JP2000188111A - Solid high polymer electrolyte fuel cell - Google Patents
Solid high polymer electrolyte fuel cellInfo
- Publication number
- JP2000188111A JP2000188111A JP10365139A JP36513998A JP2000188111A JP 2000188111 A JP2000188111 A JP 2000188111A JP 10365139 A JP10365139 A JP 10365139A JP 36513998 A JP36513998 A JP 36513998A JP 2000188111 A JP2000188111 A JP 2000188111A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- electrode
- exchange resin
- polymer electrolyte
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池に関する。The present invention relates to a solid polymer electrolyte fuel cell.
【0002】[0002]
【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子電
解質型燃料電池は、かつてジェミニ計画及びバイオサテ
ライト計画で宇宙船に搭載されたが、当時の電池出力密
度は低かった。その後、より高性能のアルカリ型燃料電
池が開発され、現在のスペースシャトルに至るまで宇宙
用にはアルカリ型燃料電池が採用されている。2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer electrolyte fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.
【0003】ところが、近年技術の進歩により固体高分
子電解質型燃料電池が再び注目されている。その理由と
して次の2点が挙げられる。(1)固体高分子電解質と
して高導電性の膜が開発された。(2)ガス拡散電極層
に用いられる触媒をカーボンに担持し、さらにこれをイ
オン交換樹脂で被覆することにより、きわめて大きな活
性が得られるようになった。However, in recent years, attention has been paid again to solid polymer electrolyte fuel cells due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) By supporting the catalyst used for the gas diffusion electrode layer on carbon and coating this with an ion-exchange resin, an extremely large activity can be obtained.
【0004】そして、固体高分子電解質型燃料電池の電
極・固体高分子電解質膜接合体(以下、単に接合体とい
う)の製造方法に関して多くの検討がなされている。現
在検討されている固体高分子電解質型燃料電池は、作動
温度が50〜120℃と低いため、排熱が燃料電池の補
機動力等に有効利用しがたい欠点がある。これを補う意
味でも固体高分子電解質型燃料電池は、特に高い出力密
度が要求されている。また実用化への課題として、燃料
及び空気利用率の高い運転条件下でも高エネルギ効率、
高出力密度が得られる接合体の開発が要求されている。[0004] Many studies have been made on a method for manufacturing an electrode-solid polymer electrolyte membrane assembly (hereinafter simply referred to as an assembly) of a solid polymer electrolyte fuel cell. The solid polymer electrolyte fuel cells currently being studied have a drawback that the operating temperature is as low as 50 to 120 ° C., so that the exhaust heat cannot be used effectively for the auxiliary power of the fuel cell. To compensate for this, the polymer electrolyte fuel cell is required to have a particularly high output density. In addition, as a challenge for practical use, high energy efficiency, even under operating conditions with high fuel and air utilization rates,
There is a demand for the development of a joined body that can obtain a high power density.
【0005】低作動温度かつ高ガス利用率の運転条件で
は、特に水が生成する空気極において水蒸気の凝縮によ
る電極多孔体の閉塞(フラッディング)が起こりやす
い。長期にわたり安定な特性を得るためには、フラッデ
ィングが起こらないように電極の撥水性を確保するが必
要である。低温で高出力密度が得られる固体高分子電解
質型燃料電池では特に重要である。[0005] Under the operating conditions of a low operating temperature and a high gas utilization rate, clogging (flooding) of the electrode porous body due to condensation of water vapor tends to occur particularly at the air electrode where water is generated. In order to obtain stable characteristics over a long period of time, it is necessary to ensure the water repellency of the electrode so that flooding does not occur. This is particularly important for a solid polymer electrolyte fuel cell capable of obtaining a high power density at a low temperature.
【0006】電極の撥水性を確保するには、電極中で触
媒を被覆するイオン交換樹脂のイオン交換容量が小さ
い、すなわちイオン交換樹脂中のイオン交換基の含有率
が低いことが有効である。しかし、この場合にはイオン
交換樹脂は含水率が低いため導電性が低くなり、電池性
能が低下する。さらに、イオン交換樹脂のガス透過性が
低下するため、被覆したイオン交換樹脂を通して触媒表
面に供給されるガスの供給が遅くなる。したがって、反
応サイトにおけるガス濃度が低下して電圧損失が大きく
なる、すなわち濃度過電圧が高くなって出力が低下す
る。[0006] In order to ensure the water repellency of the electrode, it is effective that the ion exchange capacity of the ion exchange resin coating the catalyst in the electrode is small, that is, the content of ion exchange groups in the ion exchange resin is low. However, in this case, since the ion exchange resin has a low water content, the conductivity is reduced, and the battery performance is reduced. Further, since the gas permeability of the ion exchange resin is reduced, the supply of the gas supplied to the catalyst surface through the coated ion exchange resin is delayed. Therefore, the gas concentration at the reaction site decreases and the voltage loss increases, that is, the concentration overvoltage increases and the output decreases.
【0007】このため、触媒を被覆するイオン交換樹脂
にはイオン交換容量の高い樹脂を用い、これに加えて、
例えば、ポリテトラフルオロエチレン(以下、PTFE
という。)、テトラフルオロエチレン/ヘキサフルオロ
プロピレン共重合体、テトラフルオロエチレン/パーフ
ルオロ(アルキルビニルエーテル)共重合体等のフッ素
樹脂等を撥水化剤として電極、特に空気極中に含有さ
せ、フラッディングを抑制する試みがなされている(特
開平5−36418)。なお、本明細書においてA/B
共重合体とは、Aに基づく重合単位とBに基づく重合単
位とからなる共重合体を示す。[0007] For this reason, a resin having a high ion exchange capacity is used as the ion exchange resin for coating the catalyst.
For example, polytetrafluoroethylene (hereinafter, PTFE)
That. ), A fluororesin such as a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer or the like as a water-repellent agent in an electrode, particularly in an air electrode, to suppress flooding. (Japanese Patent Laid-Open No. 5-36418). In this specification, A / B
The copolymer is a copolymer composed of a polymer unit based on A and a polymer unit based on B.
【0008】しかし、充分に撥水化するために電極中の
上記撥水化剤の量を多くすると、上記撥水化剤は絶縁体
のため電極の電気抵抗が増大する。また、電極の厚さが
厚くなるためガス透過性の悪化を招き、逆に出力が低下
する問題がある。電極の導電性の低下を補うためには、
例えば触媒の担体であるカーボン材料の導電性や触媒を
被覆するイオン交換樹脂のイオン導電性を高めることが
必要である。しかし、充分な導電性と充分な撥水性を同
時に満足する電極は得るのは困難であり、高出力かつ長
期的に安定な固体高分子型燃料電池を得ることは容易で
はなかった。However, when the amount of the water repellent in the electrode is increased in order to make the electrode sufficiently water repellent, the electric resistance of the electrode is increased because the water repellent is an insulator. In addition, since the thickness of the electrode increases, gas permeability deteriorates, and conversely, the output decreases. To compensate for the decrease in electrode conductivity,
For example, it is necessary to increase the conductivity of the carbon material that is the carrier of the catalyst and the ion conductivity of the ion exchange resin that coats the catalyst. However, it is difficult to obtain an electrode that satisfies both sufficient conductivity and sufficient water repellency at the same time, and it has not been easy to obtain a polymer electrolyte fuel cell that has high output and is stable over a long period of time.
