Nothing Special   »   [go: up one dir, main page]

JP2000164629A - Thickwise conductive sheet - Google Patents

Thickwise conductive sheet

Info

Publication number
JP2000164629A
JP2000164629A JP33374598A JP33374598A JP2000164629A JP 2000164629 A JP2000164629 A JP 2000164629A JP 33374598 A JP33374598 A JP 33374598A JP 33374598 A JP33374598 A JP 33374598A JP 2000164629 A JP2000164629 A JP 2000164629A
Authority
JP
Japan
Prior art keywords
insulating sheet
thermosetting insulating
sheet
thermosetting
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33374598A
Other languages
Japanese (ja)
Inventor
Kensuke Nakamura
謙介 中村
Takeshi Hozumi
猛 八月朔日
Hidetaka Hara
英貴 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33374598A priority Critical patent/JP2000164629A/en
Publication of JP2000164629A publication Critical patent/JP2000164629A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure electrical and mechanical connection between a semiconductor chip and a substrate in the thickness direction by a method wherein a conductor is provided penetrating through a thermosetting insulating sheet to be electrically connected to the other surface of the sheet, and the thermosetting insulating sheet is thermally cured at a higher temperature to bond a connector. SOLUTION: A thickwise conductive sheet 3, a semiconductor device 4, and a substrate 6 are stacked up aligning the conductor terminals 2 of the thickwise conductive sheet 3, the electrodes 5 of the semiconductor device 4 as the terminal of a connector, and connection terminals 7 located on the substrate 6 with each other. Then, a thermosetting insulating sheet 1 is heated at a certain temperature at which it hardly gets cured so as to be softened and melted to be fixed, and the conductor terminals 2 of the thickwise conductive sheet 3 are made to penetrate through the thermosetting insulating sheet 1, so that the conductor terminals 2 and the connection terminals 7 are brought into contact with each other and electrically connected together. Furthermore, the thermosetting insulating sheet 1 is thermally cured by heating at a high temperature and bonded to a connector at the same time. By this setup, the semiconductor chip 4 and the substrate 6 can be surely connected together keeping high in thickwise electrical and mechanical connection reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子や電気
・電子部品の複数の電極端子を一括して同時に電気的に
接続することのできる厚さ方向導電シートに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive sheet in a thickness direction which can simultaneously and electrically connect a plurality of electrode terminals of a semiconductor element or an electric / electronic component at the same time.

【0002】[0002]

【従来の技術】近年の電子機器の高機能化並びに軽薄短
小化の要求に伴い、電子部品の高密度集積化さらには高
密度実装化が進んできている。これらの電子機器に使用
される半導体パッケージは小型化かつ多ピン化してきて
おり、また、半導体パッケージを含めた電子部品を実装
する実装用基板も小型化してきている。さらには電子機
器への収納性を高めるためリジット基板とフレキシブル
基板を積層し一体化して折り曲げを可能としたリジット
フレックス基板が実装用基板として使われるようになっ
てきている。
2. Description of the Related Art With the recent demand for higher functionality and lighter, thinner and smaller electronic equipment, high-density integration and high-density mounting of electronic components have been progressing. Semiconductor packages used in these electronic devices have been reduced in size and number of pins, and mounting substrates for mounting electronic components including the semiconductor packages have also been reduced in size. Further, in order to enhance the storability in electronic devices, a rigid-flex board, in which a rigid board and a flexible board are laminated and integrated and can be bent, has been used as a mounting board.

