Nothing Special   »   [go: up one dir, main page]

JP2000100679A - Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure - Google Patents

Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure

Info

Publication number
JP2000100679A
JP2000100679A JP28603398A JP28603398A JP2000100679A JP 2000100679 A JP2000100679 A JP 2000100679A JP 28603398 A JP28603398 A JP 28603398A JP 28603398 A JP28603398 A JP 28603398A JP 2000100679 A JP2000100679 A JP 2000100679A
Authority
JP
Japan
Prior art keywords
bonding
substrate
substrates
semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28603398A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28603398A priority Critical patent/JP2000100679A/en
Publication of JP2000100679A publication Critical patent/JP2000100679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical coupling in a microregion between substrates by separating a mechanism junction part from an electrical coupling part for joint, for a thinner substrate. SOLUTION: A structure comprising electrical coupling regions 6 and 7 and joint regions 10 and 11 comprising mechanical joint parts 17 and 19 between substrates 1 and 2 is formed on both substrates. After the substrate 2 is rotated in plate while the joint regions 10 and 11 on both substrates are so aligned as to face each other with the coupling regions 6 and 7 also aligned to face each other, the most substrates are applied with a pressurizing force 21 to joint the joint parts 17 and 19 together so that the coupling regions 6 and 7 are electrically coupled together in solid-phase joint. After the solid-phase joint, the substrate 2 is polished to a thin one, to provide an electrical joint in a microregion where an interface dislocation is brought about to the surface of the thin substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同種あるいは異種
材料基板間の微小領域での電気的結合(結合面で接触抵
抗を実質的に伴わない電気的結合)を実現する薄片化に
よる基板間微小領域固相接合法、及びこの接合法により
好適に実現される素子構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a thin film between substrates by thinning which realizes an electric connection in a very small region between substrates of the same or different materials (electrical connection with substantially no contact resistance at the bonding surface). The present invention relates to a regional solid-state bonding method and an element structure suitably realized by the bonding method.

【0002】[0002]

【従来の技術】従来、光放出素子の作製のために異種半
導体同士を直接接合する方法として、「応用物理」第6
3巻,第1号(和田浩,上條健,p.53,1994
年)に記載されている様に、InP/GaAs及びIn
P/Siの組み合わせの接合が、被接合面を清浄化した
後、基板に重りを載せて水素雰囲気中700℃で30分
間熱処理することによって得られている。
2. Description of the Related Art Conventionally, as a method of directly joining different kinds of semiconductors to each other for producing a light emitting device, there is a method disclosed in “Applied Physics”, No.
Vol. 3, No. 1 (Hiroshi Wada, Ken Kamijo, p.53, 1994)
InP / GaAs and InP
The bonding of the P / Si combination is obtained by cleaning the surface to be bonded and then performing a heat treatment at 700 ° C. for 30 minutes in a hydrogen atmosphere with a weight placed on the substrate.

【0003】また、Appl.Phys.Lett.
(Lincoln Lab.,Z.L.Lian,56(8),19,Feb.1990,p.737)
に記載されている様に、Inp/GaAsの組み合わせ
の接合が、被接合表面を清浄化し、その後円筒状のグラ
ファイト/クォーツ反応器の中で水素雰囲気中750℃
で熱処理をすることによって得られている。
[0003] Appl. Phys. Lett.
(Lincoln Lab., ZLLian, 56 (8), 19, Feb. 1990, p.737)
The bonding of the Inp / GaAs combination cleans the surfaces to be bonded and then at 750 ° C. in a hydrogen atmosphere in a cylindrical graphite / quartz reactor as described in
And by heat treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では接合が約700℃の高温で行なわれ、かつ基板
同士の全面に渡っての接合のため、以下の様な不都合が
あった。 1、熱膨張係数の異なる異種半導体同士の接合の場合、
上記の如き高温で接合後、室温までの冷却中に、あるい
は冷却後に、接合基板が反り返える現象が生じ、結合部
が剥離しやすくなる。すなわち、接合基板に残留応力が
生じて種々問題が起こる。 2、機能的結合である電気的な結合及び機械的な接合強
度(2つの材料が引き剥されない為の接合強度)を兼ね
合わせた接合である為、機能的結合部を小さくしようと
して接合面積を小さくすることは機械的な接合強度を低
下させることになる。こうした場合、該接合強度の低下
は、プロセス中における接合箇所での剥離の要因にな
る。従って、電気的などの機能的な結合の為にはそれほ
ど面積を必要としなくても、機械的な結合強度を確保し
なければならないので接合面積を小さくすることは困難
である。こうして微小領域での接合は困難であり、面発
光型の半導体レーザなどの閾値を小さくするなどの要求
に応えて接合面積を小さくすることを困難にしている。 3、また、基板同士の接合のみである為、1つの基板に
他の複数個の微小片基板を接合することが困難である。
However, in the above-mentioned conventional example, since the bonding is performed at a high temperature of about 700 ° C. and the bonding is performed over the entire surface of the substrates, there are the following inconveniences. 1. In the case of joining different kinds of semiconductors having different thermal expansion coefficients,
After bonding at a high temperature as described above, during or after cooling to room temperature, a phenomenon in which the bonded substrate warps occurs, and the bonded portion is easily peeled. That is, residual stress is generated in the bonded substrate, and various problems occur. 2. Since the bonding combines electrical bonding and mechanical bonding strength (bonding strength for preventing the two materials from being peeled off), the bonding area is reduced in order to reduce the functional bonding portion. Decreasing the size reduces the mechanical bonding strength. In such a case, the decrease in the bonding strength causes peeling at the bonding portion during the process. Therefore, even if a small area is not required for any functional electrical connection, it is difficult to reduce the bonding area because the mechanical coupling strength must be ensured. In this way, it is difficult to join in a minute area, and it is difficult to reduce the joining area in response to a demand such as reducing the threshold value of a surface emitting semiconductor laser or the like. Third, since it is only the bonding between the substrates, it is difficult to bond a plurality of other micro-piece substrates to one substrate.

【0005】よって、本発明の目的は、上記の課題に鑑
み、機械的な結合強度を確保する接合部と電気的結合を
達成する電気的結合部を分けて接合を行なうと共に少な
くとも一方の基板を薄片化することで同種あるいは異種
材料基板間の微小領域での電気的結合を達成する基板間
微小領域固相接合法、及びこの接合法により好適に実現
される素子構造を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to separate a joint for securing mechanical coupling strength from an electrical joint for achieving electrical coupling and to join at least one of the substrates. An object of the present invention is to provide a microregion solid-state bonding method between substrates which achieves electrical coupling in a microregion between substrates of the same or different materials by thinning, and an element structure suitably realized by this bonding method.

【0006】[0006]

【課題を解決するための手段および作用】上記目的を達
成するための本出願の発明による基板間微小領域固相接
合法は、同種或は異種半導体基板間の微小領域での接合
で電気的結合を得る為の接合法であって、電気的結合を
生ずる結合領域と、基板間に機械的な接合力を与える為
の接合部を有する接合領域とを有する構造を第1と第2
の半導体基板に形成し、第1と第2の半導体基板上の接
合領域同士及び結合領域同士をそれぞれ相い対向する様
に整合させつつ少なくとも一方の半導体基板を面内回転
させた状態にした後に、第1と第2の半導体基板同士に
押圧力を印加しつつ接合部同士を接合して結合領域同士
を固相接合で電気的結合し、該固相接合後、少なくとも
一方の半導体基板を薄片化研磨することによって、例え
ば、結合領域に納まる薄片化基板にし、該薄片化基板の
表面まで界面転位をもたらした微小領域での電気的接合
を実現することを特徴とする。本発明の基板間微小領域
固相接合法では、接合部の材料の接合のみにより基板同
士に機械的接合力を持たせ、かつ同時に基板の結合領域
同士で電気的結合を得、更に接合後、少なくとも一方の
半導体基板を薄片化研磨することによって結合領域に納
まる薄片化基板にし、該薄片化基板の表面まで界面転位
をもたらした。
In order to achieve the above-mentioned object, the solid-state bonding method between substrates of the present invention according to the invention of the present application is a method of electrically coupling by bonding in a small region between the same or different semiconductor substrates. Wherein the first and second structures have a bonding region having an electrical connection and a bonding region having a bonding portion for providing a mechanical bonding force between the substrates.
After the at least one semiconductor substrate is rotated in the plane while the bonding regions and the bonding regions on the first and second semiconductor substrates are aligned so as to face each other, Joining the joining portions while applying a pressing force to the first and second semiconductor substrates to electrically couple the joining regions by solid-phase joining; and after the solid-phase joining, at least one of the semiconductor substrates is sliced. By performing the polishing, for example, a thinned substrate that fits in the bonding region is formed, and electrical bonding is realized in a minute region in which interfacial dislocations are brought to the surface of the thinned substrate. In the inter-substrate microregion solid-phase bonding method of the present invention, the substrates are provided with a mechanical bonding force only by bonding the material of the bonding portion, and at the same time, electrical bonding is obtained between the bonding regions of the substrates, and further after bonding, At least one of the semiconductor substrates was thinned and polished into a thinned substrate that fits in the bonding region, and interfacial dislocations were brought to the surface of the thinned substrate.

【0007】接合部材で接合する為、比較的低い温度
で、電気的結合面同士での電気的結合、及び接合部同士
での十分な機械的強度を得られ、接合部同士で機械的な
接合力を確保できるので、電気的結合面の結合面積を限
りなく微小にでき、電気的結合を単に押し当てて原子間
距離のオーダまで近付けて固相接合で行なうので、電気
的結合をする為の材料の種類の如何に制約されないで同
種あるいは異種材料間の電気的結合を得ることが可能で
ある。この際、少なくとも一方の半導体基板を面内回転
させた状態で固相接合を行なうので、その後、基板を薄
片化した場合、電気的結合した固相接合面で生じた界面
転位の状態を該薄片化基板の表面にもたらすことが可能
であり、従って該結合薄片化基板の表面に混晶半導体を
あるいは半導体基板をそれぞれ更に成膜あるいは結合し
た場合、種々な特性を有する電気的結合を得る事が可能
となる。
[0007] Since the joining is performed by the joining members, the electrical joining between the electrical joining surfaces and the sufficient mechanical strength between the joining portions can be obtained at a relatively low temperature, and the mechanical joining between the joining portions can be obtained. Since the force can be secured, the coupling area of the electric coupling surface can be made extremely small, and the electric coupling is simply pressed and brought close to the order of the interatomic distance and solid phase bonding is performed. It is possible to obtain electrical coupling between similar or dissimilar materials, regardless of the type of material. At this time, since the solid phase bonding is performed while at least one semiconductor substrate is rotated in the plane, when the substrate is subsequently thinned, the state of the interface dislocation generated on the electrically bonded solid bonded surface is determined by the thin flake. Therefore, when a mixed crystal semiconductor or a semiconductor substrate is further formed or bonded on the surface of the bonded exfoliated substrate, electrical coupling having various characteristics can be obtained. It becomes possible.

【0008】より具体的には以下の様にもできる。前記
第1と第2の半導体基板は、接合領域上の接合部同士の
接合によって結合領域を中に含む密閉雰囲気槽が形成さ
れる様に構成される。この場合、前記密閉雰囲気槽が減
圧雰囲気槽となる様に、第1と第2の半導体基板の接合
領域上の接合部同士の接合は減圧雰囲気中で行なわれる
のがよい。これにより、電気的結合が、陽圧(大気圧)
印加によって、より確実に行なわれる様になる。
[0008] More specifically, the following is also possible. The first and second semiconductor substrates are configured such that a sealed atmosphere tank including a bonding region therein is formed by bonding the bonding portions on the bonding region. In this case, it is preferable that the joining portions on the joining region of the first and second semiconductor substrates are joined in a reduced-pressure atmosphere so that the closed atmosphere tank becomes a reduced-pressure atmosphere tank. This allows the electrical coupling to be positive pressure (atmospheric pressure)
The application is performed more reliably by the application.

【0009】密閉雰囲気槽の形成は、例えば、少なくと
も一方の半導体基板の前記接合領域に、結合領域の周囲
を囲む様に同心円状で鋸歯状(凹凸状)断面を有する接
着子からなる接合部を形成することで達成できる。
The sealed atmosphere tank is formed, for example, by attaching a joint made of an adhesive having a concentric saw-tooth (irregular shape) cross section so as to surround the periphery of the joint region in at least one joint region of the semiconductor substrate. It can be achieved by forming.