【0009】また、フッ化ピッチを混合する方法(特開
平7−211324)、触媒担体をフッ素化処理する方
法(特開平7−192738)も提案されているが、触
媒表面をイオン交換樹脂により均一に被覆できない問題
がある。また、電極の厚さ方向に対して撥水性に勾配を
持たせる方法(特開平5−251086、特開平7−1
34993)も提案されているが、製造方法が煩雑であ
る。Further, a method of mixing pitch fluoride (JP-A-7-212324) and a method of fluorinating a catalyst carrier (JP-A-7-192338) have been proposed. There is a problem that cannot be coated. Also, a method of imparting a gradient to the water repellency in the thickness direction of the electrode (Japanese Patent Application Laid-Open Nos. 5-251086 and 7-1)
34993) has been proposed, but the manufacturing method is complicated.
【0010】[0010]
【発明が解決しようとする課題】出力を高めるには、導
電性及びガス透過性の観点から電極中に含まれる撥水化
剤の量は少ない方がよい。また、触媒を被覆するイオン
交換樹脂は、導電性が高くかつガスの透過性が高いこと
が電池性能を高めるうえで重要であり、交換基濃度が高
いイオン交換樹脂が好ましい。しかし、交換基濃度の高
いイオン交換樹脂を用いた場合、燃料ガスの透過性及び
導電性は高く燃料電池の初期の出力は高くなるもののフ
ラッディングが起こりやすく、長期間使用すると出力の
低下が起こりやすい。In order to increase the output, the smaller the amount of the water repellent contained in the electrode, the better from the viewpoints of conductivity and gas permeability. It is important that the ion exchange resin covering the catalyst has high conductivity and high gas permeability in order to enhance battery performance, and an ion exchange resin having a high exchange group concentration is preferable. However, when an ion exchange resin having a high exchange group concentration is used, the permeability and conductivity of the fuel gas are high and the initial output of the fuel cell is high, but flooding is likely to occur, and the output tends to decrease when used for a long time. .
【0011】そこで、本発明は、導電性が高くかつ含有
するイオン交換樹脂のガス透過性が高く、長期間使用し
ても高い撥水性を有する空気極を有することにより、長
期間にわたって高出力を維持できる固体高分子型燃料電
池を提供することを目的とする。Accordingly, the present invention provides an air electrode having high conductivity and high gas permeability of the contained ion exchange resin and having high water repellency even when used for a long period of time, so that a high output can be obtained for a long period of time. It is an object of the present invention to provide a polymer electrolyte fuel cell that can be maintained.
【0012】[0012]
【課題を解決するための手段】本発明は、触媒とイオン
交換樹脂とを含有するガス拡散電極が燃料極及び空気極
とされ、膜状固体高分子電解質の片面に前記燃料極が、
もう一方の面に前記空気極が、それぞれ配置された固体
高分子電解質型燃料電池において、前記空気極に含有さ
れる前記イオン交換樹脂は、下記重合単位A、下記重合
単位B及び下記重合単位Cを含む共重合体からなるイオ
ン交換樹脂であることを特徴とする固体高分子電解質型
燃料電池を提供する。 重合単位A:テトラフルオロエチレンに基づく重合単
位、 重合単位B:スルホン酸基を有するパーフルオロビニル
エーテルに基づく重合単位、 重合単位C:イオン交換基又はその前駆体の基を有しな
いパーフルオロビニルエーテルに基づく重合単位。According to the present invention, a gas diffusion electrode containing a catalyst and an ion exchange resin is used as a fuel electrode and an air electrode, and the fuel electrode is provided on one surface of a membrane solid polymer electrolyte.
In a solid polymer electrolyte fuel cell in which the air electrode is disposed on the other surface, the ion-exchange resin contained in the air electrode includes the following polymerized units A, B, and C: A solid polymer electrolyte fuel cell characterized by being an ion exchange resin comprising a copolymer containing: Polymerized unit A: Polymerized unit based on tetrafluoroethylene, Polymerized unit B: Polymerized unit based on perfluorovinyl ether having a sulfonic acid group, Polymerized unit C: Based on perfluorovinyl ether having no ion exchange group or its precursor group Polymerized units.
【0013】本発明において、空気極に含まれるイオン
交換樹脂はスルホン酸基をイオン交換基として有する共
重合体である。該共重合体はスルホン酸基に変換可能な
−SO2Fを有する樹脂からなる前駆体(以下、単に前
駆体という。)を加水分解及び酸型化処理して得ること
が好ましい。すなわち、前記共重合体に重合単位Bを含
有させる方法として、−SO2Fを有するパーフルオロ
ビニルエーテルを原料として共重合させて前駆体を合成
し、この前駆体を加水分解及び酸型化処理することが好
ましい。In the present invention, the ion exchange resin contained in the air electrode is a copolymer having a sulfonic acid group as an ion exchange group. The copolymer is preferably obtained by subjecting a precursor (hereinafter, simply referred to as a precursor) composed of a resin having —SO 2 F that can be converted to a sulfonic acid group to hydrolysis and acidification. That is, in order to incorporate the polymerized units B in the copolymer, a perfluorovinyl ether having a -SO 2 F to synthesize a precursor by copolymerizing a raw material, the precursor for processing hydrolysis and acid form Is preferred.
【0014】この−SO2Fを有するパーフルオロビニ
ルエーテルとしては、CF2=CF−(OCF2CFX)
m−Op−(CF2)n−SO2Fで表されるパーフルオロ
ビニルエーテル化合物(式中、mは0〜3の整数、nは
1〜12の整数、pは0又は1であり、XはF又はCF
3である。)が好ましい。上記パーフルオロビニルエー
テル化合物の好ましい例としては、以下の化合物が挙げ
られる。ただし、下記式中、qは1〜8の整数、rは1
〜8の整数、sは1〜3の整数を示す。The perfluorovinyl ether having —SO 2 F includes CF 2 = CF— (OCF 2 CFX)
m -O p - (CF 2) a perfluorovinyl ether compound represented by n -SO 2 F (wherein, m is an integer of 0 to 3, n is an integer from 1 to 12, p is 0 or 1, X is F or CF
3 Is preferred. Preferred examples of the perfluorovinyl ether compound include the following compounds. However, in the following formula, q is an integer of 1 to 8, r is 1
And an integer s represents an integer of 1 to 3.