【0003】半導体パッケージはその小型化に伴って、
従来のようなリードフレームを使用した形態のパッケー
ジでは小型化に限界がきているため、最近では回路基板
上にチップを実装したものとしてBGA(Ball G
rid Array)やCSP(Chip Scale
Package)といったエリア実装型の新しいパッ
ケージ方式が提案されている。これらの半導体パッケー
ジにおいて、半導体チップの電極と従来型半導体パッケ
ージのリードフレームの機能を有する半導体パッケージ
用基板と呼ばれるプラスチックやセラミックス等各種材
料を使って構成されるサブストレートの端子との電気的
接続方法として、ワイヤーボンディング方式やTAB
(Tape Automated Bonding)方
式、さらにはFC(Frip Chip)方式などが知
られているが、最近では半導体パッケージの小型化に有
利なFC接続方式を用いたBGAやCSPの構造が盛ん
に提案されている。このFC接続方式は、一般に、半導
体チップの電極にあらかじめ接続用バンプを形成してお
き、このバンプとサブストレート上の端子を位置合わせ
して熱圧着により接続するが、半導体チップの電極にバ
ンプを形成する工程が複雑でバンプ製造コストがかか
り、また、バンプ接続部分の耐湿信頼性を得るためチッ
プとサブストレートとの間隙に、アンダーフィルと呼ば
れる樹脂を充填して接続部分を封止する必要があり、こ
のアンダーフィル樹脂を充填し硬化させる工程が必要と
なるため製造工程が複雑で製造コストが高くなる問題が
ある。そこで、半導体チップとサブストレートの電気的
接続に、バンプに代わる接続材料として異方導電シート
を使用する方法が着目され検討されている。
[0003] With the miniaturization of semiconductor packages,
Since the miniaturization of a package using a conventional lead frame has reached its limit, it has recently been proposed to mount a chip on a circuit board and use a BGA (Ball G
Rid Array) and CSP (Chip Scale)
A new package method of area mounting type such as “Package” has been proposed. In these semiconductor packages, a method of electrically connecting electrodes of a semiconductor chip to terminals of a substrate made of various materials such as plastics and ceramics, which is called a semiconductor package substrate having a function of a lead frame of a conventional semiconductor package. As a wire bonding method or TAB
(Tape Automated Bonding) method and FC (Flip Chip) method are known. Recently, BGA and CSP structures using FC connection method which is advantageous for miniaturization of semiconductor packages have been actively proposed. I have. In this FC connection method, generally, a connection bump is formed in advance on a semiconductor chip electrode, and the bump and the terminal on the substrate are aligned and connected by thermocompression bonding. The formation process is complicated and bump manufacturing costs are high, and it is necessary to fill the gap between the chip and the substrate with a resin called underfill to seal the connection part in order to obtain the moisture resistance reliability of the bump connection part. In addition, there is a problem that a process of filling and curing the underfill resin is required, so that the manufacturing process is complicated and the manufacturing cost is increased. Accordingly, a method of using an anisotropic conductive sheet as a connection material instead of a bump for electrical connection between a semiconductor chip and a substrate has been focused on and studied.

【0004】異方導電シートは、樹脂中に導電性の微粒
子を分散させ、熱圧着時に樹脂が流動して接続端子間に
挟まれた導電性の微粒子によって厚さ方向の電気的接続
を得るものである。前記シートに用いられる異方導電接
着剤は、熱可塑性のものと熱硬化性のものに分類される
が、最近では熱可塑性のものよりも、信頼性の優れたエ
ポキシ樹脂系の熱硬化性のものが広く用いられている。
異方導電シートの使用方法として、被接続体間に異方導
電シートを仮接着し、150〜200℃の温度で加圧
し、被接続体間を異方導電シートに分散させた導電粒子
と接触させ導通をはかると同時に、樹脂を熱硬化し接着
するといった方法が一般的である。
[0004] An anisotropic conductive sheet is a sheet in which conductive fine particles are dispersed in a resin, and the resin flows during thermocompression bonding to obtain electrical connection in the thickness direction by the conductive fine particles sandwiched between connection terminals. It is. The anisotropic conductive adhesive used for the sheet is classified into a thermoplastic and a thermosetting one.Recently, the thermoplastic resin has a more reliable thermosetting property than the thermoplastic one. Things are widely used.
As a method of using the anisotropic conductive sheet, the anisotropic conductive sheet is temporarily bonded between connected objects, pressurized at a temperature of 150 to 200 ° C., and contacted with conductive particles dispersed in the anisotropic conductive sheet between the connected objects. In general, a method is used in which the resin is thermally cured and bonded at the same time as the conduction is performed.

【0005】従来、異方導電シートは、LCD(液晶ディ
スプレイ)とTCP(テープキャリアパッケージ)との接
続や、TCPとPCB(プリント回路板)との接続など回路同
士の電気的接続に使用されている。
Conventionally, anisotropic conductive sheets have been used for electrical connection between circuits such as connection between LCD (liquid crystal display) and TCP (tape carrier package) and connection between TCP and PCB (printed circuit board). I have.