【0010】前記薄片化基板上にさらに、InGaAs
P、InGaAlPまたはGaInAsの混晶半導体な
どである半導体から成る薄膜層を成膜する。
[0010] Further, InGaAs is further formed on the thinned substrate.
A thin film layer made of a semiconductor such as a mixed crystal semiconductor of P, InGaAlP, or GaInAs is formed.

【0011】また、前記第1または第2の半導体基板の
結合領域に微小領域で電気的に結合された前記薄片化基
板または前記薄膜層の成膜された薄片化基板に、第3の
半導体基板の結合領域を、これらの半導体基板上に形成
された接合領域同士及び結合領域同士をそれぞれ相い対
向する様に整合させた後にこれらの半導体基板同士に押
圧力を印加しつつ接合領域の接合部同士を接合すること
で、電気的結合することを更に行なう。これにより、上
述した様に、種々な特性を有する電気的結合を得る事が
可能となる。
The third semiconductor substrate may be provided on the thinned substrate or the thinned substrate on which the thin film layer is formed, which is electrically connected in a very small area to the connecting region of the first or second semiconductor substrate. After the bonding regions are aligned so that the bonding regions formed on these semiconductor substrates face each other and the bonding regions face each other, a pressing force is applied to these semiconductor substrates to form a bonding portion of the bonding regions. The electrical connection is further performed by joining the two. Thereby, as described above, it is possible to obtain electrical coupling having various characteristics.

【0012】この接合についても、前記薄片化基板に電
気的結合された前記半導体基板と前記第3の半導体基板
が、接合領域上の接合部同士の接合によって結合領域を
中に含む密閉雰囲気槽が形成される様に構成されるのが
好ましい。勿論、前記密閉雰囲気槽が減圧雰囲気槽とな
る様に、前記両基板の接合領域上の接合部同士の接合は
減圧雰囲気中で行なわれるのがよい。第3の半導体基板
は上記の如き薄片化基板にされる場合もあるが、薄片化
されることはあっても完全に結合領域に納まる上記の薄
片化基板になって密閉雰囲気槽を消滅させることはない
場合もある(この場合、該第3の半導体基板の剛性が減
少させられ電気的結合面に大気圧による陽圧を効率的に
作用させられて減圧雰囲気槽の効果がより有効になり、
素子構造を大気に出したときに電気的結合が更により確
実且つ安定的になる)。従って、この減圧雰囲気槽内の
減圧雰囲気が、減圧された空気雰囲気、不活性ガス雰囲
気あるいは還元ガス雰囲気、更には、減圧されたアルゴ
ンガス、窒素ガス、水素ガスあるいはこれらのガス種の
混合ガスの雰囲気などである場合、中に密閉された電気
的結合部の劣化が防がれて寿命が延びることになる。
[0012] Also in this bonding, the semiconductor substrate and the third semiconductor substrate electrically coupled to the thinned substrate are connected to each other by a joint between the joints on the joint region. Preferably, it is configured to be formed. Needless to say, it is preferable that the joints on the joint region of the two substrates are joined in a reduced pressure atmosphere so that the closed atmosphere tank becomes a reduced pressure atmosphere tank. In some cases, the third semiconductor substrate is formed into a thinned substrate as described above. However, the third semiconductor substrate may be cut into a thinned substrate completely contained in the bonding region, and the sealed atmosphere tank may be eliminated. (In this case, the rigidity of the third semiconductor substrate is reduced, the positive pressure due to the atmospheric pressure is efficiently applied to the electrical coupling surface, and the effect of the reduced-pressure atmosphere tank becomes more effective.
When the device structure is exposed to the air, the electrical connection is further reliably and stably). Therefore, the reduced-pressure atmosphere in the reduced-pressure atmosphere tank may be a reduced-pressure air atmosphere, an inert gas atmosphere or a reducing gas atmosphere, or a reduced-pressure argon gas, nitrogen gas, hydrogen gas or a mixed gas of these gas types. In the case of an atmosphere or the like, deterioration of the electric coupling portion sealed therein is prevented, and the life is extended.

【0013】前記薄片化基板にされた第1または第2の
半導体基板と前記第3の半導体基板間の接合時に、これ
ら半導体基板の少なくとも一方を面内回転することも勿
論行なわれ得る。この際、薄片化基板にされない方の半
導体基板と第3の半導体基板の面内回転角はゼロである
場合もある。
At the time of bonding between the first or second semiconductor substrate formed as the thinned substrate and the third semiconductor substrate, at least one of the semiconductor substrates may be rotated in a plane. At this time, the in-plane rotation angles of the semiconductor substrate that is not the sliced substrate and the third semiconductor substrate may be zero.

【0014】前記半導体基板の少なくとも1つに更に仮
付け接合部を形成し、前記整合後に基板同士に押圧力を
印加しつつ仮付け接合部で両基板を仮接合した後に、さ
らに基板同士に押圧力を印加しつつ接合部同士を、例え
ば、大気圧以下の減圧雰囲気中で接合する様にしてもよ
い。
A temporary bonding portion is further formed on at least one of the semiconductor substrates. After the alignment, the substrates are temporarily bonded at the temporary bonding portion while applying a pressing force to the substrates. For example, the joining portions may be joined in a reduced-pressure atmosphere of an atmospheric pressure or less while applying pressure.

【0015】前記半導体基板は、Si,InP,GaA
s,GaN,Ge,GaP,ZnS,CdS,InA
s,InSb,SiC,PbS,Se、及びこれらの何
れかの半導体基板上に成膜した化合物半導体、更にはI
nGaAsP,InGaAlP,GaInAsの混晶半
導体などである。
The semiconductor substrate is made of Si, InP, GaAs.
s, GaN, Ge, GaP, ZnS, CdS, InA
s, InSb, SiC, PbS, Se, and compound semiconductors formed on any of these semiconductor substrates,
It is a mixed crystal semiconductor of nGaAsP, InGaAlP, and GaInAs.

【0016】前記半導体基板の少なくとも1つの結合領
域に凸状の電気的結合面を形成すれば、電気的結合がよ
り確実に達成できる。
[0016] If a convex electric coupling surface is formed in at least one coupling region of the semiconductor substrate, electric coupling can be more reliably achieved.

【0017】前記接合部は塑性変形能を有する材料から
成る。これにより機械的接合が良好に行なわれる。塑性
変形能を有する材料としては、金属材料があり、塑性変
形能を有する金属材料はAl,Au,Sn,Cu,Z
n,Pb,Ni及びPbSn化合物などである。
The joint is made of a material having plastic deformability. Thereby, mechanical joining is performed well. Examples of the material having plastic deformability include metal materials, and metal materials having plastic deformability include Al, Au, Sn, Cu, and Z.
n, Pb, Ni and PbSn compounds.

【0018】前記接合する温度は350℃以下あるいは
室温である。比較的低温で接合が行なわれるので、接合
基板に残留応力が生じて種々問題が起こる様なことがな
くなる。
The joining temperature is 350 ° C. or less or room temperature. Since the bonding is performed at a relatively low temperature, the occurrence of various problems due to the occurrence of residual stress in the bonded substrate is eliminated.

【0019】光放出素子を形成した基板と、該光放出素
子の光を励起光とするレーザ光にするためのミラーを形
成した基板とを接合する為に、光学的結合と電気的結合
を生ずる結合領域と、接合力を与える為の接合部を有す
る接合領域とを有する構造を用いて微小面積での接合を
行なうこともできる。
In order to join the substrate on which the light emitting element is formed and the substrate on which a mirror for forming a laser beam using the light of the light emitting element as excitation light is formed, optical coupling and electrical coupling are generated. Bonding in a small area can also be performed using a structure having a bonding region and a bonding region having a bonding portion for providing bonding force.

【0020】同一基板上に複数の電気的結合を生ずる結
合領域と複数の接合領域を有する様にもできる。
The same substrate may have a plurality of coupling regions for producing electrical coupling and a plurality of junction regions.

【0021】また、上記目的を達成するための本出願の
発明による素子構造では、同種或は異種半導体基板間の
微小領域での接合で電気的結合を得る為に、電気的結合
を生ずる結合領域と、基板間に機械的な接合力を与える
為の接合部を有する接合領域とを有する構造が第1と第
2の半導体基板に形成され、結合領域と接合領域は、第
1と第2の半導体基板上の該接合領域同士及び該結合領
域同士がそれぞれ相い対向する様に整合されつつ少なく
とも一方の半導体基板が面内回転された状態にされた後
に第1と第2の半導体基板同士に押圧力を印加しつつ該
接合部同士が接合されるときに該結合領域同士が固相接
合で電気的結合する様に、形状決めされ、該固相接合
後、少なくとも一方の半導体基板が薄片化研磨されるこ
とによって、例えば、結合領域に納まる薄片化基板にさ
れ、該薄片化基板の表面まで界面転位がもたらされた微
小領域での電気的接合が実現されていることを特徴とす
る。
Further, in the element structure according to the present invention for achieving the above object, in order to obtain electrical coupling by bonding in a small area between the same or different semiconductor substrates, a coupling region for producing electrical coupling is provided. And a structure having a bonding region having a bonding portion for providing a mechanical bonding force between the substrates is formed on the first and second semiconductor substrates, and the bonding region and the bonding region are formed of the first and second semiconductor substrates. The first and second semiconductor substrates are connected to each other after at least one of the semiconductor substrates is rotated in the plane while the bonding regions and the bonding regions on the semiconductor substrate are aligned so as to face each other. When the joining portions are joined while applying a pressing force, the joining regions are shaped so as to be electrically coupled by solid-state joining, and after the solid-state joining, at least one semiconductor substrate is thinned. By being polished, for example It has been thinned substrate that fits to the binding region, characterized in that the electrical connection in a minute area leads to interfacial dislocations to the surface of the thin singulated substrate is realized.

【0022】本発明の原理を具体例を用いて説明する。
本発明の典型例では、例えば、塑性変形能を有する材料
の接合のみにより基板同士に接合力を持たせ、かつ同時
に該基板同士に微小な凸部で電気的結合を得、該電気的
結合面の周囲を塑性変形能を有する材料同士によって密
閉する。該接合を減圧雰囲気中(真空中)で荷重印加に
より行なう。該接合による該電気的結合面の存在する減
圧雰囲気槽は大気中に取り出した場合、常に1気圧の圧
力を受けることになる。すなわち、該電気的結合部は常
に圧力を受ける事になる。該接合後、少なくとも一方の
基板を研磨によって薄片化する。該薄片化により、該一
方の基板の剛性は減少する為、該電気的結合面は、より
一層、全面で密着して接合する。さらに薄片化研磨を進
めて行なった場合、微小な結合薄片化基板のみが他方の
基板に固相接合で接合した状態になる。
The principle of the present invention will be described using a specific example.
In a typical example of the present invention, for example, the substrates are provided with bonding force only by bonding materials having plastic deformability, and at the same time, electrical coupling is obtained between the substrates with minute projections, and the electrical coupling surface is obtained. Is sealed with materials having plastic deformability. The bonding is performed by applying a load in a reduced-pressure atmosphere (in vacuum). When taken out to the atmosphere, the reduced-pressure atmosphere tank in which the electric coupling surface by the joining exists always receives a pressure of 1 atm. That is, the electrical connection is always under pressure. After the bonding, at least one of the substrates is flaked by polishing. Since the rigidity of the one substrate is reduced by the thinning, the electrical connection surface is further bonded and adhered over the entire surface. When the thinning polishing is further performed, only the minute bonded thinning substrate is bonded to the other substrate by solid-state bonding.

【0023】さらに該他方の基板上に接合した状態にあ
る該結合薄片化基板と、他のもう一つの基板とを上記と
同様な手法で接合し、接合後、該他のもう一つの基板を
薄片化研磨する。あるいは、該結合薄片化基板上に混晶
半導体から成る薄膜層を形成し、該薄膜層に他のもう1
つの基板を上記と同様な手法で接合させ、接合後、該他
のもう一つの基板を薄片化研磨する。この際、上記基板
間を予め互いに面内回転した状態で接合する事も可能で
ある。すなわち、基板間の微小領域での電気的結合面に
於いて界面転移を導入する事が可能になる。
Further, the bonded thinned substrate bonded to the other substrate and another substrate are bonded by the same method as described above, and after bonding, the other substrate is bonded. Polishing for thinning. Alternatively, a thin film layer made of a mixed crystal semiconductor is formed on the bonded exfoliated substrate, and another thin film is formed on the thin film layer.
One substrate is bonded in the same manner as described above, and after bonding, the other substrate is polished for thinning. At this time, it is also possible to join the substrates in a state where they are rotated in a plane in advance. That is, it is possible to introduce an interface transition at an electrical coupling surface in a minute region between the substrates.