【0015】[0015]
【化1】CF2=CFO(CF2)qSO2F、 CF2=CFOCF2CF(CF3)O(CF2)rSO
2F、 CF2=CF(OCF2CF(CF3))sO(CF2)2S
O2F。Embedded image CF 2 CFCFO (CF 2 ) q SO 2 F, CF 2 CFCFOCF 2 CF (CF 3 ) O (CF 2 ) r SO
2 F, CF 2 = CF ( OCF 2 CF (CF 3)) s O (CF 2) 2 S
O 2 F.
【0016】また、本発明において、空気極に含まれる
イオン交換樹脂に含まれる重合単位Cは、スルホン酸
基、ホスホン酸基等のイオン交換基又は加水分解等によ
りイオン交換基となりうる基(イオン交換基の前駆体の
基)を有しない。重合単位Cとしては、CF2=CF−
(OCF2CFY)t−O−Rfで表されるパーフルオロ
ビニルエーテル化合物に基づく重合単位が好ましい。た
だし、式中、tは0〜3の整数であり、YはF又はCF
3である。Rfは直鎖又は分岐鎖のCuF2u+1で表される
パーフルオロアルキル基(1≦u≦12)である。In the present invention, the polymerized unit C contained in the ion exchange resin contained in the air electrode is an ion exchange group such as a sulfonic acid group or a phosphonic acid group or a group capable of becoming an ion exchange group by hydrolysis or the like (an ion exchange group). (A precursor group of the exchange group). As the polymerized unit C, CF 2 CFCF—
(OCF 2 CFY) t -O- R polymerized units based on a perfluorovinyl ether compound represented by the f is preferred. Here, in the formula, t is an integer of 0 to 3, and Y is F or CF.
3 R f is a perfluoroalkyl group represented by C u F 2u + 1 linear or branched chain (1 ≦ u ≦ 12).
【0017】CF2=CF−(OCF2CFY)t−O−
Rfで表されるパーフルオロビニルエーテル化合物の好
ましい例としては、以下の化合物が挙げられる。ただ
し、下記式中、vは1〜8の整数、wは1〜8の整数、
xは1〜3の整数を示す。CF 2 CFCF— (OCF 2 CFY) t —O—
Preferred examples of the perfluorovinyl ether compound represented by R f include the following compounds. However, in the following formula, v is an integer of 1 to 8, w is an integer of 1 to 8,
x shows the integer of 1-3.
【0018】[0018]
【化2】CF2=CFO(CF2)vCF3、 CF2=CFOCF2CF(CF3)O(CF2)wCF3、 CF2=CF(OCF2CF(CF3))xO(CF2)2C
F3。Embedded image CF 2 CFCFO (CF 2 ) v CF 3 , CF 2 CFCFOCF 2 CF (CF 3 ) O (CF 2 ) w CF 3 , CF 2 CFCF (OCF 2 CF (CF 3 )) × O (CF 2 ) 2 C
F 3.
【0019】本発明において、空気極に含まれるイオン
交換樹脂は、重合単位A、重合単位B及び重合単位Cを
含む共重合体からなるが、該共重合体には、上記重合単
位A、B及びCに加えて、ヘキサフルオロプロピレン、
クロロトリフルオロエチレンのようなフルオロオレフィ
ンに基づく重合単位や、エチレン、塩化ビニリデン等の
非フッ素系オレフィンに基づく重合単位が、イオン交換
樹脂を構成する全重合単位に対して10mol%以下で
あれば含まれていてもよい。In the present invention, the ion-exchange resin contained in the air electrode comprises a copolymer containing a polymerized unit A, a polymerized unit B and a polymerized unit C. And C, in addition to hexafluoropropylene,
Included if the polymerization units based on fluoroolefins such as chlorotrifluoroethylene and the polymerization units based on non-fluorinated olefins such as ethylene and vinylidene chloride are 10 mol% or less based on all the polymerization units constituting the ion exchange resin. It may be.
【0020】前駆体は、−SO2Fが例えばNaOHや
KOH等の水溶液により加水分解された後、塩酸や硫酸
等の水溶液により酸型化され酸型樹脂に変換される。例
えばKOH水溶液により加水分解される場合は−SO2
Fが−SO3Kに変換され、その後Kイオンがプロトン
に置換されることで目的のイオン交換樹脂が得られる。
また、加水分解と酸型化処理は同時に行ってもよい。The precursor, after being hydrolyzed by an aqueous solution such as a -SO 2 F, for example NaOH or KOH, is converted to the acid type resin is an acid form with an aqueous solution such as hydrochloric acid or sulfuric acid. For example, when hydrolyzed by KOH aqueous solution, -SO 2
The desired ion exchange resin is obtained by converting F to —SO 3 K and then replacing the K ion with a proton.
Further, the hydrolysis and the acidification treatment may be performed simultaneously.
【0021】空気極に含まれるイオン交換樹脂におい
て、重合単位Bと重合単位Cとは、その合量(mol)
が、重合単位Aに対して10〜25mol%となるよう
に含まれることが好ましい。10mol%未満である
と、イオン交換樹脂は含水率が低くなるため、導電性が
低くなり、ガス透過性も低くなる。そのため、電極は高
抵抗化したり過電圧が高くなる。また25mol%を超
えると、イオン交換樹脂は含水率が高くなりすぎ、膨潤
し濡れ性が増大する。そのため、水によって空気極の細
孔が閉塞されやすく、フラッディングが起こりやすい。In the ion exchange resin contained in the air electrode, the total amount (mol) of the polymerized units B and C is
Is preferably contained in an amount of 10 to 25 mol% with respect to the polymerization unit A. When the content is less than 10 mol%, the ion exchange resin has a low water content, and thus has low conductivity and low gas permeability. For this reason, the electrodes have a high resistance or an overvoltage. If it exceeds 25 mol%, the ion exchange resin has too high a water content, swells, and the wettability increases. Therefore, the pores of the air electrode are easily blocked by water, and flooding is likely to occur.
【0022】空気極では燃料電池の反応にともなって水
が生成するので、特にイオン交換樹脂の含水率の増大が
問題となる。また、空気極に連続的に供給されるガス
は、過度の乾燥を防ぐため通常加湿されているので、湿
潤ガスによるイオン交換樹脂の含水率の増大も考慮しな
ければならない。重合単位Aに対する重合単位Bと重合
単位Cとの合量は、特に12〜22mol%、さらには
15〜20mol%含まれることが好ましい。At the air electrode, water is generated with the reaction of the fuel cell, and therefore, there is a problem in particular that the water content of the ion exchange resin increases. Further, since the gas continuously supplied to the air electrode is usually humidified in order to prevent excessive drying, it is necessary to consider an increase in the water content of the ion exchange resin due to the wet gas. The total amount of the polymerized unit B and the polymerized unit C with respect to the polymerized unit A is preferably 12 to 22 mol%, more preferably 15 to 20 mol%.