【0006】近年、この異方導電シートの技術を用いた
FC実装の研究が、急速に展開されている。例えば、F
C接続用異方導電シートとして日立化成のフリップタッ
クがある。フリップタックでは、平均粒径3μmの導電
粒子を分散させた異方導電シートを、加圧した状態で1
70〜190℃に加熱し、10〜20s間保つことによ
ってチップと基板を接続し、同時に熱硬化により接着す
るといった特徴を有する。
In recent years, research on FC mounting using the anisotropic conductive sheet technology has been rapidly developed. For example, F
As an anisotropic conductive sheet for C connection, there is a flip-tack made by Hitachi Chemical. In flip-tack, an anisotropic conductive sheet in which conductive particles having an average particle size of 3 μm are dispersed is pressed under pressure in
It is characterized in that the chip and the substrate are connected by heating to 70 to 190 [deg.] C. and maintained for 10 to 20 s, and simultaneously bonded by thermosetting.

【0007】しかしながら、上記のようにして得られる
異方導電シートには次の様な問題がある。まず、熱可塑
性や熱硬化性の樹脂中に導電性微粒子を分散させた構造
のものは、電気的接続を電極と端子間に確率的に存在す
る導電性微粒子によって得ているため、端子が狭ピッチ
になるに従い、導電性微粒子をより微小により多く分散
させる必要があり、これにより、微粒子密度が高まり微
粒子間距離が狭まるため電気的絶縁性が低下する問題
と、微粒子と端子との接続面積が小さくなるため接続抵
抗が上昇する問題がある。また、前記構造の異方導電シ
ートはシート面内で接続点を任意に選べないため、多層
板の層間接続に使用する場合などは、あらかじめ接続す
る端子以外の回路を絶縁樹脂で被覆して、さらに導通さ
せるべき部分のみが圧力を受ける構造としなければなら
ず、実際には多層板の全面に前記構造の異方導電シート
を配して導通を図ることは困難である。
However, the anisotropic conductive sheet obtained as described above has the following problems. First, in the case of a structure in which conductive fine particles are dispersed in a thermoplastic or thermosetting resin, the terminals are narrow because electrical connection is obtained by the conductive fine particles that are stochastically present between the electrodes and the terminals. As the pitch becomes smaller, it is necessary to disperse the conductive fine particles more and more finely, thereby increasing the density of the fine particles and narrowing the distance between the fine particles, thereby deteriorating the electrical insulation property and the connection area between the fine particles and the terminals. There is a problem that the connection resistance increases due to the decrease. In addition, since the anisotropic conductive sheet having the above structure does not allow the connection points to be arbitrarily selected in the sheet surface, for example, when used for interlayer connection of a multilayer board, a circuit other than terminals to be connected is covered with an insulating resin in advance. Further, it is necessary to adopt a structure in which only the portion to be electrically connected receives pressure. In practice, it is difficult to arrange the anisotropic conductive sheet having the above structure on the entire surface of the multilayer board to achieve electrical conduction.