【0024】上記過程に於いて、一方の基板上に基板同
士の電気的結合を生ずる結合面及び機械的接合強度を担
う鋸歯状の接着子から成る接合領域をそれぞれ設け、そ
して他方の基板上にも同様に電気的結合を生ずる結合面
及び機械的接合強度を担う接合領域をそれぞれ設ける。
さらに少なくとも一方の基板に仮付け接合部を設ける。
次に、該結合面及び該接合領域同士がそれぞれ相い対向
する様に両基板を位置決めし、その後両側から両基板に
圧縮荷重を印加する。該荷重印加により接合領域の仮付
け接合部で先ず接合が始まり、機械的接合強度を得る。
該仮付け接合部はハンドリング中に於いても上記の位置
決めを保持することだけを担う事を目的とした構造を採
っている為、該仮付け接合部の接合に於いても該結合面
は密閉状態にない、次に、上記仮付接合体を、大気中か
ら減圧雰囲気中(真空中)に導入し、さらに圧縮荷重を
印加する。この荷重印加により、接着素子を有する本接
合部で接合し、機械的強度を得る。該接合後、少なくと
も一方の基板を薄片化研磨していく。該薄片化研磨によ
って該一方の基板の剛性は次第に失われ、上記結合面同
士は全面で電気的結合を得る。すなわちファンデルワー
ルス力が作用する距離まで両基板は互いに接近する。さ
らに薄片化研磨を続けた場合、微小な結合薄片化基板の
みが接合片として残る。すなわち、結果として、互いに
面内回転した状態の微小な該結合薄片化基板と他方の基
板とが結合する事を可能にする。該基板間の接合面に
は、上記固相接合により、界面転位を導入する事が可能
になる。よって、該薄片化研磨をさらに続けて行なった
場合、すなわち該結合薄片化基板をさらに薄片化した場
合、該界面転位の状態を該結合薄片化基板の表面にもた
らすことが可能である。従って、該結合薄片化基板の表
面に混晶半導体を成膜、あるいは半導体基板を結合した
場合、種々な特性を有する電気的結合を得る事が可能と
なる。
In the above process, a bonding surface for providing electrical connection between the substrates and a bonding region formed of a saw-toothed adhesive for providing mechanical bonding strength are provided on one of the substrates, and the other is provided on the other substrate. In the same manner, a bonding surface for providing electrical connection and a bonding region for providing mechanical bonding strength are provided.
Further, a temporary bonding portion is provided on at least one of the substrates.
Next, the two substrates are positioned so that the bonding surface and the bonding region face each other, and then a compressive load is applied to both substrates from both sides. By the application of the load, the joining is first started at the temporary joining portion in the joining region, and the mechanical joining strength is obtained.
Since the tacked joint has a structure intended only to maintain the above positioning even during handling, the joint surface is sealed even when the tacked joint is joined. Next, the temporary bonded assembly is introduced from the atmosphere into a reduced-pressure atmosphere (in a vacuum), and a compressive load is applied. By the application of the load, bonding is performed at the main bonding portion having the adhesive element, and mechanical strength is obtained. After the bonding, at least one of the substrates is polished for thinning. By the thinning polishing, the rigidity of the one substrate is gradually lost, and the above-mentioned bonding surfaces obtain electrical connection over the entire surface. That is, the two substrates come close to each other until the van der Waals force acts. When the thinning polishing is further continued, only the minute bonded thinned substrate remains as a bonding piece. That is, as a result, it is possible to bond the minute bonded thinned substrate and the other substrate which are rotated in the plane with each other. Interfacial dislocations can be introduced into the bonding surface between the substrates by the solid phase bonding. Therefore, when the lamination polishing is further continued, that is, when the bonded lamination substrate is further laminated, the state of the interface dislocation can be brought to the surface of the lamination substrate. Therefore, when a mixed crystal semiconductor is formed on the surface of the bonded exfoliated substrate or when the semiconductor substrate is bonded, it is possible to obtain electrical coupling having various characteristics.

【0025】[0025]

【発明の実施の形態】以下に図を参照しつつ本発明の具
体的な実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

【0026】第1実施例 図1乃至図18は本発明の第1実施例の特徴を最も良く
表わす図面である。図1と図2は接合すべき2つの基板
1、5の構造の平面図、図3は面内回転を伴って接合す
る基板2の構造の平面図、図4は接合時の基板1、2同
士の面内回転の様子を示した平面図(図4の基板2は図
3の基板2を裏側から見ているので、図3と比べると反
対方向に面内回転している)、図5は基板表面(10
0)の原子8のサイトを示した図、図6、図7及び図8
は異なる面内回転角θでの基板接合時の界面転位を夫々
示した図、図9は図1のA矢視の断面図、図10は図2
のB矢視の断面図及び図3のC矢視の断面図、図11は
接合前の面内回転を伴ったアライメント状態にある両基
板の断面図、図12は荷重印加中の両基板の断面図、図
13は荷重印加終了時点での両基板の断面図、図14は
両基板接合後、薄片化研磨した状態の断面図、図15は
接合前の結合薄片化基板と他のもう1つの基板のアライ
メント状態の断面図、図16は図15のアライメント状
態の基板同士に荷重印加中の断面図、図17は図15の
アライメント状態の基板同士に係る荷重印加終了時点で
の両基板の断面図、図18は図17の荷重印加終了後、
他のもう1つの基板を薄片化研磨している時の断面図で
ある。
First Embodiment FIGS. 1 to 18 show the characteristics of the first embodiment of the present invention best. 1 and 2 are plan views of a structure of two substrates 1 and 5 to be joined, FIG. 3 is a plan view of a structure of a substrate 2 joined with in-plane rotation, and FIG. FIG. 5 is a plan view showing the state of in-plane rotation between each other (the substrate 2 in FIG. 4 is viewed from the back side of the substrate 2 in FIG. 3, and therefore rotates in the opposite direction as compared to FIG. 3), FIG. Is the substrate surface (10
FIG. 6, FIG. 7, and FIG. 8 showing the site of atom 8 in FIG.
FIG. 9 is a diagram showing interfacial dislocations at the time of substrate bonding at different in-plane rotation angles θ, FIG. 9 is a sectional view taken along the arrow A in FIG. 1, and FIG.
3 is a cross-sectional view taken along arrow B and FIG. 3 is a cross-sectional view taken along arrow C. FIG. 11 is a cross-sectional view of both substrates in an alignment state with in-plane rotation before bonding, and FIG. 13 is a cross-sectional view of the two substrates at the end of the application of the load, FIG. 14 is a cross-sectional view of a state in which the two substrates have been joined and polished, and FIG. FIG. 16 is a cross-sectional view of an aligned state of two substrates, FIG. 16 is a cross-sectional view of the substrates in an aligned state of FIG. 15 when a load is applied, and FIG. FIG. 18 is a cross-sectional view, and FIG.
FIG. 7 is a cross-sectional view when another substrate is being polished for thinning.

【0027】同図に於いて、1、2及び5は接合する為
の基板(基板5は面内回転を伴った接合を考慮していな
い構造を持つ基板)、3は基板2を基板1に結合した後
に基板2を薄片化した時に出来る結合薄片化基板、6は
基板1に於ける電気的な結合面、7は基板2に於ける凸
部から成る電気的な結合面、8及び9は結合面6及び結
合面7をそれぞれ原子レベルで見た場合の原子の位置、
10及び11は基板1及び基板2においてそれぞれ機械
的な接合力を担うところの接合領域、12及び13は電
気的絶縁する為に夫々基板1及び基板2上に形成した絶
縁層、14及び15は絶縁層12、13に夫々形成した
これを挟む層の密着性を良くする為の下引層、16及び
17は下引層14、15上に夫々形成した接合層、18
は接合層16上に形成した金属膜から成る仮付け接合
部、19は接合層16上に形成した金属から成る上から
見て同心円で且つ鋸歯状の断面を有する接着子から成る
本接合部(仮付け接合用ではなく本当の接合用の接合
部)、20は両基板1、2或は両基板1、5の接合後に
形成される密閉減圧雰囲気槽、21は両基板1、2或は
両基板1、5を接合する為の印加荷重、22は密閉減圧
雰囲気槽20を結合面に対して有効に働かせる様に基板
5を薄片化するための除去領域である。
In the figure, reference numerals 1, 2 and 5 denote substrates for bonding (the substrate 5 is a substrate having a structure which does not take into account bonding with in-plane rotation), and 3 denotes a substrate 2 to the substrate 1. A bonded and thinned substrate formed when the substrate 2 is sliced after bonding, 6 is an electrical coupling surface on the substrate 1, 7 is an electrical coupling surface formed of a convex portion on the substrate 2, 8 and 9 are Positions of atoms when the bonding surface 6 and the bonding surface 7 are respectively viewed at the atomic level,
Numerals 10 and 11 denote bonding regions that provide mechanical bonding force in the substrates 1 and 2, respectively. Numerals 12 and 13 denote insulating layers formed on the substrates 1 and 2, respectively, for electrical insulation. The undercoat layers 16 and 17 are formed on the undercoat layers 14 and 15, respectively, to improve the adhesion of the layers sandwiching the insulating layers 12 and 13, respectively.
Is a temporary bonding portion made of a metal film formed on the bonding layer 16, and 19 is a main bonding portion (glue) made of a metal formed on the bonding layer 16 and formed of an adhesive having a concentric and saw-tooth cross section when viewed from above. 20 is a sealed decompression atmosphere tank formed after joining the two substrates 1 and 2 or the two substrates 1 and 5, and 21 is both substrates 1, 2 or both. The applied load 22 for bonding the substrates 1 and 5 is a removal area for thinning the substrate 5 so that the closed reduced-pressure atmosphere tank 20 works effectively on the bonding surface.

【0028】次に上記構成の作製法を説明する。上記構
成において、一方の接合用基板1に半導体基板を用い、
レジストマスクを利用したフォトリソプロセスを用い
て、図9の断面図に見る様に結合面6の周囲の接合領域
10に電気的絶縁膜から成る絶縁層12を成膜し、該絶
縁層12の上に下引層14を成膜し、更に、該下引層1
4の上に金属膜から成る接合層16を成膜する。更に、
接合層16上に、図1及び図9に見る様に、結合面6の
周囲に同心円状に金属メッキによって本接合部19を形
成し、そして同様なフォトリソプロセスを用いて該接合
層16の上に仮付け接合部18を形成する。この時、図
9に見る様に該接合層16からの高さは、仮付け接合部
18の方が本接合部19よりも高くなる様に形成する。
Next, a manufacturing method of the above configuration will be described. In the above configuration, a semiconductor substrate is used as one of the bonding substrates 1,
As shown in the cross-sectional view of FIG. 9, an insulating layer 12 made of an electrical insulating film is formed on the bonding region 10 around the bonding surface 6 by using a photolithography process using a resist mask. The undercoat layer 14 is formed on the undercoat layer 1.
A bonding layer 16 made of a metal film is formed on the substrate 4. Furthermore,
On the bonding layer 16, as shown in FIGS. 1 and 9, a main bonding portion 19 is formed concentrically around the bonding surface 6 by metal plating, and a similar photolithography process is used. Then, a temporary bonding portion 18 is formed. At this time, as shown in FIG. 9, the height from the bonding layer 16 is formed so that the temporary bonding portion 18 is higher than the main bonding portion 19.

【0029】次に、他方の接合用基板2に半導体基板を
用い、レジストマスクを利用したフォトリソプロセスを
用いて、まず電気的に結合する為の結合面7の周囲を凹
状にエッチングし、結果として凸状の結合面7を形成す
る。図10に見る様に凸状の結合面7の周囲の平坦な所
を接合領域11とし、該接合領域11を機械的な接合強
度を担うべき領域とする。該接合領域11に電気的絶縁
膜から成る絶縁層13を成膜し、該絶縁層13の上に下
引層15を成膜し、更に該下引層15の上に金属膜から
成る接合層17を成膜する。
Next, a semiconductor substrate is used as the other bonding substrate 2, and the periphery of the coupling surface 7 for electrical coupling is first etched in a concave shape by using a photolithography process using a resist mask. A convex coupling surface 7 is formed. As shown in FIG. 10, a flat area around the convex bonding surface 7 is defined as a bonding region 11, and the bonding region 11 is defined as a region that should bear mechanical bonding strength. An insulating layer 13 made of an electrical insulating film is formed in the bonding region 11, a subbing layer 15 is formed on the insulating layer 13, and a bonding layer made of a metal film is formed on the subbing layer 15. 17 is formed.