【0023】さらに、空気極に含まれるイオン交換樹脂
には、重合単位Bが、重合単位Aと重合単位Cとの合量
に対して5mol%以上であることが好ましい。5mo
l%未満では、プロトンを伝導する役割を有するイオン
交換基の単位重量あたりの含有量が少なく、イオン交換
樹脂の抵抗が高くなる。Further, in the ion exchange resin contained in the air electrode, the polymerization unit B is preferably at least 5 mol% based on the total amount of the polymerization units A and C. 5mo
If it is less than 1%, the content per unit weight of the ion exchange group having a role of conducting protons is small, and the resistance of the ion exchange resin is increased.
【0024】また、空気極に含まれるイオン交換樹脂に
は、重合単位Cが、重合単位Aと重合単位Bとの合量に
対して2mol%以上含まれることが好ましい。重合単
位Cは、イオン導電性を高める役割は小さい。The ion exchange resin contained in the air electrode preferably contains the polymerized unit C in an amount of 2 mol% or more based on the total amount of the polymerized units A and B. The role of the polymerized unit C to enhance ionic conductivity is small.
【0025】しかし、触媒を被覆するイオン交換樹脂を
透過するガスは、イオン交換樹脂の含水部分を透過する
ことに加えて、イオン交換樹脂内のエーテル結合の部分
も透過すると考えられる。重合単位Cは、イオン交換樹
脂内のエーテル結合部分を増やし、ガス透過性を高める
目的でイオン交換樹脂中に含まれている。したがって、
その含有率が低すぎるとガス透過性の向上による濃度過
電圧の低減効果が認められない。重合単位Cは、重合単
位Aと重合単位Bとの合量に対して5mol%以上であ
ることが特に好ましい。However, it is considered that the gas that permeates the ion exchange resin coating the catalyst permeates not only the water-containing portion of the ion exchange resin but also the ether bond portion in the ion exchange resin. The polymerized unit C is contained in the ion exchange resin for the purpose of increasing the number of ether bonds in the ion exchange resin and increasing gas permeability. Therefore,
If the content is too low, the effect of reducing the concentration overvoltage by improving the gas permeability is not recognized. The polymerization unit C is particularly preferably at least 5 mol% based on the total amount of the polymerization units A and B.
【0026】一方、本発明における燃料極に含まれるイ
オン交換樹脂は特には限定されないが、含フッ素カーボ
ンスルホン酸型イオン交換樹脂が好ましい。燃料極には
空気極と同様に重合単位A、重合単位B及び重合単位C
を含む共重合体からなるイオン交換樹脂を使用すること
もできる。On the other hand, the ion exchange resin contained in the fuel electrode in the present invention is not particularly limited, but a fluorine-containing carbon sulfonic acid type ion exchange resin is preferable. The polymerization unit A, the polymerization unit B and the polymerization unit C are used for the fuel electrode in the same manner as the air electrode.
It is also possible to use an ion exchange resin comprising a copolymer containing
【0027】燃料極では、燃料電池の反応にともなって
水が生成することはないので、空気極に比べれば、重合
単位B及び重合単位Cの含有率が高くてもよい。気相か
ら触媒粒子へのスムーズな燃料ガス供給を確保するに
は、上記含有率は高いほうがよく、さらに特に重合単位
Bの含有率が高いことが好ましい。At the fuel electrode, since water is not generated with the reaction of the fuel cell, the content of the polymerized units B and C may be higher than that of the air electrode. In order to ensure a smooth supply of fuel gas from the gas phase to the catalyst particles, the above content is preferably high, and particularly preferably the content of the polymerized unit B is high.
【0028】本発明における燃料極及び空気極に含まれ
る触媒とイオン交換樹脂とは、重量比で触媒:上記イオ
ン交換樹脂=0.40:0.60〜0.95:0.05
であることが、電極の導電性と撥水性の観点から好まし
い。なお、ここでいう触媒は、カーボンなどの担体に担
持された担持触媒の場合は該担体の重量を含むものとす
る。In the present invention, the catalyst contained in the fuel electrode and the air electrode and the ion exchange resin are in a weight ratio of catalyst: the above ion exchange resin = 0.40: 0.60 to 0.95: 0.05.
Is preferable from the viewpoint of the conductivity and water repellency of the electrode. In the case of a supported catalyst supported on a carrier such as carbon, the catalyst herein includes the weight of the carrier.
【0029】本発明において、空気極及び燃料極(以
下、まとめて電極という。)は、イオン交換樹脂及び触
媒を溶媒に溶解又は分散した液(以下、電極形成用の液
という)を噴霧、塗布、濾過等の公知の方法により形成
できる。電極は、イオン交換膜上に直接形成してもよい
し、カーボンペーパー等からなる集電体上に層状に形成
した後にこれをイオン交換膜と接合してもよい。カーボ
ンペーパーのかわりにカーボンとフッ素樹脂からなるカ
ーボン層をカーボン繊維織布上に形成したシートを用い
てもよい。また、別途用意した平板上に電極を形成し、
これをイオン交換膜に転写してもよい。電極をイオン交
換膜上に直接形成しない場合は、公知のホットプレス
法、接着法(特開平7−220741、特開平7−25
4420)等によりイオン交換膜と接合する。In the present invention, the air electrode and the fuel electrode (hereinafter collectively referred to as electrodes) are sprayed and coated with a liquid in which an ion exchange resin and a catalyst are dissolved or dispersed in a solvent (hereinafter referred to as electrode forming liquid). , Filtration and the like. The electrodes may be formed directly on the ion exchange membrane, or may be formed in layers on a current collector made of carbon paper or the like and then joined to the ion exchange membrane. Instead of carbon paper, a sheet in which a carbon layer made of carbon and fluororesin is formed on a carbon fiber woven fabric may be used. Also, forming electrodes on a separately prepared flat plate,
This may be transferred to an ion exchange membrane. When the electrode is not formed directly on the ion exchange membrane, a known hot pressing method and a bonding method (Japanese Patent Application Laid-Open Nos.
4420) and the like, and bonding with the ion exchange membrane.
【0030】上記電極形成用の液の粘度は、電極の形成
方法により好ましい範囲が異なり、数十cP程度の分散
液状のものから2万cP程度のペースト状のものまで、
広い粘度範囲のものが使用できる。粘度を調節するため
に、電極形成用の液には増粘剤や希釈溶媒が含まれてい
てもよい。増粘剤としてはエチルセルロース、メチルセ
ルロースやセロソルブ系のものが使用できるが、除去操
作を必要とするので用いない方が望ましい。希釈溶媒と
してはメタノール、エタノール、イソプロピルアルコー
ル等のアルコール類、フルオロカーボン類、ヒドロフル
オロカーボン類、ヒドロクロロフルオロカーボン類、水
等が使用できる。The preferred range of the viscosity of the above liquid for forming an electrode varies depending on the method of forming the electrode, and ranges from a dispersion of about several tens cP to a paste of about 20,000 cP.
