(YmTD)のいずれか一方のヤン
グ率が7GPa以上である二軸配向ポリエステルフィル
ムであって、広角X線ディフラクトメータ法による結晶
配向解析で、該ポリエステルフィルムをその法線を軸と
して回転した時に得られる、該ポリエステル主鎖方向の
結晶面の回折ピークの円周方向の半価幅が55度以上か
ら85度以下の範囲にあることを特徴とする二軸配向ポ
リエステルフィルム。
1. A biaxially oriented polyester film having one of a Young's modulus in a longitudinal direction (YmMD) or a Young's modulus in a width direction (YmTD) of 7 GPa or more, and a wide-angle X-ray diffractometer method. In the crystal orientation analysis by, the obtained half-width in the circumferential direction of the diffraction peak of the crystal plane in the main chain direction of the polyester film obtained when the polyester film is rotated around its normal line is from 55 degrees to 85 degrees. A biaxially oriented polyester film characterized by being within the range.
【請求項2】 ポリエステル主鎖方向の結晶サイズが、
45Å以上から90Å以下の範囲にある請求項1に記載
の二軸配向ポリエステルフィルム。
2. The crystal size in the polyester main chain direction is as follows:
The biaxially oriented polyester film according to claim 1, which is in a range from 45 ° to 90 °.
【請求項3】 長手方向のヤング率(YmMD)と幅方
向のヤング率(YmTD)の和が13GPa以上から2
5GPa以下、かつ斜め方向(長手方向を90度、幅方
向を0度としたときの45度または135度方向)のヤ
ング率が6GPa以上から10GPa以下の範囲にある
請求項1または2に記載の二軸配向ポリエステルフィル
ム。
3. The sum of the Young's modulus in the longitudinal direction (YmMD) and the Young's modulus in the width direction (YmTD) is from 13 GPa or more to 2
3. The method according to claim 1, wherein the Young's modulus in a direction of 5 GPa or less and a diagonal direction (a direction of 45 degrees or 135 degrees when the longitudinal direction is 90 degrees and the width direction is 0 degrees) is in a range of 6 GPa or more to 10 GPa or less. 4. Biaxially oriented polyester film.
【請求項4】 温度50℃、荷重28MPaの条件下で
30分経過後のクリープコンプライアンスが0.11G
Pa-1以上から0.35GPa-1以下の範囲にある請求
項1〜3のいずれかに記載の二軸配向ポリエステルフィ
ルム。
4. A creep compliance of 0.11 G after a lapse of 30 minutes at a temperature of 50 ° C. and a load of 28 MPa.
The biaxially oriented polyester film according to any one of claims 1 to 3, which is in a range from Pa -1 or more to 0.35 GPa -1 or less.
【請求項5】 フィルム厚みを5μmに換算した幅方向
の引裂伝播抵抗が0.7g以上から1.8g以下の範囲
にある請求項1〜4のいずれかに記載の二軸配向ポリエ
ステルフィルム。
5. The biaxially oriented polyester film according to claim 1, wherein the tear propagation resistance in the width direction when the film thickness is converted to 5 μm is in the range of 0.7 g or more and 1.8 g or less.
【請求項6】 ポリエステルがポリエチレンテレフタレ
ートである請求項1〜5のいずれかに記載の二軸配向ポ
リエステルフィルム。
6. The biaxially oriented polyester film according to claim 1, wherein the polyester is polyethylene terephthalate.
【請求項7】 厚み方向の屈折率(nZD)が1.470
以上から1.485以下、面配向係数(fn)が0.1
75以上から0.195以下の範囲にある請求項6に記
載の二軸配向ポリエステルフィルム。
7. The refractive index (n ZD ) in the thickness direction is 1.470.
From the above, 1.485 or less, the plane orientation coefficient (f n ) is 0.1
The biaxially oriented polyester film according to claim 6, which is in a range of 75 or more to 0.195 or less.
【請求項8】 フィルムの密度が1.385以上から
1.400以下の範囲にある請求項6または7に記載の
二軸配向ポリエステルフィルム。
8. The biaxially oriented polyester film according to claim 6, wherein the density of the film is in the range of 1.385 or more to 1.400 or less.
【請求項9】 フィルムの熱収縮開始温度が70℃以
上、温度80℃の熱収縮率が0.5%以下である請求項
6〜8のいずれかに記載の二軸配向ポリエステルフィル
ム。
9. The biaxially oriented polyester film according to claim 6, wherein a heat shrinkage initiation temperature of the film is 70 ° C. or more and a heat shrinkage at a temperature of 80 ° C. is 0.5% or less.
【請求項10】 請求項1〜9のいずれかに記載の二軸
配向ポリエステルフィルムをベースフィルムとして用い
たことを特徴とする高密度磁気記録媒体。
10. A high-density magnetic recording medium using the biaxially oriented polyester film according to claim 1 as a base film.
JP20329299A 1998-08-03 1999-07-16 Biaxially oriented polyester film Expired - Lifetime JP4390025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20329299A JP4390025B2 (en) 1998-08-03 1999-07-16 Biaxially oriented polyester film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-218829 1998-08-03
JP21882998 1998-08-03
JP20329299A JP4390025B2 (en) 1998-08-03 1999-07-16 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JP2000108201A true JP2000108201A (en) 2000-04-18
JP4390025B2 JP4390025B2 (en) 2009-12-24