【0030】上記成膜後、両基板1、2を図11に見る
様に結合面6、7が相い対向する様にアライメント装置
(図示なし)によってアライメントする。この時、基板
1、2は図4に見る様に互いにθの角度だけツイスト
(面内回転)させる。これにより、結合面6、7が互い
に電気的結合を得る為に原子レベルの距離まで近接した
時、該結合面6、7の界面では、ツイストの角度θに依
存した界面転移の導入が予測できる。その形態は図6、
図7、図8に見る様になる(これらは、ツイストの角度
θ(同一半導体材料で、且つ同一面方位の時の方位の差
であり、図8では45度である)が異なり、同一半導体
材料で、かつ同一面方位の表面の結合の場合である)。
After the film formation, the substrates 1 and 2 are aligned by an alignment device (not shown) so that the bonding surfaces 6 and 7 face each other as shown in FIG. At this time, the substrates 1 and 2 are twisted (in-plane rotation) by an angle θ with respect to each other as seen in FIG. Thereby, when the bonding surfaces 6 and 7 are close to each other at an atomic level in order to obtain electrical coupling with each other, it is possible to predict the introduction of an interface transition depending on the twist angle θ at the interface between the bonding surfaces 6 and 7. . Its form is shown in FIG.
7 and 8 (these are different in the twist angle θ (the difference between the azimuths of the same semiconductor material and the same plane orientation, which is 45 degrees in FIG. 8). This is the case of bonding of surfaces having the same plane orientation with the material).

【0031】上記アライメント装置による方法は、赤外
光の照射によって基板1及び基板2を透過した光をCC
Dカメラで受光し、モニターテレビで目視しながら互い
に或る角度に軸回転させながら直交するX軸及びY軸に
沿って移動させる事によってアライメントする方法であ
る。そのため、θの角度だけツイストさせた状態で図1
1に見る様に結合面6、7が相い対向する様にアライメ
ントする。該アライメント終了後、図12に見る様に基
板1、2に両側から圧縮荷重21を印加する。基板1の
仮付け接合部18と基板2の接合層17が互いに機械的
に接合した時点で該荷重21の印加を停止する。この操
作によって、基板1、2はアライメントした状態を保持
したままで仮付け接合される(図12)。ここで、基板
1、2は図1及び図3に見る様な姿勢の夫々結合面6、
7を持つ基板である為、仮付け接合に於ける基板1、2
の位置関係は図4に見る様に互いにθの角度だけ面内回
転(ツイスト)している。仮付け接合された基板1、2
は一体化しており、ハンドリング中に於いても該アライ
メント状態を保っている。
In the method using the alignment apparatus, the light transmitted through the substrate 1 and the substrate 2 by irradiating infrared light is subjected to CC.
This is a method in which light is received by a D camera, and the camera is rotated along an orthogonal X axis and Y axis while being rotated at a certain angle while being viewed on a monitor television, thereby performing alignment. For this reason, FIG.
As shown in FIG. 1, alignment is performed such that the coupling surfaces 6 and 7 face each other. After the completion of the alignment, a compressive load 21 is applied to the substrates 1 and 2 from both sides as shown in FIG. The application of the load 21 is stopped when the temporary bonding portion 18 of the substrate 1 and the bonding layer 17 of the substrate 2 are mechanically bonded to each other. By this operation, the substrates 1 and 2 are temporarily bonded while maintaining the aligned state (FIG. 12). Here, the substrates 1 and 2 are respectively connected to the coupling surfaces 6 in postures as shown in FIGS.
7, the substrates 1 and 2 in the temporary bonding.
Are rotated relative to each other by an angle of θ in the plane (twist) as shown in FIG. Temporarily bonded substrates 1 and 2
Are integrated and maintain the alignment state during handling.

【0032】次の過程で、仮付け接合された基板1、2
を減圧雰囲気(真空中)の中に導入し、基板1、2で挟
まれた空間の排気を行なう。該減圧雰囲気中で図13に
見る様にさらに荷重21を基板1、2の両側から作用さ
せる。上記過程によって、図13に見る様に基板1の本
接合部19と基板2の接合層17は互いに機械的な接合
を得る。さらに該印加荷重21を増加して行なった場
合、基板1の結合面6と基板2の結合面7は互いに極め
て近接する。この時点で、該印加荷重21を開放した場
合、仮付け接合部18及び本接合部19の塑性変形に伴
って基板1と基板2は強固に機械的に接合し、基板1と
基板2との間の近接距離は保持され、同時に図13に見
る様な密閉減圧雰囲気槽20が形成される。すなわち、
該減圧雰囲気槽20は減圧状態(真空状態)を保持する
ことになる。
In the following process, the temporarily bonded substrates 1 and 2
Is introduced into a reduced-pressure atmosphere (in a vacuum), and the space between the substrates 1 and 2 is evacuated. In the reduced pressure atmosphere, a load 21 is further applied from both sides of the substrates 1 and 2 as shown in FIG. According to the above process, as shown in FIG. 13, the main bonding portion 19 of the substrate 1 and the bonding layer 17 of the substrate 2 obtain a mechanical bonding with each other. When the applied load 21 is further increased, the coupling surface 6 of the substrate 1 and the coupling surface 7 of the substrate 2 are extremely close to each other. At this point, when the applied load 21 is released, the substrate 1 and the substrate 2 are firmly mechanically joined together with the plastic deformation of the temporary bonding portion 18 and the permanent bonding portion 19, and the substrate 1 and the substrate 2 The close distance therebetween is maintained, and at the same time, a closed reduced-pressure atmosphere tank 20 as shown in FIG. 13 is formed. That is,
The depressurized atmosphere tank 20 maintains a depressurized state (vacuum state).

【0033】そこで、上記状態下にある接合された基板
同士の基板2側を研磨によって薄片化していく。大気圧
下での上記薄片化研磨中、基板1、2の結合面6、7は
常に約1気圧の陽圧を受けている。該薄片化研磨によっ
て基板2は次第に断面2次モーメントが減少していき、
すなわち剛性力を失っていき、最終的に基板1、2の結
合面6、7は互いに全面で密着し始める。こうして、結
合面6、7でのファンデルワールス力による接合が可能
な状態にまで薄片化研磨を続ける。
Then, the substrate 2 side of the bonded substrates under the above-mentioned condition is thinned by polishing. During the thinning polishing under the atmospheric pressure, the bonding surfaces 6, 7 of the substrates 1, 2 are always subjected to a positive pressure of about 1 atm. By the thinning polishing, the second moment of area of the substrate 2 gradually decreases,
In other words, the rigidity is lost, and finally, the bonding surfaces 6 and 7 of the substrates 1 and 2 start to come into close contact with each other over the entire surface. In this manner, the thinning polishing is continued until the bonding at the bonding surfaces 6 and 7 by the Van der Waals force is possible.

【0034】図14に見る様に、絶縁層12が露出する
まで薄片化研磨を続行する。上記過程で、基板1の微小
領域である結合面6に、結果として、基板2からなる微
小な薄片化基板すなわち結合薄片化基板3が結合され
る。
As shown in FIG. 14, thinning polishing is continued until the insulating layer 12 is exposed. In the above-described process, as a result, the micro exfoliated substrate composed of the substrate 2, that is, the bonded exfoliated substrate 3 is bonded to the bonding surface 6 which is a micro area of the substrate 1.

【0035】さらに、次の過程において、図15に見る
様に、結合薄片化基板3を結合した状態にある基板1
(これには、結合薄片化基板3を除いて、図9と同じ構
造を持つ様に再び成膜されている)と、基板5(図10
の基板2と同じ様な構造を持つが、図3の基板2の様な
面内回転を想定していない構造を持つ)を、上記と同様
な手法で接合する(図15、図16、図17)。該基板
1、5同士の接合後、図17に見る様に基板5側の除去
領域22を薄片化研磨によって除去する。該薄片化研磨
によって基板5は剛性を失い、基板5の結合面7と上記
結合薄片化基板3の表面は全面で密着し、より強固に接
合する(図18)。このとき、基板1と基板5の間には
面内回転はない。
Further, in the next step, as shown in FIG. 15, the substrate 1 in a state where the bonded thinned substrate 3 is bonded
(In this case, the film is formed again so as to have the same structure as that of FIG. 9 except for the bonded thinning substrate 3) and the substrate 5 (FIG. 10).
3 has the same structure as the substrate 2 of FIG. 3, but has a structure which does not assume in-plane rotation like the substrate 2 of FIG. 3). 17). After joining the substrates 1 and 5, the removal area 22 on the substrate 5 side is removed by thinning polishing as shown in FIG. The substrate 5 loses its rigidity by the thinning polishing, and the bonding surface 7 of the substrate 5 and the surface of the bonded thinning substrate 3 are in close contact with each other over the entire surface, and are more firmly bonded (FIG. 18). At this time, there is no in-plane rotation between the substrate 1 and the substrate 5.

【0036】本実施例において、基板1はN型InP半
導体基板、基板2はN型InP半導体基板、そして基板
5はP型InP半導体基板をそれぞれ用いたものであ
る。基板1と基板2との平面内回転角θを約45°、及
び基板2(結合薄片化基板3)と基板5の平面内回転角
θを約45°(すなわち、基板1と基板5の面内回転角
θを約0°)とした。絶縁層12、13として窒化Si
膜を用い、下引層14、15としてCrを用い、接合層
16、17としてAu(金)を用い、さらに仮付け接合
部18及び本接合部19としてAu(金)を用いたもの
である。上記手法及び手順で作製した図18に見る様な
基板1、5の接合体に電圧を印加(図示なし)したとこ
ろ、発光を観察することができた。
In this embodiment, the substrate 1 is an N-type InP semiconductor substrate, the substrate 2 is an N-type InP semiconductor substrate, and the substrate 5 is a P-type InP semiconductor substrate. The in-plane rotation angle θ between the substrate 1 and the substrate 2 is about 45 °, and the in-plane rotation angle θ between the substrate 2 (the bonded thinned substrate 3) and the substrate 5 is about 45 ° (that is, the plane of the substrate 1 and the substrate 5). The internal rotation angle θ was about 0 °). Si nitride as insulating layers 12 and 13
A film is used, Cr is used as the undercoat layers 14 and 15, Au (gold) is used as the bonding layers 16 and 17, and Au (gold) is used as the temporary bonding portion 18 and the main bonding portion 19. . When a voltage was applied (not shown) to the joined body of the substrates 1 and 5 produced by the above method and procedure as shown in FIG. 18, light emission could be observed.

【0037】本実施例において、絶縁膜として窒化Si
膜を用いたが、他にSi酸化膜、Al酸化膜を用いても
よく、本発明の意図する所は何ら変わるものではない。
尚、本実施例において、接合工程を室温で行なったもの
であるが、薄片化研磨後、接合してある結合薄片化基板
3の歪取りの為の熱処理(350℃以下の温度)を行な
ってもよい。さらに本実施例においては、基板1、2及
び5にInP基板を用いたが、必要に応じてInP以外
の材料、例えばGaAs、Si、GaN、Ge、Se、
ZnS、CdS、GaP、SiC、InAs、InS
b、PbS同士、あるいはこれらの材料の異種材料同士
の組み合わせによる接合(電気的接合)、若しくは上記
これらの半導体基板上に成膜した化合物半導体同士の組
み合わせによる接合(電気的接合)、あるいは混晶半導
体、例えばInGaAsP,InGaAlP,GaIn
As同士、あるいはこれらの異種材料同士の組み合わせ
による接合(電気的結合)も可能であり、本発明の意図
する所は何ら変わるものではない。これらのことは、後
述の第2実施例でも同じである。
In this embodiment, as the insulating film, Si nitride
Although a film is used, a Si oxide film or an Al oxide film may be used instead, and the purpose of the present invention is not changed at all.
In the present embodiment, the bonding step is performed at room temperature. However, after the lamination polishing, a heat treatment (a temperature of 350 ° C. or lower) for removing the strain of the bonded bonded lamination substrate 3 is performed. Is also good. Further, in the present embodiment, an InP substrate was used for the substrates 1, 2 and 5, but if necessary, a material other than InP, for example, GaAs, Si, GaN, Ge, Se,
ZnS, CdS, GaP, SiC, InAs, InS
b, PbS, or a combination of different materials of these materials (electrical bonding), or a combination of compound semiconductors formed on these semiconductor substrates (electrical bonding), or a mixed crystal Semiconductors, for example, InGaAsP, InGaAlP, GaIn
Bonding (electrical connection) by combining As or by combining these dissimilar materials is also possible, and the intention of the present invention does not change at all. These are the same in a second embodiment described later.