A wide viscosity range can be used. In order to adjust the viscosity, the liquid for forming an electrode may contain a thickener or a diluting solvent. Ethylcellulose, methylcellulose or cellosolve-based thickeners can be used as the thickener, but it is desirable not to use it because a removal operation is required. As the diluting solvent, alcohols such as methanol, ethanol and isopropyl alcohol, fluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, water and the like can be used.
【0031】本発明において、電極、特に空気極には撥
水化剤が含まれると、さらにフラッディングに対する抑
制効果が高まるので好ましい。撥水化剤としては、例え
ば、テトラフルオロエチレン/ヘキサフルオロプロピレ
ン共重合体、テトラフルオロエチレン/パーフルオロ
(アルキルビニルエーテル)共重合体、PTFE等が使
用できる。また、溶媒に溶解できる含フッ素樹脂は、電
極を撥水化処理しやすいので好ましい。In the present invention, it is preferable that the electrode, particularly the air electrode, contain a water repellent since the effect of suppressing flooding is further enhanced. As the water repellent, for example, a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, PTFE and the like can be used. Further, a fluorine-containing resin that can be dissolved in a solvent is preferable because the electrode is easily water-repellent.
【0032】撥水化剤は通常、電極中に0.01〜30
重量%含まれることが好ましいが、本発明における空気
極では、従来に比べて絶縁物である撥水化剤の量が少量
であっても従来と同等の撥水性が得られる。したがっ
て、撥水化剤の添加による電極の抵抗上昇を最小限に抑
制できるとともに、撥水化剤により電極の細孔が潰され
るおそれも少ない。The water repellent is usually contained in the electrode in an amount of 0.01 to 30.
Although it is preferable to include the water repellent in the air electrode of the present invention, even if the amount of the water repellent, which is an insulator, is small, the air repellency equivalent to the conventional one can be obtained. Therefore, the increase in resistance of the electrode due to the addition of the water repellent can be minimized, and the possibility that the pores of the electrode are crushed by the water repellent is also small.
【0033】本発明における膜状固体高分子電解質は特
には限定されないが、例えば、スルホン酸基、ホスホン
酸基又はフェノール系水酸基等を陽イオン交換基として
有する樹脂からなることが好ましい。特に、含フッ素カ
ーボンスルホン酸型イオン交換樹脂からなることが好ま
しい。具体的には重合単位Aと重合単位Bとを含む共重
合体からなる含フッ素カーボンスルホン酸型イオン交換
樹脂が例示され、前記共重合体にはさらに重合単位Cが
含まれていてもよい。The solid polymer electrolyte membrane in the present invention is not particularly limited, but is preferably made of a resin having, for example, a sulfonic acid group, a phosphonic acid group or a phenolic hydroxyl group as a cation exchange group. In particular, it is preferable to use a fluorine-containing carbon sulfonic acid type ion exchange resin. Specifically, a fluorinated carbon sulfonic acid type ion exchange resin composed of a copolymer containing the polymer units A and B is exemplified, and the copolymer may further contain the polymer units C.
【0034】膜状固体高分子電解質は、熱流動性を有す
る前記樹脂の前駆体を熱プレス成形、ロール成形、押出
し成形等の公知の方法で膜状に成形し、加水分解、酸型
化処理し膜状固体高分子電解質が得られる。また、フッ
素系陽イオン交換樹脂をアルコール等の溶媒に溶解した
溶液から、溶媒キャスト法で得ることもできる。The film-like solid polymer electrolyte is obtained by forming a precursor of the resin having thermal fluidity into a film by a known method such as hot press molding, roll molding, or extrusion molding, and subjecting the precursor to hydrolysis and acidification. Thus, a film-like solid polymer electrolyte is obtained. Further, it can be obtained by a solvent casting method from a solution in which a fluorine-based cation exchange resin is dissolved in a solvent such as alcohol.
【0035】さらに、膜状固体高分子電解質はスルホン
酸基又はホスホン酸基等を有する炭化水素系樹脂又は部
分フッ素化された炭化水素系樹脂等のイオン交換樹脂か
らなるものでもよい。具体的には例えば、スチレンをエ
チレン/テトラフルオロエチレン共重合体にグラフト重
合させた後、スルホン酸基をスチレンに基づく重合単位
に導入した樹脂、ポリスルホンやポリエーテルエーテル
ケトン等をスルホン化した樹脂等からなるものでもよ
い。Further, the membrane solid polymer electrolyte may be made of an ion exchange resin such as a hydrocarbon resin having a sulfonic acid group or a phosphonic acid group or a partially fluorinated hydrocarbon resin. Specifically, for example, a resin obtained by graft-polymerizing styrene onto an ethylene / tetrafluoroethylene copolymer and then introducing a sulfonic acid group into a polymerization unit based on styrene, a resin obtained by sulfonating polysulfone or polyetheretherketone, or the like. It may be composed of
【0036】また、膜状固体高分子電解質は、上記の陽
イオン交換樹脂を補強材と複合化した膜からなるもので
もよい。補強材としては、ポリエチレン、ポリテトラフ
ルオロエチレン、テトラフルオロエチレン/パーフルオ
ロ(プロピルビニルエーテル)共重合体やテトラフルオ
ロエチレン/ヘキサフルオロプロピレン共重合体等が挙
げられる。これらの補強材はフィブリル状、織布状、不
織布状又は多孔体の形態で用いられる。Further, the membrane solid polymer electrolyte may be formed of a membrane in which the above cation exchange resin is combined with a reinforcing material. Examples of the reinforcing material include polyethylene, polytetrafluoroethylene, tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer, and tetrafluoroethylene / hexafluoropropylene copolymer. These reinforcing materials are used in the form of fibrils, woven fabrics, nonwoven fabrics or porous bodies.
【0037】膜状固体高分子電解質の厚さは、例えば1
0〜300μmのものが使用される。10μmより薄い
とピンホールが発生しやすくショートするおそれがあ
る。300μmより厚いと膜の電気抵抗が高くなり燃料
電池の出力特性が低下する。特には20〜100μmの
厚さが好ましい。The thickness of the membrane solid polymer electrolyte is, for example, 1
Those having a size of 0 to 300 μm are used. If the thickness is less than 10 μm, pinholes are likely to occur and a short circuit may occur. If the thickness is more than 300 μm, the electric resistance of the membrane increases, and the output characteristics of the fuel cell deteriorate. In particular, a thickness of 20 to 100 μm is preferable.