Family

ID=26513852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20329299A Expired - Lifetime JP4390025B2 (en) 1998-08-03 1999-07-16 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP4390025B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011786A (en) * 2000-06-29 2002-01-15 Toray Ind Inc Biaxially oriented polyester film
JP2006001274A (en) * 2004-05-17 2006-01-05 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film and magnetic recording medium
JP2006015675A (en) * 2004-07-05 2006-01-19 Toray Ind Inc Laminated polyester film for building material
JP2006328287A (en) * 2005-05-30 2006-12-07 Toray Ind Inc Polymer alloy
US8067105B2 (en) 2004-01-29 2011-11-29 Teijin Dupont Films Japan Limited Biaxially oriented film
JP2013191754A (en) * 2012-03-14 2013-09-26 Toyobo Co Ltd Solar cell rear face sealing sheet and solar cell module
JP2021101234A (en) * 2016-05-31 2021-07-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Protective film for polarizer, polarizing plate comprising the same, and display to be provided using them
CN115315467A (en) * 2020-03-24 2022-11-08 东洋纺株式会社 Biaxially oriented polypropylene film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011786A (en) * 2000-06-29 2002-01-15 Toray Ind Inc Biaxially oriented polyester film
JP4590693B2 (en) * 2000-06-29 2010-12-01 東レ株式会社 Biaxially oriented polyester film
US8067105B2 (en) 2004-01-29 2011-11-29 Teijin Dupont Films Japan Limited Biaxially oriented film
US8367199B2 (en) 2004-01-29 2013-02-05 Teijin Dupont Films Japan Limited Biaxially oriented film
JP2006001274A (en) * 2004-05-17 2006-01-05 Teijin Dupont Films Japan Ltd Biaxially oriented laminated film and magnetic recording medium
JP4624850B2 (en) * 2004-05-17 2011-02-02 帝人デュポンフィルム株式会社 Biaxially oriented laminated film and magnetic recording medium
JP2006015675A (en) * 2004-07-05 2006-01-19 Toray Ind Inc Laminated polyester film for building material
JP2006328287A (en) * 2005-05-30 2006-12-07 Toray Ind Inc Polymer alloy
JP2013191754A (en) * 2012-03-14 2013-09-26 Toyobo Co Ltd Solar cell rear face sealing sheet and solar cell module
JP2021101234A (en) * 2016-05-31 2021-07-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Protective film for polarizer, polarizing plate comprising the same, and display to be provided using them
CN115315467A (en) * 2020-03-24 2022-11-08 东洋纺株式会社 Biaxially oriented polypropylene film

Also Published As

Publication number Publication date
JP4390025B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP0924050B1 (en) Production method for a polyester film
KR100635403B1 (en) Biaxially Oriented Polyester Film, Process for Producing the Same, and Magnetic Recording Medium
US6197430B1 (en) Biaxially oriented polyester films and their production methods
JP2000202904A (en) Polyester film and manufacture thereof
JP4390025B2 (en) Biaxially oriented polyester film
KR0184607B1 (en) Polyethylene 2-6-naphthalene dicarboxylate film
JP2000302892A (en) Polyester film
KR100297271B1 (en) Magnetic Tape for Digital Audio Tape Recorder Cassette and Biaxially Oriented Polyester Substrate Film Used in It
EP0567279B1 (en) Laminated polyester film and magnetic recording medium using it as base film
JP4590693B2 (en) Biaxially oriented polyester film
JP2000071405A (en) Biaxially oriented polyester film
JP2954807B2 (en) Biaxially oriented laminated polyester film
JP4066768B2 (en) Biaxially oriented polyester film
JP4356148B2 (en) Biaxially oriented polyester film and method for producing the same
JP2000336183A (en) Biaxially oriented polyester film and its production
JP3048737B2 (en) Method for producing biaxially oriented polyethylene 2,6-naphthalate film
JPH11348114A (en) Biaxially oriented polyester film and its production
JP4045947B2 (en) Biaxially oriented polyester film
JP3238589B2 (en) Biaxially oriented laminated polyester film
JP4151994B2 (en) Polyethylene-2,6-naphthalate film
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP2000302895A (en) Biaxially oriented polyester film
JP2937693B2 (en) Biaxially oriented laminated polyester film
JP2000355047A (en) Biaxially stretched polyester film
JPH04151231A (en) Biaxially oriented polyester film for magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4390025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

EXPY Cancellation because of completion of term