【0038】第2実施例 図1乃至図4、図9乃至図14、図19乃至図24は本
発明の第2実施例の特徴を最も良く表わす図である。図
19は結合薄片化基板3上に半導体4を成膜した断面
図、図20は半導体4を成膜後、接合前の一方の基板1
の素子構造の断面図、図21は半導体4成膜後、他のも
う1つの基板26との接合前のアライメント状態にある
両基板1、26の断面図、図22は半導体4成膜後、荷
重印加中の両基板1、26の断面図、図23は該荷重印
加終了時点での両基板1、26の断面図、図24は、両
基板1、26を接合した後に基板26を薄片化研磨した
時の断面図である。
Second Embodiment FIGS. 1 to 4, FIGS. 9 to 14, and FIGS. 19 to 24 show the characteristics of the second embodiment of the present invention best. FIG. 19 is a cross-sectional view in which the semiconductor 4 is formed on the bonded thinned substrate 3, and FIG. 20 is one substrate 1 before the bonding after the semiconductor 4 is formed.
21 is a cross-sectional view of the two substrates 1 and 26 in an alignment state after the semiconductor 4 is formed and before bonding to another substrate 26. FIG. 23 is a cross-sectional view of the substrates 1 and 26 during application of a load, FIG. 23 is a cross-sectional view of the substrates 1 and 26 at the end of the application of the load, and FIG. It is sectional drawing at the time of grinding.

【0039】同図に於いて、4は結合薄片化基板3上に
成膜した薄膜層、26は他のもう1つの基板であり、第
1実施例の符号と同じ符号は同一機能部を示す。
In the same figure, reference numeral 4 denotes a thin film layer formed on the bonded exfoliated substrate 3, reference numeral 26 denotes another substrate, and the same reference numerals as those in the first embodiment denote the same functional parts. .

【0040】次に上記構成の作製法を説明する。上記構
成に於いて、一方の接合用基板1に半導体基板を用い、
レジストマスクを利用したフォトリソプロセスを用い
て、図9に見る様に結合面6の周囲の接合領域10に電
気的絶縁膜から成る絶縁層12を成膜し、該絶縁層12
の上に下引層14を成膜し、さらに該下引層14上に金
属膜から成る接合層16を成膜する。更に、該接合層1
6上に、図1及び図9に見る様に、結合面6の周囲に同
心円状に金メッキによって本接合部19を形成し、そし
て同様なフォトリソプロセスを用いて接合層16の上に
仮付け接合部18を形成する。この時、図9に見る様に
接合層16からの高さは、仮付け接合部18の方が本接
合部19よりも高くなる様に形成する。
Next, a method of manufacturing the above-described structure will be described. In the above configuration, a semiconductor substrate is used as one of the bonding substrates 1,
As shown in FIG. 9, an insulating layer 12 made of an electric insulating film is formed on the bonding region 10 around the bonding surface 6 by using a photolithography process using a resist mask.
On the undercoat layer 14, a bonding layer 16 made of a metal film is formed. Further, the bonding layer 1
1 and 9, a main joint 19 is formed concentrically around the bonding surface 6 by gold plating, and a temporary bonding is performed on the bonding layer 16 using a similar photolithography process. The part 18 is formed. At this time, as shown in FIG. 9, the height from the bonding layer 16 is formed so that the temporary bonding portion 18 is higher than the main bonding portion 19.

【0041】次に、他方の接合用基板2に半導体基板を
用い、レジストマスクを利用したフォトリソプロセスを
用いて、電気的に結合する為の結合面7の周囲を凹状に
エッチングし、結果として凸状の結合面7を形成する。
図10に見る様に凸状の結合面7の周囲の平坦な所を接
合領域11とし、該接合領域11に電気的絶縁膜から成
る絶縁層13を成膜し、絶縁層13の上に下引層15を
成膜し、さらに下引層15の上に金属膜から成る接合層
17を成膜する。上記成膜後、両基板1、2を図11に
見る様に結合面6、7が相い対向する様にアライメント
装置(図示なし)によってアライメントする。この時、
基板1、2は図4に見る様に互いにθの角度だけツイス
ト(面内回転)させる。これにより、結合面6、7が互
いに電気的結合を得る為に原子レベルの距離まで近接し
た時、該結合面6、7の界面で、ツイストの角度θに依
存した界面転位が導入される。
Next, a semiconductor substrate is used as the other bonding substrate 2, and the periphery of the coupling surface 7 for electrical coupling is etched in a concave shape by using a photolithography process using a resist mask. The coupling surface 7 is formed.
As shown in FIG. 10, a flat portion around the convex bonding surface 7 is defined as a bonding region 11, and an insulating layer 13 made of an electrical insulating film is formed on the bonding region 11. An undercoat layer 15 is formed, and a bonding layer 17 made of a metal film is formed on the undercoat layer 15. After the film formation, the substrates 1 and 2 are aligned by an alignment device (not shown) such that the bonding surfaces 6 and 7 face each other as shown in FIG. At this time,
The substrates 1 and 2 are twisted (in-plane rotation) by an angle θ with respect to each other as seen in FIG. Thus, when the bonding surfaces 6 and 7 are close to each other at an atomic level in order to obtain an electrical connection with each other, an interface dislocation depending on the twist angle θ is introduced at the interface between the bonding surfaces 6 and 7.

【0042】こうして、上記アライメント装置を用い、
第1実施例と同様な手法で図11に見る様に結合面6、
7を相い対向する様にアライメントし、その後、基板
1、2の両側から圧縮荷重21を印加する。基板1の仮
付け接合部18と基板2の接合層17が互いに機械的に
接合した時点で該荷重21を解放する。次の過程で、仮
付け接合された基板1、2を減圧雰囲気(真空中)の中
に導入し、基板1、2で挟まれた空間の排気を行なう。
該減圧雰囲気中で、図13に見る様に、さらに印加荷重
21を基板1、2の両側から作用させる。上記過程によ
って、図13に見る様に基板1の本接合部19と基板2
の接合層17は互いに機械的な接合を得る。
Thus, using the above alignment apparatus,
In the same manner as in the first embodiment, as shown in FIG.
7 are opposed to each other, and then a compressive load 21 is applied from both sides of the substrates 1 and 2. When the temporary bonding portion 18 of the substrate 1 and the bonding layer 17 of the substrate 2 are mechanically bonded to each other, the load 21 is released. In the next step, the temporarily bonded substrates 1 and 2 are introduced into a reduced pressure atmosphere (in vacuum), and the space between the substrates 1 and 2 is evacuated.
In the reduced pressure atmosphere, an applied load 21 is further applied from both sides of the substrates 1 and 2 as shown in FIG. According to the above process, as shown in FIG.
Bonding layers 17 obtain a mechanical bond with each other.

【0043】さらに該印加荷重21を増加していった場
合、基板1の結合面6と基板2の結合面7は互いに極め
て近接する。この時点で、該印加荷重21を解放した場
合、該仮付け接合部18及び本接合部19の塑性変形に
伴って基板1と基板2は強固に機械的に接合し、基板1
と基板2との間の近接距離は保持され、同時に図13に
見る様な密閉減圧雰囲気槽20が形成される。
When the applied load 21 is further increased, the coupling surface 6 of the substrate 1 and the coupling surface 7 of the substrate 2 are very close to each other. At this time, when the applied load 21 is released, the substrate 1 and the substrate 2 are firmly mechanically joined together with the plastic deformation of the temporary bonding portion 18 and the main bonding portion 19,
The close distance between the substrate and the substrate 2 is maintained, and at the same time, a closed reduced-pressure atmosphere tank 20 as shown in FIG. 13 is formed.

【0044】そこで、上記状態下にある接合された基板
同士の基板2側を研磨によって薄片化していく。大気圧
下での薄片化研磨である為、該基板1、2の結合面6、
7は常に約1気圧の陽圧を受けている。該薄片化研磨に
よって次第に基板2の剛性は失われていき、最終的に基
板1、2の結合面6、7は互いに全面で密着し始める。
こうして、ファンデルワールス力による接合が可能な状
態まで薄片化研磨を続ける。図14に見る様に、絶縁層
12が表面に露出するまで該薄片化研磨を続行する。上
記過程で、基板1の微小領域である結合面6に、基板2
から成る微小な薄片化基板、すなわち結合薄片化基板3
を結果として結合する。以上の過程は第1実施例と実質
的に同じである。
Then, the substrate 2 side of the bonded substrates under the above-mentioned condition is thinned by polishing. Since the lamination is performed under the atmospheric pressure, the bonding surfaces 6 of the substrates 1 and 2
7 always receives a positive pressure of about 1 atmosphere. The rigidity of the substrate 2 is gradually lost by the thinning polishing, and finally, the bonding surfaces 6 and 7 of the substrates 1 and 2 start to come into close contact with each other over the entire surface.
In this way, the thinning polishing is continued until the bonding by Van der Waals force is possible. As shown in FIG. 14, the thinning polishing is continued until the insulating layer 12 is exposed on the surface. In the above process, the bonding surface 6 which is a minute area of the substrate 1
Thinned substrate composed of: a bonded thinned substrate 3
As a result. The above steps are substantially the same as in the first embodiment.

【0045】さらに次の過程に於いて、図19に見る様
に結合薄片化基板3の上に薄膜層4を成膜する。次の過
程に於いて、図21に見る様に、結合薄片化基板3の上
に薄膜層4を成膜した状態にある基板1(これは図20
に示す様な構成に再び構成されている)と基板26を、
上記と同様な手法で接合する(図21、図22、図2
3)。該基板1、26同士の接合後、図23に見る様に
基板26側の除去領域22を薄片化研磨によって除去す
る。該薄片化研磨によって基板26は剛性を次第に失っ
ていき、最終的に基板1上に存在する薄膜層4及び基板
26の結合面7は互いに全面で密着し始める。こうし
て、ファンデルワールス力による接合が可能な状態まで
基板26の薄片化研磨を続ける。上記手法により薄膜層
4と基板26の結合面7は全面で密着し、より強固に接
合する(図24)。
Further, in the next step, a thin film layer 4 is formed on the bonded sliced substrate 3 as shown in FIG. In the next step, as shown in FIG. 21, the substrate 1 in a state where the thin film layer 4 is formed on the bonded exfoliated substrate 3 (this is shown in FIG.
Is reconfigured as shown in FIG.
Bonding is performed in the same manner as described above (FIG. 21, FIG. 22, FIG.
3). After the bonding of the substrates 1 and 26, as shown in FIG. 23, the removal region 22 on the substrate 26 side is removed by thinning polishing. The substrate 26 gradually loses its rigidity by the thinning polishing, and finally, the thin film layer 4 existing on the substrate 1 and the bonding surface 7 of the substrate 26 start to come into close contact with each other over the entire surface. Thus, the thinning polishing of the substrate 26 is continued until the bonding by the Van der Waals force is possible. By the above method, the bonding surface 7 of the thin film layer 4 and the substrate 26 is in close contact with the entire surface and is more firmly joined (FIG. 24).

【0046】本実施例に於いて、基板1、2はN型In
P半導体基板、基板26はP型InP半導体基板、薄膜
層4はInGaAsPを成膜したものをそれぞれ用い
た。基板1と基板2の面内回転角θを約45°、及び基
板1と基板26の面内回転角θを約0°とした。そして
絶縁層12、13としてSi酸化膜を用い、下引層1
4、15としてCrを用い、接合層16、17としてA
u(金)を用い、さらに仮付け接合部18及び本接合部
19としてAu(金)を用いたものである。上記手法及
び手順で作製した図24に見る様な基板1、26の接合
体に電圧を印加(図示なし)したところ、発光を観察す
ることが出来た。
In this embodiment, the substrates 1 and 2 are made of N-type In.
The P semiconductor substrate and the substrate 26 were a P-type InP semiconductor substrate, and the thin film layer 4 was formed of InGaAsP. The in-plane rotation angle θ between the substrate 1 and the substrate 2 was about 45 °, and the in-plane rotation angle θ between the substrate 1 and the substrate 26 was about 0 °. Then, a silicon oxide film is used as the insulating layers 12 and 13, and the undercoat layer 1 is used.
Cr is used as 4 and 15, and A is used as bonding layers 16 and 17.
u (gold) is used, and further, Au (gold) is used as the temporary bonding portion 18 and the main bonding portion 19. When a voltage was applied (not shown) to the joined body of the substrates 1 and 26 manufactured by the above method and procedure as shown in FIG. 24, light emission could be observed.