【0038】空気極に含まれるイオン交換樹脂は、重合
単位Bに加えて、重合単位Cが含まれているため、燃料
電池の反応にともなって水が生成しても樹脂は過度に膨
潤せず濡れ性も高くならない。そのため、生成水が排出
されやすいためガスが拡散するパスを確保でき、またイ
オン交換樹脂はエーテル結合が多く含まれるためガス透
過性が高い。したがって、燃料電池を大電流密度で使用
しても電極のフラッディングが起こりにくく、濃度過電
圧を小さくできる。すなわち、ガスの拡散、供給が遅く
て反応サイトにおけるガス濃度が低下することによる電
圧損失を小さくできる。Since the ion exchange resin contained in the air electrode contains the polymerized unit C in addition to the polymerized unit B, the resin does not excessively swell even if water is produced by the reaction of the fuel cell. The wettability does not increase. Therefore, the generated water is easily discharged, so that a path for gas diffusion can be secured, and the ion exchange resin has a high gas permeability because it contains many ether bonds. Therefore, even when the fuel cell is used at a large current density, flooding of the electrode hardly occurs, and the concentration overvoltage can be reduced. That is, it is possible to reduce the voltage loss caused by the slow gas diffusion and supply and the decrease in the gas concentration at the reaction site.
【0039】[0039]
【実施例】以下に本発明を実施例(例1〜5)及び比較
例(例6〜7)によって詳しく説明するが、本発明はこ
れらに限定されない。EXAMPLES The present invention will be described in detail with reference to Examples (Examples 1 to 5) and Comparative Examples (Examples 6 to 7), but the present invention is not limited to these.
【0040】ステンレス鋼製オートクレーブに、重合溶
媒としてCF2ClCF2CHClFと、重合開始剤とし
てのアゾビスイソブチロニトリルと、CF2=CF−O
CF2CF(CF3)−OCF2CF2SO2F(パーフル
オロ(3,6−ジオキサ−4−メチル−7−オクテニ
ル)スルホニルフルオリド、以下、PSVEという)及
びCF2=CF−OCF2CF2CF3(パーフルオロ(プ
ロピルビニルエーテル)、以下、PPVEという)とを
仕込んだ。次いでオートクレーブ内を液体窒素で充分に
脱気した後、テトラフルオロエチレン(以下、TFEと
いう)を仕込んで70℃にて重合を開始した。重合中は
系外からTFEを導入することによりオートクレーブ内
の圧力を一定に保持した。10時間後に未反応のTFE
をパージして重合を終了させ、得られたポリマー溶液を
メタノールで凝集し、洗浄、乾燥させてTFE/PSV
E/PPVE共重合体を得た。The stainless steel autoclave, and CF 2 ClCF 2 CHClF as a polymerization solvent, and azobisisobutyronitrile as a polymerization initiator, CF 2 = CF-O
CF 2 CF (CF 3) -OCF 2 CF 2 SO 2 F ( perfluoro (3,6-dioxa-4-methyl-7-octenyl) sulfonyl fluoride, hereinafter referred to as PSVE) and CF 2 = CF-OCF 2 CF 2 CF 3 (perfluoro (propyl vinyl ether), hereinafter referred to as PPVE) was charged. Next, after the inside of the autoclave was sufficiently degassed with liquid nitrogen, tetrafluoroethylene (hereinafter referred to as TFE) was charged and polymerization was started at 70 ° C. During the polymerization, the pressure inside the autoclave was kept constant by introducing TFE from outside the system. Unreacted TFE after 10 hours
Was purged to terminate the polymerization, and the obtained polymer solution was coagulated with methanol, washed and dried to obtain TFE / PSV.
An E / PPVE copolymer was obtained.
【0041】ジメチルスルホキシド30重量%及びKO
H15重量%を含む混合水溶液中でこの共重合体の加水
分解を行い、水洗した後1Nの塩酸中に浸漬することで
パーフルオロカーボンスルホン酸型イオン交換樹脂を得
た。30% by weight of dimethyl sulfoxide and KO
The copolymer was hydrolyzed in a mixed aqueous solution containing 15% by weight of H, washed with water, and then immersed in 1N hydrochloric acid to obtain a perfluorocarbon sulfonic acid type ion exchange resin.
【0042】なお、重合開始剤の量、重合時の圧力及び
PPVE濃度を調整することにより、各重合単位の含有
率が表1の例1〜7に示す値となるイオン交換樹脂7種
類を合成した。また、燃料極側に用いるイオン交換樹脂
は、空気極に用いた共重合体の重合方法においてPPV
Eを仕込まなかったこと以外は同じ方法により、TFE
/PSVE共重合体(モル比で83:17)を合成し
た。これを空気極に用いた共重合体と同様の方法で加水
分解した後、酸型化処理して使用した。By adjusting the amount of the polymerization initiator, the pressure during the polymerization, and the PPVE concentration, seven types of ion exchange resins having the content of each polymerization unit shown in Examples 1 to 7 in Table 1 were synthesized. did. In addition, the ion exchange resin used on the fuel electrode side is a PPV in the polymerization method of the copolymer used for the air electrode.
In the same way except that E was not charged,
/ PSVE copolymer (83:17 in molar ratio) was synthesized. This was hydrolyzed in the same manner as the copolymer used for the air electrode, and then subjected to acid-form treatment before use.
【0043】次に、白金が40重量%含まれるようにカ
ーボンブラック粉末に白金を担持してなる触媒と、上記
のように得られたイオン交換樹脂とを、重量比で3:1
となるようにしてエタノール系溶媒に分散させ、空気極
及び燃料極形成用の触媒ペーストとした。Next, a catalyst comprising platinum supported on carbon black powder so as to contain 40% by weight of platinum and the ion exchange resin obtained as described above were mixed in a weight ratio of 3: 1.
Thus, a catalyst paste for forming an air electrode and a fuel electrode was prepared.
【0044】燃料極、空気極ともに集電体としてはカー
ボンペーパー(商品名:TGP−H−060、東レ社
製)を撥水化処理して用いた。またガス拡散層として、
カーボンブラック粉末60重量%とPTFE粉末40重
量%とからなる混合物を混練した後、圧延して厚さ10
0μm、空隙率70%でPTFEがフィブリル化したシ
ートを得て使用した。As the current collector for both the fuel electrode and the air electrode, carbon paper (trade name: TGP-H-060, manufactured by Toray Industries, Inc.) was used after water repellency treatment. As a gas diffusion layer,
After kneading a mixture of 60% by weight of carbon black powder and 40% by weight of PTFE powder, the mixture was rolled to a thickness of 10%.
A sheet in which PTFE was fibrillated at 0 μm and a porosity of 70% was used.
【0045】燃料極、空気極ともに、触媒ペーストを上
記ガス拡散層に塗布し、乾燥することで電極シートを形
成した。このとき、触媒ペーストは、電極シートに含ま
れる白金の量が0.5mg/cm2となるように塗布し
た。電極シートは、燃料極、空気極ともに、有効電極面
積が28cm2となるように切り出した。For both the fuel electrode and the air electrode, a catalyst paste was applied to the gas diffusion layer and dried to form an electrode sheet. At this time, the catalyst paste was applied such that the amount of platinum contained in the electrode sheet was 0.5 mg / cm 2 . The electrode sheet was cut out to have an effective electrode area of 28 cm 2 for both the fuel electrode and the air electrode.
【0046】固体高分子電解質としてパーフルオロカー
ボンスルホン酸型イオン交換膜(商品名:フレミオンH
R、旭硝子社製、イオン交換容量1.1ミリ当量/グラ
ム乾燥樹脂、膜厚50μm)を使用した。空気極及び燃
料極は、触媒ペーストが塗布された面を内側に向けて対
向させ、その間にイオン交換膜を挟み込んだ状態でホッ
トプレスを行うことにより電極シートと膜を接合させ、
接合体を作製した。As a solid polymer electrolyte, a perfluorocarbon sulfonic acid type ion exchange membrane (trade name: Flemion H)
R, manufactured by Asahi Glass Co., Ltd., ion exchange capacity: 1.1 meq / g dry resin, film thickness: 50 μm) was used. The air electrode and the fuel electrode are opposed to each other with the surface coated with the catalyst paste facing inward, and the electrode sheet and the membrane are joined by hot pressing with the ion exchange membrane sandwiched therebetween,
A joined body was produced.
【0047】上記接合体を集電体であるカーボンペーパ
ー2枚の間に挟んで測定セルに設置し、常圧(1at
a)、ガスは水素/空気系、セル温度80℃において
0.5A/cm2の定電流にて連続運転を行い、随時セ
ルの出力電圧を測定し、セルの出力電圧が初期値よりも
50mV低下するのに要した日数を測定した。結果を表
1に示す。The above joined body was placed in a measuring cell with two carbon papers as current collectors interposed therebetween, and was placed under normal pressure (1 at.
a) The gas was a continuous operation at a constant current of 0.5 A / cm 2 at a hydrogen / air system and a cell temperature of 80 ° C., and the output voltage of the cell was measured at any time, and the output voltage of the cell was 50 mV lower than the initial value. The number of days required to decrease was measured. Table 1 shows the results.
【0048】[0048]
【表1】 [Table 1]
【0049】[0049]
【発明の効果】本発明によれば、空気極に含有されるイ
オン交換樹脂は湿潤ガスや生成水によって膨潤しにくく
て含水率が高くなく、かつガス透過性が高いので、フラ
ッディングによる電圧低下が抑制される。したがって、
出力密度が高くかつ出力特性の経時劣化の少ない固体高
分子電解質型燃料電池が得られる。According to the present invention, the ion exchange resin contained in the air electrode is hardly swelled by the wetting gas or the generated water, has a low water content, and has high gas permeability. Is suppressed. Therefore,
A solid polymer electrolyte fuel cell having a high output density and little deterioration of output characteristics over time can be obtained.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J100 AC26P AE38Q AE38R AE39R BA02Q BA02R BA57Q BB12Q BB13Q BB13R BB18R CA05 CA06 JA16 5H018 AA02 AA06 AS02 AS03 BB06 BB08 DD06 DD08 EE03 EE05 EE17 EE19 HH05 5H026 AA02 AA06 CX03 CX04 CX05 EE02 EE05 EE18 EE19 HH05 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J100 AC26P AE38Q AE38R AE39R BA02Q BA02R BA57Q BB12Q BB13Q BB13R BB18R CA05 CA06 JA16 5H018 AA02 AA06 AS02 AS03 BB06 BB08 DD06 DD08 EE03 EE05 A05 EE05 A05 C05 EE19 HH05
Claims (4)
散電極が燃料極及び空気極とされ、膜状固体高分子電解
質の片面に前記燃料極が、もう一方の面に前記空気極
が、それぞれ配置された固体高分子電解質型燃料電池に
おいて、前記空気極に含有される前記イオン交換樹脂
は、下記重合単位A、下記重合単位B及び下記重合単位
Cを含む共重合体からなるイオン交換樹脂であることを
特徴とする固体高分子電解質型燃料電池。 重合単位A:テトラフルオロエチレンに基づく重合単
位、 重合単位B:スルホン酸基を有するパーフルオロビニル
エーテルに基づく重合単位、 重合単位C:イオン交換基又はその前駆体の基を有しな
いパーフルオロビニルエーテルに基づく重合単位。A gas diffusion electrode containing a catalyst and an ion exchange resin is used as a fuel electrode and an air electrode. The fuel electrode is provided on one surface of the solid polymer electrolyte membrane, and the air electrode is provided on the other surface. In each of the arranged solid polymer electrolyte fuel cells, the ion exchange resin contained in the air electrode is an ion exchange resin comprising a copolymer containing the following polymerized units A, B and C. A solid polymer electrolyte fuel cell characterized by the following. Polymerized unit A: Polymerized unit based on tetrafluoroethylene, Polymerized unit B: Polymerized unit based on perfluorovinyl ether having a sulfonic acid group, Polymerized unit C: Based on perfluorovinyl ether having no ion exchange group or its precursor group Polymerized units.
重合単位Cとが合量で前記重合単位Aに対して10〜2
5mol%含まれる請求項1に記載の固体高分子電解質
型燃料電池。2. The copolymer contains the polymerized unit B and the polymerized unit C in a total amount of 10 to 2 with respect to the polymerized unit A.
The solid polymer electrolyte fuel cell according to claim 1, which is contained in an amount of 5 mol%.
記重合単位Aと前記重合単位Cとの合量に対して5mo
l%以上含まれる請求項2に記載の固体高分子電解質型
燃料電池。3. The copolymer according to claim 1, wherein the polymer unit B is 5 mol based on the total amount of the polymer unit A and the polymer unit C.
The solid polymer electrolyte fuel cell according to claim 2, which is contained in an amount of 1% or more.
記重合単位Aと前記重合単位Bとの合量に対して2mo
l%以上含まれる請求項3に記載の固体高分子電解質型
燃料電池。4. In the copolymer, the polymer unit C is 2 mol based on the total amount of the polymer unit A and the polymer unit B.