【0047】本実施例に於いても、接合工程を室温で行
なったものであるが、該薄片化研磨後、接合してある結
合薄片化基板3の歪取りのための熱処理を低温度(35
0℃以下の温度)で行なってもよい。本実施例に於いて
も、基板1、2及び26にInP基板を用いたが、必要
に応じて第1実施例で述べたものと同様な材料が用いら
れる。
Also in this embodiment, the bonding step is performed at room temperature. However, after the lamination, the heat treatment for removing the distortion of the bonded lamination substrate 3 is performed at a low temperature (35 degrees).
(A temperature of 0 ° C. or less). In this embodiment, the InP substrate is used for the substrates 1, 2, and 26, but the same material as that described in the first embodiment may be used if necessary.

【0048】[0048]

【発明の効果】以上説明した様に、本発明によれば、互
いに面内回転した基板間を接合部で機械的接合強度を得
て接合し、電気的結合面を電気的に結合している。少な
くとも一方の基板を薄片化研磨することにより、該基板
の剛性を失わせ、電気的結合面の全面で密着接合を可能
にする方法であるので、基板間で生じている界面転位を
結合薄片化基板の表面にまでもたらす事が可能である。
As described above, according to the present invention, the substrates which have been rotated in-plane with each other are joined together with a mechanical joint strength at the joints, and the electrical coupling surfaces are electrically coupled. . At least one of the substrates is thinned and polished so that the rigidity of the substrate is lost and the entire surface of the electrical connection surface can be intimately bonded. Therefore, interfacial dislocations generated between the substrates are bonded and thinned. It can be brought to the surface of the substrate.

【0049】より具体的には、互いに面内回転した基板
間を接着子を用いた本接合部で機械的接合強度を得、同
時に電気的結合面を含む周囲を該本接合部で密閉空間を
形成する。該密閉空間は減圧雰囲気槽となっている為、
大気中に於いて、常に約1気圧の圧力を受けている。少
なくとも一方の基板を薄片化研磨することにより、該基
板の剛性を失わせ、電気的結合面の全面で密着接合を可
能にし、かつ、該薄片化研磨基板にさらに他の混晶半導
体膜あるいは他の半導体をそれぞれ成膜あるいは結合す
る方法であるので、 1、常温、大気中で両基板のアライメントが可能であ
る。 2、電気的結合面の存在領域を減圧雰囲気にする事が可
能である。 3、該接合後の基板の薄片化研磨によって、微小な結合
薄片化基板を複数個であっても同時に他の半導体基板に
電気的結合可能である。 4、該結合薄片化基板をさらに薄片化していった場合、
基板間で生じている界面転位を該結合薄片化基板の表面
までもたらす事が可能である。
More specifically, mechanical bonding strength is obtained at the main joint using an adhesive between the substrates rotated in-plane with each other, and at the same time, the space including the electrical connection surface forms a closed space with the main joint. Form. Because the enclosed space is a reduced pressure atmosphere tank,
In the atmosphere, it is constantly under a pressure of about 1 atmosphere. By thinning and polishing at least one of the substrates, the rigidity of the substrate is lost, and the entire surface of the electrical coupling surface can be intimately bonded, and further, another mixed crystal semiconductor film or other Since the above methods are used to form or combine the semiconductors, respectively, the alignment of the two substrates can be performed at room temperature and in the air. 2. It is possible to make the region where the electrical coupling surface exists a reduced-pressure atmosphere. 3. By thinning and polishing the bonded substrate, even if there are a plurality of finely bonded thinned substrates, they can be electrically connected to another semiconductor substrate at the same time. 4. When the bonded thinning substrate is further thinned,
Interfacial dislocations occurring between the substrates can be brought to the surface of the bonded exfoliated substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1及び第2の実施例に係る接合前の
一方の基板の素子構造の平面図である。
FIG. 1 is a plan view of an element structure of one substrate before bonding according to first and second embodiments of the present invention.

【図2】本発明の第1及び第2の実施例に係る接合前の
他のもう1つの基板の素子構造の平面図である。
FIG. 2 is a plan view of the element structure of another substrate before bonding according to the first and second embodiments of the present invention.

【図3】本発明の第1及び第2の実施例に係る接合前の
他の基板の素子構造の平面図である。
FIG. 3 is a plan view of an element structure of another substrate before bonding according to the first and second embodiments of the present invention.

【図4】本発明の第1及び第2の実施例に係る接合時の
基板同士の面内回転を示した平面図である。
FIG. 4 is a plan view showing in-plane rotation between substrates during bonding according to the first and second embodiments of the present invention.

【図5】本発明の第1実施例に係る基板表面(100)
の原子サイトを示した図である。
FIG. 5 shows a substrate surface (100) according to the first embodiment of the present invention.
FIG. 3 is a view showing an atomic site of FIG.

【図6】本発明の第1実施例に係る基板結合時の界面転
位を示した図である。
FIG. 6 is a diagram showing interfacial dislocations at the time of substrate bonding according to the first embodiment of the present invention.

【図7】本発明の第1実施例に係る基板結合時の界面転
位を示した図である。
FIG. 7 is a diagram showing interfacial dislocations at the time of substrate bonding according to the first embodiment of the present invention.

【図8】本発明の第1実施例に係る基板結合時の界面転
位を示した図である。
FIG. 8 is a diagram showing interface dislocations at the time of substrate bonding according to the first embodiment of the present invention.

【図9】図1のA矢視の断面図である。FIG. 9 is a cross-sectional view of FIG.

【図10】図2のB矢視の断面図及び図3ののC矢視の
断面図である。
10 is a cross-sectional view as viewed from the arrow B in FIG. 2 and a cross-sectional view as viewed in the direction of arrow C in FIG. 3;

【図11】本発明の第1及び第2の実施例に係る接合前
のアライメント状態にある両基板の断面図である。
FIG. 11 is a cross-sectional view of both substrates in an alignment state before bonding according to the first and second embodiments of the present invention.

【図12】本発明の第1及び第2の実施例に係る荷重印
加中の両基板の断面図である。
FIG. 12 is a cross-sectional view of both substrates during application of a load according to the first and second embodiments of the present invention.

【図13】本発明の第1及び第2の実施例に係る荷重印
加終了時点での両基板の断面図である。
FIG. 13 is a cross-sectional view of both substrates at the end of load application according to the first and second embodiments of the present invention.

【図14】本発明の第1及び第2の実施例に係る両基板
接合後、薄片化研磨した状態の断面図である。
FIG. 14 is a cross-sectional view showing a state in which both substrates are bonded and thinned and polished according to the first and second embodiments of the present invention.

【図15】本発明の第1実施例に係る接合前の結合薄片
化基板と他のもう1つの基板の接合前のアライメント状
態の断面図である。
FIG. 15 is a cross-sectional view of an alignment state before bonding between the bonded thinned substrate and another substrate before bonding according to the first embodiment of the present invention.

【図16】図15のアライメント状態の基板同士に荷重
印加中の断面図である。
FIG. 16 is a cross-sectional view of the substrates in the alignment state shown in FIG. 15 while a load is being applied to the substrates;

【図17】図15のアライメント状態の基板同士に係る
荷重印加終了時点での両基板の断面図である。
17 is a cross-sectional view of the substrates in the alignment state of FIG. 15 at the end of the application of a load between the substrates.

【図18】図17の荷重印加終了後、他のもう1つの基
板を薄片化研磨している時の断面図である。
18 is a cross-sectional view of another substrate after the application of the load shown in FIG. 17 is finished and the other substrate is polished.

【図19】本発明の第2実施例に係る結合薄片化基板上
に半導体を成膜した断面図である。
FIG. 19 is a sectional view showing a semiconductor film formed on a bonded exfoliated substrate according to a second embodiment of the present invention.

【図20】本発明の第2実施例に係る半導体を成膜後、
接合前の一方の基板の素子構造の断面図である。
FIG. 20 is a diagram illustrating a semiconductor device according to a second embodiment of the present invention.
It is sectional drawing of the element structure of one board | substrate before joining.

【図21】本発明の第2実施例に係る半導体成膜後、他
のもう1つの基板との接合前のアライメント状態にある
両基板の断面図である。
FIG. 21 is a cross-sectional view of both substrates in an alignment state after a semiconductor film is formed and before bonding with another substrate according to the second embodiment of the present invention.

【図22】本発明の第2実施例に係る半導体成膜後、荷
重印加中の両基板の断面図である。
FIG. 22 is a cross-sectional view of both substrates during application of a load after semiconductor film formation according to the second embodiment of the present invention.

【図23】本発明の第2実施例に係る半導体成膜後、荷
重印加終了時点での両基板の断面図である。
FIG. 23 is a cross-sectional view of both substrates at the time of completion of load application after semiconductor film formation according to the second embodiment of the present invention.

【図24】本発明の第2実施例に係る半導体成膜後、両
基板接合した後に薄片化研磨した時の断面図である。
FIG. 24 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention, in which the two substrates are bonded together and then sliced and polished.

【符号の説明】[Explanation of symbols]

1、2、5、26 基板 3 結合薄片化基板 4 薄膜層 6、7 結合面 8、9 原子 10、11 接合領域 12、13 絶縁膜 14、15 下引層 16、17 接合層 18 仮付け接合部 19 本接合部 20 減圧雰囲気層 21 印加荷重 22 除去領域 1, 2, 5, 26 substrate 3 bonded exfoliated substrate 4 thin film layer 6, 7 bonding surface 8, 9 atoms 10, 11 bonding region 12, 13 insulating film 14, 15 undercoat layer 16, 17 bonding layer 18 temporary bonding Part 19 Main joint 20 Decompression atmosphere layer 21 Applied load 22 Removal area