The solid polymer electrolyte fuel cell according to claim 3, which is contained in an amount of 1% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10365139A JP2000188111A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10365139A JP2000188111A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000188111A true JP2000188111A (en) | 2000-07-04 |
Family
ID=18483527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10365139A Pending JP2000188111A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000188111A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1126537A1 (en) * | 2000-02-15 | 2001-08-22 | Asahi Glass Company Ltd. | Block polymer, process for producing a polymer, and polymer electrolyte fuel cell |
JP2002151088A (en) * | 2000-11-09 | 2002-05-24 | Asahi Glass Co Ltd | Manufacturing method of solid high polymer type fuel cell |
JP2004075979A (en) * | 2002-06-17 | 2004-03-11 | Daikin Ind Ltd | Fluorine-containing polymer dispersion and method for producing the fluorine-containing polymer dispersion |
JPWO2005054363A1 (en) * | 2003-12-01 | 2007-06-28 | ダイキン工業株式会社 | Fluoropolymer liquid composition and method for producing fluorinated crosslinked product |
JP2008202039A (en) * | 2007-01-26 | 2008-09-04 | Asahi Glass Co Ltd | Polymer, solid polymer electrolyte film for solid polymer fuel cell and membrane electrode assembly |
US7488788B2 (en) | 2003-05-13 | 2009-02-10 | Asahi Glass Company, Limited | Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly |
JP5499478B2 (en) * | 2007-01-26 | 2014-05-21 | 旭硝子株式会社 | Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly |
US9109053B2 (en) | 2002-06-17 | 2015-08-18 | Daikin Industries, Ltd. | Fluoropolymer dispersion and process for producing fluoropolymer dispersion |
WO2015182676A1 (en) * | 2014-05-28 | 2015-12-03 | ダイキン工業株式会社 | Ionomer having high oxygen permeability |
WO2019055793A1 (en) * | 2017-09-14 | 2019-03-21 | 3M Innovative Properties Company | Fluoropolymer dispersion, method for making the fluoropolymer dispersion, catalyst ink and polymer electrolyte membrane |
-
1998
- 1998-12-22 JP JP10365139A patent/JP2000188111A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6610789B2 (en) | 2000-02-15 | 2003-08-26 | Asahi Glass Company, Limited | Block polymer, process for producing a polymer, and polymer electrolyte fuel cell |
EP1126537A1 (en) * | 2000-02-15 | 2001-08-22 | Asahi Glass Company Ltd. | Block polymer, process for producing a polymer, and polymer electrolyte fuel cell |
US7470749B2 (en) | 2000-02-15 | 2008-12-30 | Asahi Glass Company, Limited | Block polymer, process for producing a polymer, and polymer electrolyte fuel cell |
JP2002151088A (en) * | 2000-11-09 | 2002-05-24 | Asahi Glass Co Ltd | Manufacturing method of solid high polymer type fuel cell |
JP4529276B2 (en) * | 2000-11-09 | 2010-08-25 | 旭硝子株式会社 | Method for producing polymer electrolyte fuel cell |
US9109053B2 (en) | 2002-06-17 | 2015-08-18 | Daikin Industries, Ltd. | Fluoropolymer dispersion and process for producing fluoropolymer dispersion |
JP2004075979A (en) * | 2002-06-17 | 2004-03-11 | Daikin Ind Ltd | Fluorine-containing polymer dispersion and method for producing the fluorine-containing polymer dispersion |
JP4604453B2 (en) * | 2002-06-17 | 2011-01-05 | ダイキン工業株式会社 | Fluoropolymer dispersion and method for producing fluoropolymer dispersion |
US7488788B2 (en) | 2003-05-13 | 2009-02-10 | Asahi Glass Company, Limited | Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly |
JPWO2005054363A1 (en) * | 2003-12-01 | 2007-06-28 | ダイキン工業株式会社 | Fluoropolymer liquid composition and method for producing fluorinated crosslinked product |
US7847001B2 (en) | 2003-12-01 | 2010-12-07 | Daikin Industries, Ltd. | Liquid fluoropolymer composition and process for producing crosslinked fluorochemical |
JP4839837B2 (en) * | 2003-12-01 | 2011-12-21 | ダイキン工業株式会社 | Fluoropolymer liquid composition and method for producing fluorinated crosslinked product |
JP2008202039A (en) * | 2007-01-26 | 2008-09-04 | Asahi Glass Co Ltd | Polymer, solid polymer electrolyte film for solid polymer fuel cell and membrane electrode assembly |
JP5499478B2 (en) * | 2007-01-26 | 2014-05-21 | 旭硝子株式会社 | Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly |
WO2015182676A1 (en) * | 2014-05-28 | 2015-12-03 | ダイキン工業株式会社 | Ionomer having high oxygen permeability |
JP2016006173A (en) * | 2014-05-28 | 2016-01-14 | ダイキン工業株式会社 | Ionomer having high oxygen permeability |
KR20160145061A (en) | 2014-05-28 | 2016-12-19 | 다이킨 고교 가부시키가이샤 | Ionomer having high oxygen permeability |
CN106459294A (en) * | 2014-05-28 | 2017-02-22 | 大金工业株式会社 | Ionomer having high oxygen permeability |
KR101870064B1 (en) * | 2014-05-28 | 2018-06-22 | 다이킨 고교 가부시키가이샤 | Ionomer having high oxygen permeability |
US10189927B2 (en) | 2014-05-28 | 2019-01-29 | Daikin Industries, Ltd. | Ionomer having high oxygen permeability |
WO2019055793A1 (en) * | 2017-09-14 | 2019-03-21 | 3M Innovative Properties Company | Fluoropolymer dispersion, method for making the fluoropolymer dispersion, catalyst ink and polymer electrolyte membrane |
US11377510B2 (en) | 2017-09-14 | 2022-07-05 | 3M Innovative Properties Company | Fluorinated copolymer and compositions and articles including the same |
US11492431B2 (en) | 2017-09-14 | 2022-11-08 | 3M Innovative Properties Company | Fluorinated copolymer having sulfonyl pendant groups and compositions and articles including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101589323B1 (en) | Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell | |
JP6172142B2 (en) | Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell | |
WO2011013578A1 (en) | Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell | |
US20030008198A1 (en) | Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production | |
JP5565410B2 (en) | Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell | |
KR102333840B1 (en) | Electrolyte material, method for manufacturing the same, and use thereof | |
US8178257B2 (en) | Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell | |
JP2001035510A (en) | Solid high polymer electrolyte fuel cell | |
JP4090108B2 (en) | Membrane / electrode assembly for polymer electrolyte fuel cells | |
JP5521427B2 (en) | Fuel cell system | |
JP3714766B2 (en) | Electrode and membrane / electrode assembly for polymer electrolyte fuel cell | |
JP2000188111A (en) | Solid high polymer electrolyte fuel cell | |
JP4067315B2 (en) | Fluorine ion exchange resin membrane | |
JP4911822B2 (en) | Production method of ion exchange resin membrane | |
JP3588889B2 (en) | Solid polymer electrolyte fuel cell | |
JP5614891B2 (en) | Membrane electrode composite and solid polymer electrolyte fuel cell | |
JP4218255B2 (en) | Method for producing membrane / electrode assembly for polymer electrolyte fuel cell | |
JP2002008677A (en) | Manufacturing method of solid polymer type fuel cell | |
JP5676615B2 (en) | Improved catalyst coated membrane with composite, thin film, and thin cathode for direct methanol fuel cells | |
JP2000188110A (en) | Solid high polymer electrolyte fuel cell and its gas diffusion electrode | |
JP2008210793A (en) | Membrane electrode assembly for solid polymer fuel cell and operating method for solid polymer fuel cell | |
JP2002343380A (en) | Electrolyte film for solid polymer fuel cell, and manufacturing method of the same | |
CN113273006A (en) | Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly | |
JP2006277984A (en) | Manufacturing method of membrane electrode assembly | |
JP2000188109A (en) | Solid high polymer electrolyte fuel cell |