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】同種或は異種半導体基板間の微小領域での
接合で電気的結合を得る為の接合法であって、電気的結
合を生ずる結合領域と、基板間に機械的な接合力を与え
る為の接合部を有する接合領域とを有する構造を第1と
第2の半導体基板に形成し、第1と第2の半導体基板上
の該接合領域同士及び該結合領域同士をそれぞれ相い対
向する様に整合させつつ少なくとも一方の半導体基板を
面内回転させた状態にした後に、第1と第2の半導体基
板同士に押圧力を印加しつつ該接合部同士を接合して該
結合領域同士を固相接合で電気的結合し、該固相接合
後、少なくとも一方の半導体基板を薄片化研磨すること
によって薄片化基板にし、該薄片化基板の表面まで界面
転位をもたらした微小領域での電気的接合を実現するこ
とを特徴とする基板間微小領域固相接合法。
1. A bonding method for obtaining electrical coupling by bonding in a small region between semiconductor substrates of the same type or different types, wherein a mechanical bonding force is formed between a bonding region in which electrical coupling occurs and a substrate. A structure having a bonding region having a bonding portion for providing is formed on the first and second semiconductor substrates, and the bonding regions on the first and second semiconductor substrates and the bonding regions are opposed to each other. After at least one of the semiconductor substrates is rotated in-plane while being aligned so as to perform alignment, the bonding portions are bonded to each other while applying a pressing force to the first and second semiconductor substrates, and the bonding regions are bonded to each other. Are electrically coupled by solid-phase bonding, and after the solid-phase bonding, at least one of the semiconductor substrates is sliced and polished to form a sliced substrate. Substrate characterized by realization of mechanical bonding Minute domains solid phase bonding method.
【請求項2】前記第1と第2の半導体基板は、接合領域
上の接合部同士の接合によって結合領域を中に含む密閉
雰囲気槽が形成される様に構成されることを特徴とする
請求項1記載の基板間微小領域固相接合法。
2. The semiconductor device according to claim 1, wherein the first and second semiconductor substrates are configured such that a sealed atmosphere tank including a bonding region therein is formed by bonding between bonding portions on the bonding region. Item 3. The method for solid-state bonding between substrates in a minute region according to Item 1.
【請求項3】前記密閉雰囲気槽が減圧雰囲気槽となる様
に、第1と第2の半導体基板の接合領域上の接合部同士
の接合は減圧雰囲気中で行なわれることを特徴とする請
求項2記載の基板間微小領域固相接合法。
3. The method according to claim 1, wherein the bonding between the bonding portions on the bonding region of the first and second semiconductor substrates is performed in a reduced-pressure atmosphere so that the sealed atmosphere tank becomes a reduced-pressure atmosphere tank. 3. The method for solid-state bonding between micro substrates between substrates according to 2.
【請求項4】少なくとも一方の半導体基板の前記接合領
域に、結合領域の周囲を囲む様に同心円状で鋸歯状(凹
凸状)断面を有する接着子からなる接合部を形成するこ
とを特徴とする請求項2または3記載の基板間微小領域
固相接合法。
4. A bonding portion comprising an adhesive having a concentric saw-tooth (irregular shape) cross-section so as to surround the bonding region in the bonding region of at least one semiconductor substrate. 4. The method for solid-state bonding of minute regions between substrates according to claim 2 or 3.
【請求項5】前記薄片化基板上にさらに半導体から成る
薄膜層を成膜することを特徴とする請求項1乃至4の何
れかに記載の基板間微小領域固相接合法。
5. The method according to claim 1, wherein a thin film layer made of a semiconductor is further formed on the exfoliated substrate.
【請求項6】前記半導体から成る薄膜層はInGaAs
P、InGaAlPまたはGaInAsの混晶半導体で
あることを特徴とする請求項5記載の基板間微小領域固
相接合法。
6. The semiconductor thin film layer is made of InGaAs.
6. The method according to claim 5, wherein the method is a mixed crystal semiconductor of P, InGaAlP or GaInAs.
【請求項7】前記第1または第2の半導体基板の結合領
域に微小領域で電気的に結合された前記薄片化基板また
は前記薄膜層の成膜された薄片化基板に、第3の半導体
基板の結合領域を、これらの半導体基板上に形成された
接合領域同士及び結合領域同士をそれぞれ相い対向する
様に整合させた後にこれらの半導体基板同士に押圧力を
印加しつつ接合領域の接合部同士を接合することで、電
気的結合することを更に行なうことを特徴とする請求項
1乃至6の何れかに記載の基板間微小領域固相接合法。
7. A third semiconductor substrate, wherein the thinned substrate or the thinned layer on which the thin film layer is formed is electrically coupled in a very small area to a coupling region of the first or second semiconductor substrate. After the bonding regions are aligned so that the bonding regions formed on these semiconductor substrates face each other and the bonding regions face each other, a pressing force is applied to these semiconductor substrates to form a bonding portion of the bonding regions. 7. The method according to claim 1, wherein the electrical connection is further performed by bonding the substrates to each other.
【請求項8】前記薄片化基板に電気的結合された前記半
導体基板と前記第3の半導体基板は、接合領域上の接合
部同士の接合によって結合領域を中に含む密閉雰囲気槽
が形成される様に構成されることを特徴とする請求項7
記載の基板間微小領域固相接合法。
8. The sealed atmosphere tank including the bonding region therein is formed by bonding the bonding portions on the bonding region to the semiconductor substrate and the third semiconductor substrate electrically connected to the thinning substrate. 8. A structure according to claim 7, wherein
The solid-state bonding method for micro regions between substrates described in the above.
【請求項9】前記密閉雰囲気槽が減圧雰囲気槽となる様
に、前記両基板の接合領域上の接合部同士の接合は減圧
雰囲気中で行なわれることを特徴とする請求項8記載の
基板間微小領域固相接合法。
9. The method according to claim 8, wherein the bonding between the bonding portions on the bonding region of the two substrates is performed in a reduced pressure atmosphere so that the closed atmosphere tank becomes a reduced pressure atmosphere tank. Small-area solid-state bonding method.
【請求項10】前記減圧雰囲気槽内の減圧雰囲気は、減
圧された空気雰囲気、不活性ガス雰囲気あるいは還元ガ
ス雰囲気であることを特徴とする請求項9記載の基板間
微小領域固相接合法。
10. The method according to claim 9, wherein the reduced-pressure atmosphere in the reduced-pressure atmosphere tank is a reduced-pressure air atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
【請求項11】前記減圧雰囲気槽内の減圧雰囲気は、減
圧されたアルゴンガス、窒素ガス、水素ガスあるいはこ
れらのガス種の混合ガスの雰囲気であることを特徴とす
る請求項10記載の基板間微小領域固相接合法。
11. The substrate according to claim 10, wherein the reduced-pressure atmosphere in the reduced-pressure atmosphere tank is an atmosphere of reduced-pressure argon gas, nitrogen gas, hydrogen gas or a mixed gas of these gas types. Small-area solid-state bonding method.
【請求項12】前記薄片化基板と前記第3の半導体基板
間の接合時に、これら半導体基板の少なくとも一方を面
内回転することを特徴とする請求項7乃至11の何れか
に記載の基板間微小領域固相接合法。
12. The inter-substrate according to claim 7, wherein at least one of the semiconductor substrates is rotated in a plane at the time of bonding between the thinned substrate and the third semiconductor substrate. Small-area solid-state bonding method.
【請求項13】前記半導体基板の少なくとも1つに更に
仮付け接合部を形成し、前記整合後に基板同士に押圧力
を印加しつつ仮付け接合部で両基板を仮接合した後に、
さらに基板同士に押圧力を印加しつつ接合部同士を接合
することを特徴とする請求項1乃至12の何れかに記載
の基板間微小領域固相接合法。
13. A temporary bonding portion is further formed on at least one of the semiconductor substrates, and after both substrates are temporarily bonded at the temporary bonding portion while applying a pressing force between the substrates after the alignment,
13. The solid-state bonding method according to claim 1, further comprising bonding the bonding portions while applying a pressing force to the substrates.
【請求項14】前記半導体基板は、Si,InP,Ga
As,GaN,Ge,GaP,ZnS,CdS,InA
s,InSb,SiC,PbS,Se、及びこれらの何
れかの半導体基板上に成膜した化合物半導体、更にはI
nGaAsP,InGaAlP,GaInAsの混晶半
導体のうちの何れかであることを特徴とする請求項1乃
至13の何れかに記載の基板間微小領域固相接合法。
14. The semiconductor substrate according to claim 1, wherein said semiconductor substrate is Si, InP, Ga.
As, GaN, Ge, GaP, ZnS, CdS, InA
s, InSb, SiC, PbS, Se, and compound semiconductors formed on any of these semiconductor substrates,
14. The microregion solid-state bonding method between substrates according to claim 1, wherein the substrate is one of a mixed crystal semiconductor of nGaAsP, InGaAlP, and GaInAs.
【請求項15】前記半導体基板の少なくとも1つの結合
領域に凸状の電気的結合面を形成することを特徴とする
請求項1乃至14の何れかに記載の基板間微小領域固相
接合法。
15. The method according to claim 1, wherein a convex electric coupling surface is formed in at least one coupling region of the semiconductor substrate.
【請求項16】前記接合部は塑性変形能を有する材料か
ら成ることを特徴とする請求項1乃至15の何れかに記
載の基板間微小領域固相接合法。
16. The method according to claim 1, wherein the joining portion is made of a material having a plastic deformation ability.
【請求項17】塑性変形能を有する材料は金属材料から
成るものであることを特徴とする請求項16記載の基板
間微小領域固相接合法。
17. The method according to claim 16, wherein the material having plastic deformability is a metal material.
【請求項18】塑性変形能を有する金属材料はAl,A
u,Sn,Cu,Zn,Pb,Ni及びPbSn化合物
のうちの何れかであることを特徴とする請求項17記載
の基板間微小領域固相接合法。
18. A metal material having plastic deformability is Al, A
18. The microregion solid-state bonding method between substrates according to claim 17, wherein the compound is any one of u, Sn, Cu, Zn, Pb, Ni, and a PbSn compound.
【請求項19】前記接合する温度は350℃以下あるい
は室温であることを特徴とする請求項1乃至18の何れ
かに記載の基板間微小領域固相接合法。
19. The method according to claim 1, wherein the bonding temperature is 350 ° C. or lower or room temperature.
【請求項20】光放出素子を形成した基板と、レーザ光
にするためのミラーを形成した基板とを接合する為に、
光学的結合と電気的結合を生ずる結合領域と、接合力を
与える為の接合部を有する接合領域とを有する構造を用
いて微小面積での接合を行なうことを特徴とする請求項
1乃至19の何れかに記載の基板間微小領域固相接合
法。
20. A method for joining a substrate on which a light emitting element is formed and a substrate on which a mirror for forming a laser beam is formed,
20. The method according to claim 1, wherein the bonding is performed in a small area by using a structure having a bonding region where an optical coupling and an electrical coupling are generated and a bonding region having a bonding portion for providing a bonding force. The method for solid-state bonding of minute regions between substrates according to any one of the above.
【請求項21】同一基板上に複数の電気的結合を生ずる
結合領域と複数の接合領域を有することを特徴とする請
求項1乃至20の何れかに記載の基板間微小領域固相接
合法。
21. The method for solid-state bonding between substrates according to claim 1, comprising a plurality of bonding regions and a plurality of bonding regions for forming a plurality of electrical connections on the same substrate.
【請求項22】同種或は異種半導体基板間の微小領域で
の接合で電気的結合を得る為に、電気的結合を生ずる結
合領域と、基板間に機械的な接合力を与える為の接合部
を有する接合領域とを有する構造が第1と第2の半導体
基板に形成され、結合領域と接合領域は、第1と第2の
半導体基板上の該接合領域同士及び該結合領域同士がそ
れぞれ相い対向する様に整合されつつ少なくとも一方の
半導体基板が面内回転された状態にされた後に第1と第
2の半導体基板同士に押圧力を印加しつつ該接合部同士
が接合されるときに該結合領域同士が固相接合で電気的
結合する様に、形状決めされ、該固相接合後、少なくと
も一方の半導体基板が薄片化研磨されることによって薄
片化基板にされ、該薄片化基板の表面まで界面転位がも
たらされた微小領域での電気的接合が実現されているこ
とを特徴とする素子構造。
22. A bonding portion for providing a mechanical bonding force between a coupling region for producing an electrical coupling and a mechanical bonding force between the substrates in order to obtain an electrical coupling in a small region between the same or different semiconductor substrates. A structure having a bonding region having the following structure is formed on the first and second semiconductor substrates. The bonding region and the bonding region are formed such that the bonding regions and the bonding regions on the first and second semiconductor substrates are in phase with each other. When at least one of the semiconductor substrates is brought into a state of being rotated in the plane while being aligned so as to face each other, and when the joining portions are joined while applying a pressing force to the first and second semiconductor substrates, The bonding regions are shaped so as to be electrically coupled by solid-phase bonding, and after the solid-phase bonding, at least one semiconductor substrate is thinned and polished to be a thinned substrate. Small area with interfacial dislocations up to the surface Element structure, characterized in that electrical connection is realized in.
JP28603398A 1998-09-22 1998-09-22 Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure Pending JP2000100679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28603398A JP2000100679A (en) 1998-09-22 1998-09-22 Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28603398A JP2000100679A (en) 1998-09-22 1998-09-22 Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure

Publications (1)

Publication Number Publication Date
JP2000100679A true JP2000100679A (en) 2000-04-07

Family

ID=17699113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28603398A Pending JP2000100679A (en) 1998-09-22 1998-09-22 Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure

Country Status (1)

Country Link
JP (1) JP2000100679A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385024B2 (en) 2003-02-07 2016-07-05 Ziptronix, Inc. Room temperature metal direct bonding
US9716033B2 (en) 2005-08-11 2017-07-25 Ziptronix, Inc. 3D IC method and device
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10002844B1 (en) 2016-12-21 2018-06-19 Invensas Bonding Technologies, Inc. Bonded structures
KR101906000B1 (en) * 2016-11-15 2018-11-21 연세대학교 산학협력단 Embedded substrate comprising hybrid combination structure and method for producing the same
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US10276909B2 (en) 2016-12-30 2019-04-30 Invensas Bonding Technologies, Inc. Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein
US10446532B2 (en) 2016-01-13 2019-10-15 Invensas Bonding Technologies, Inc. Systems and methods for efficient transfer of semiconductor elements
US10446487B2 (en) 2016-09-30 2019-10-15 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10522499B2 (en) 2017-02-09 2019-12-31 Invensas Bonding Technologies, Inc. Bonded structures
US10784191B2 (en) 2017-03-31 2020-09-22 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US10923408B2 (en) 2017-12-22 2021-02-16 Invensas Bonding Technologies, Inc. Cavity packages
US11004757B2 (en) 2018-05-14 2021-05-11 Invensas Bonding Technologies, Inc. Bonded structures
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11056390B2 (en) 2015-06-24 2021-07-06 Invensas Corporation Structures and methods for reliable packages
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11205600B2 (en) 2014-03-12 2021-12-21 Invensas Corporation Integrated circuits protected by substrates with cavities, and methods of manufacture
US11257727B2 (en) 2017-03-21 2022-02-22 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
US11380597B2 (en) 2017-12-22 2022-07-05 Invensas Bonding Technologies, Inc. Bonded structures
US11387214B2 (en) 2017-06-15 2022-07-12 Invensas Llc Multi-chip modules formed using wafer-level processing of a reconstituted wafer
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US11462419B2 (en) 2018-07-06 2022-10-04 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11538781B2 (en) 2020-06-30 2022-12-27 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages including bonded structures
US11626363B2 (en) 2016-12-29 2023-04-11 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US11652083B2 (en) 2017-05-11 2023-05-16 Adeia Semiconductor Bonding Technologies Inc. Processed stacked dies
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US11728313B2 (en) 2018-06-13 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Offset pads over TSV
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11764189B2 (en) 2018-07-06 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11804377B2 (en) 2018-04-05 2023-10-31 Adeia Semiconductor Bonding Technologies, Inc. Method for preparing a surface for direct-bonding
US11881454B2 (en) 2016-10-07 2024-01-23 Adeia Semiconductor Inc. Stacked IC structure with orthogonal interconnect layers
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US11916054B2 (en) 2018-05-15 2024-02-27 Adeia Semiconductor Bonding Technologies Inc. Stacked devices and methods of fabrication
US11929347B2 (en) 2020-10-20 2024-03-12 Adeia Semiconductor Technologies Llc Mixed exposure for large die
US11935907B2 (en) 2014-12-11 2024-03-19 Adeia Semiconductor Technologies Llc Image sensor device
US11955463B2 (en) 2019-06-26 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US11967575B2 (en) 2018-08-29 2024-04-23 Adeia Semiconductor Bonding Technologies Inc. Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes
US12051621B2 (en) 2016-12-28 2024-07-30 Adeia Semiconductor Bonding Technologies Inc. Microelectronic assembly from processed substrate
US12080672B2 (en) 2019-09-26 2024-09-03 Adeia Semiconductor Bonding Technologies Inc. Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive
US12100684B2 (en) 2022-12-28 2024-09-24 Adeia Semiconductor Bonding Technologies Inc. Bonded structures

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385024B2 (en) 2003-02-07 2016-07-05 Ziptronix, Inc. Room temperature metal direct bonding
US10141218B2 (en) 2003-02-07 2018-11-27 Invensas Bonding Technologies, Inc. Room temperature metal direct bonding
US11515202B2 (en) 2005-08-11 2022-11-29 Adeia Semiconductor Bonding Technologies Inc. 3D IC method and device
US9716033B2 (en) 2005-08-11 2017-07-25 Ziptronix, Inc. 3D IC method and device
US11011418B2 (en) 2005-08-11 2021-05-18 Invensas Bonding Technologies, Inc. 3D IC method and device
US10147641B2 (en) 2005-08-11 2018-12-04 Invensas Bonding Technologies, Inc. 3D IC method and device
US11289372B2 (en) 2005-08-11 2022-03-29 Invensas Bonding Technologies, Inc. 3D IC method and device
US11205600B2 (en) 2014-03-12 2021-12-21 Invensas Corporation Integrated circuits protected by substrates with cavities, and methods of manufacture
US11935907B2 (en) 2014-12-11 2024-03-19 Adeia Semiconductor Technologies Llc Image sensor device
US11056390B2 (en) 2015-06-24 2021-07-06 Invensas Corporation Structures and methods for reliable packages
US11830838B2 (en) 2015-08-25 2023-11-28 Adeia Semiconductor Bonding Technologies Inc. Conductive barrier direct hybrid bonding
US10262963B2 (en) 2015-08-25 2019-04-16 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US11264345B2 (en) 2015-08-25 2022-03-01 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10269708B2 (en) 2015-12-18 2019-04-23 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US10607937B2 (en) 2015-12-18 2020-03-31 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US10446532B2 (en) 2016-01-13 2019-10-15 Invensas Bonding Technologies, Inc. Systems and methods for efficient transfer of semiconductor elements
US10896902B2 (en) 2016-01-13 2021-01-19 Invensas Bonding Technologies, Inc. Systems and methods for efficient transfer of semiconductor elements
US11837596B2 (en) 2016-05-19 2023-12-05 Adeia Semiconductor Bonding Technologies Inc. Stacked dies and methods for forming bonded structures
US10879226B2 (en) 2016-05-19 2020-12-29 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US11658173B2 (en) 2016-05-19 2023-05-23 Adeia Semiconductor Bonding Technologies Inc. Stacked dies and methods for forming bonded structures
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US10998265B2 (en) 2016-09-30 2021-05-04 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10446487B2 (en) 2016-09-30 2019-10-15 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US11881454B2 (en) 2016-10-07 2024-01-23 Adeia Semiconductor Inc. Stacked IC structure with orthogonal interconnect layers
KR101906000B1 (en) * 2016-11-15 2018-11-21 연세대학교 산학협력단 Embedded substrate comprising hybrid combination structure and method for producing the same
US11670615B2 (en) 2016-12-21 2023-06-06 Adeia Semiconductor Bonding Technologies Inc. Bonded structures
US10879207B2 (en) 2016-12-21 2020-12-29 Invensas Bonding Technologies, Inc. Bonded structures
US10002844B1 (en) 2016-12-21 2018-06-19 Invensas Bonding Technologies, Inc. Bonded structures
US10546832B2 (en) 2016-12-21 2020-01-28 Invensas Bonding Technologies, Inc. Bonded structures
US12051621B2 (en) 2016-12-28 2024-07-30 Adeia Semiconductor Bonding Technologies Inc. Microelectronic assembly from processed substrate
US11626363B2 (en) 2016-12-29 2023-04-11 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US12057383B2 (en) 2016-12-29 2024-08-06 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US10276909B2 (en) 2016-12-30 2019-04-30 Invensas Bonding Technologies, Inc. Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein
TWI738947B (en) * 2017-02-09 2021-09-11 美商英帆薩斯邦德科技有限公司 Bonded structures and method of forming the same
US10522499B2 (en) 2017-02-09 2019-12-31 Invensas Bonding Technologies, Inc. Bonded structures
US10879210B2 (en) 2017-02-09 2020-12-29 Invensas Bonding Technologies, Inc. Bonded structures
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US11257727B2 (en) 2017-03-21 2022-02-22 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
US11417576B2 (en) 2017-03-21 2022-08-16 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
US10784191B2 (en) 2017-03-31 2020-09-22 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US12068278B2 (en) 2017-05-11 2024-08-20 Adeia Semiconductor Bonding Technologies Inc. Processed stacked dies
US11652083B2 (en) 2017-05-11 2023-05-16 Adeia Semiconductor Bonding Technologies Inc. Processed stacked dies
US11387214B2 (en) 2017-06-15 2022-07-12 Invensas Llc Multi-chip modules formed using wafer-level processing of a reconstituted wafer
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11552041B2 (en) 2017-09-24 2023-01-10 Adeia Semiconductor Bonding Technologies Inc. Chemical mechanical polishing for hybrid bonding
US11380597B2 (en) 2017-12-22 2022-07-05 Invensas Bonding Technologies, Inc. Bonded structures
US11600542B2 (en) 2017-12-22 2023-03-07 Adeia Semiconductor Bonding Technologies Inc. Cavity packages
US10923408B2 (en) 2017-12-22 2021-02-16 Invensas Bonding Technologies, Inc. Cavity packages
US11948847B2 (en) 2017-12-22 2024-04-02 Adeia Semiconductor Bonding Technologies Inc. Bonded structures
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11860415B2 (en) 2018-02-26 2024-01-02 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11804377B2 (en) 2018-04-05 2023-10-31 Adeia Semiconductor Bonding Technologies, Inc. Method for preparing a surface for direct-bonding
US11955393B2 (en) 2018-05-14 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Structures for bonding elements including conductive interface features
US11004757B2 (en) 2018-05-14 2021-05-11 Invensas Bonding Technologies, Inc. Bonded structures
US11916054B2 (en) 2018-05-15 2024-02-27 Adeia Semiconductor Bonding Technologies Inc. Stacked devices and methods of fabrication
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US11955445B2 (en) 2018-06-13 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Metal pads over TSV
US11749645B2 (en) 2018-06-13 2023-09-05 Adeia Semiconductor Bonding Technologies Inc. TSV as pad
US11728313B2 (en) 2018-06-13 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Offset pads over TSV
US11764189B2 (en) 2018-07-06 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
US12046482B2 (en) 2018-07-06 2024-07-23 Adeia Semiconductor Bonding Technologies, Inc. Microelectronic assemblies
US11462419B2 (en) 2018-07-06 2022-10-04 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11837582B2 (en) 2018-07-06 2023-12-05 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
US11894345B2 (en) 2018-08-28 2024-02-06 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11967575B2 (en) 2018-08-29 2024-04-23 Adeia Semiconductor Bonding Technologies Inc. Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US11756880B2 (en) 2018-10-22 2023-09-12 Adeia Semiconductor Bonding Technologies Inc. Interconnect structures
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
US11817409B2 (en) 2019-01-14 2023-11-14 Adeia Semiconductor Bonding Technologies Inc. Directly bonded structures without intervening adhesive and methods for forming the same
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US11955463B2 (en) 2019-06-26 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US12080672B2 (en) 2019-09-26 2024-09-03 Adeia Semiconductor Bonding Technologies Inc. Direct gang bonding methods including directly bonding first element to second element to form bonded structure without adhesive
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11538781B2 (en) 2020-06-30 2022-12-27 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages including bonded structures
US12046569B2 (en) 2020-06-30 2024-07-23 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11929347B2 (en) 2020-10-20 2024-03-12 Adeia Semiconductor Technologies Llc Mixed exposure for large die
US12100684B2 (en) 2022-12-28 2024-09-24 Adeia Semiconductor Bonding Technologies Inc. Bonded structures

Similar Documents

Publication Publication Date Title
JP2000100679A (en) Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure
Suga Feasibility of surface activated bonding for ultra-fine pitch interconnection-A new concept of bump-less direct bonding for system level packaging
US7839001B2 (en) Methods for making substrates and substrates formed therefrom
US5661316A (en) Method for bonding compound semiconductor wafers to create an ohmic interface
US6316332B1 (en) Method for joining wafers at a low temperature and low stress
US5783477A (en) Method for bonding compounds semiconductor wafers to create an ohmic interface
US20070232023A1 (en) Room temperature metal direct bonding
US20080009095A1 (en) Advanced Thin Flexible Microelectronic Assemblies and Methods for Making Same
US20020048900A1 (en) Method for joining wafers at a low temperature and low stress
CN112397394B (en) Semiconductor structure and manufacturing method thereof
JP2000277779A (en) Method for bonding semiconductors, semiconductor and semiconductor device produced using that method
JP2642645B2 (en) Method of manufacturing semiconductor substrate and method of manufacturing semiconductor device
JPH0682753B2 (en) Method for manufacturing semiconductor device
Shigetou et al. Room-temperature direct bonding of CMP-Cu film for bumpless interconnection
JP2000091174A (en) Method of forming functional bond at bonding region by inter-substrate joint reinforced by application of positive pressure and element structure having functional bond
JPH11266005A (en) Substrate junction method using positive pressure impression and element structure thereof
WO2020235074A1 (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JP2000091173A (en) Method of forming functional bond at bonding region by inter-substrate joint reinforced by molten body and element structure having functional bond
JPH11150328A (en) Method of bonding together substrate and element structure for said method
JP2001332802A (en) Fine region bonding method in free state of applied load and substrate bonding structure
WO2001043185A1 (en) Method of fabricating an optoelectronic device
JPH0397215A (en) Manufacture of semiconductor wafer
JP2000101188A (en) Method of bonding together substrates using light irradiation and element structure for this method
WO2024128057A1 (en) Method for manufacturing semiconductor device
JPH06349692A (en) Semiconductor device and its manufacture