【0008】これに対し、半導体チップとサブストレー
トとの接続や多層板の層間接続などの厚さ方向の電気的
かつ機械的接続を用途とした、端子の狭ピッチ化にも電
気的接続を確実に行うとともに隣接する端子との電気的
絶縁性も有し、かつ低加工コストで製造できるとして、
接着性を持つ絶縁性シートの片方の表面に、導体からな
る独立した端子が配列されており、被接続体との加熱圧
着時に、該絶縁性シートが軟化することによって、上記
の導体が該絶縁性シート反対面に達するまで沈み込み、
該絶縁性シートの反対面との導通が得られると同時に被
接続体との接着が行われることを特徴とする厚さ方向導
電シートが提案された。(特開平9―176994号公
報)該厚さ方向導電シートにおいても、高信頼性のため
に、耐熱性の熱可塑性樹脂を用いた場合、高温での成形
が必要となり、被接続基板等に不良が発生する可能性が
あったり、低温成形すると導通不十分となることがあ
る。また、ある種の熱硬化性樹脂を用いた場合、導体が
該絶縁性シートを貫通する際、熱硬化も進行するため大
きな内部応力を蓄積し、接着後の接続信頼性に欠けるこ
とがある。
On the other hand, the electrical connection is ensured even when the pitch of the terminals is reduced by using the electrical and mechanical connection in the thickness direction such as the connection between the semiconductor chip and the substrate or the interlayer connection of the multilayer board. As well as having electrical insulation between adjacent terminals and can be manufactured at low processing cost.
Independent terminals made of conductors are arranged on one surface of an insulating sheet having adhesiveness, and the above-mentioned conductors are insulated by softening of the insulating sheet at the time of heating and compression bonding with a connected body. Sink until it reaches the opposite side of the
A conductive sheet in the thickness direction has been proposed, in which conduction with the opposite surface of the insulating sheet is obtained and, at the same time, adhesion with the connected object is performed. (Japanese Unexamined Patent Publication No. 9-176994) Even in the thickness direction conductive sheet, when a heat-resistant thermoplastic resin is used for high reliability, molding at a high temperature is required, and the connected substrate and the like are defective. May occur or conduction may be insufficient when molded at a low temperature. In addition, when a certain kind of thermosetting resin is used, when a conductor penetrates the insulating sheet, thermosetting also proceeds, so that a large internal stress is accumulated and connection reliability after bonding may be lacking.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、従来
の異方導電シートや、接着性を持つ絶縁性シートの片
方、あるいは両方の表面に、導体からなる独立した端子
が配列されている厚さ方向導電シートが有する上記の問
題を鑑みて、鋭意研究をした結果なされたものであり、
半導体チップとサブストレートとの接続の厚さ方向の電
気的かつ機械的接続を確実に行うとともに接続後の高信
頼性を有する厚さ方向導電シートを提供することを目的
とする。
SUMMARY OF THE INVENTION Accordingly, the present invention relates to a conventional anisotropic conductive sheet or an insulating sheet having an adhesive property, in which one or both surfaces have independent terminals made of conductors arranged. In view of the above problems that the direction conductive sheet has, it was made as a result of earnest research,
It is an object of the present invention to provide a thickness direction conductive sheet which reliably performs electrical and mechanical connection in a thickness direction of connection between a semiconductor chip and a substrate and has high reliability after connection.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の厚さ方向導電シートでは、接着性を持つ
熱硬化型絶縁シートの片方、あるいは両方の表面に、導
体からなる独立した端子が配列されており、被接続体と
の加熱圧着時に、熱硬化型絶縁シートが軟化溶融するこ
とによって、前記の導体が熱硬化型絶縁シートを貫通
し、該熱硬化型絶縁シートの反対面との導通が得られ、
さらに高温での加熱により熱硬化すると同時に被接続体
との接着が行われることを特徴としている。
In order to achieve the above-mentioned object, in the thickness direction conductive sheet of the present invention, one or both surfaces of the thermosetting insulating sheet having an adhesive property are formed by an independent conductor made of a conductor. Terminals are arranged, and the thermosetting insulating sheet is softened and melted at the time of thermocompression bonding with the connected body, so that the conductor penetrates the thermosetting insulating sheet and is opposite to the thermosetting insulating sheet. Continuity with the surface is obtained,
Further, it is characterized in that it is thermoset by heating at a high temperature and is simultaneously bonded to a connected body.

【0011】[0011]

【発明の実施の形態】以下に本発明について図面を用い
て説明する。図1〜5は本発明の厚さ方向導電シートに
よる半導体素子とサブストレートの接続プロセスの模式
図の一例である。図1は厚さ方向導電シート3を示す例
で、接着性を持つ熱硬化型絶縁シート1の片方の表面に
は導体からなる端子2が配列されている。また、接着性
を持つ熱硬化型絶縁シート1の両方の表面に導体からな
る端子2が配列される厚さ方向導電シート31の構造も
ある(図2)。被接続体を接続する方法の例を図3〜5
に示す。まず厚さ方向導電シート3の導体端子2と、被
接続体の端子である半導体素子の電極5およびサブスト
レート上の接続端子7とを位置合わせして重ね合わせ
(図3)、次に、加熱圧着の第一工程にとして、熱硬化
型絶縁シート1を熱硬化しない温度で加熱して軟化溶融
させ圧着して(図4)、厚さ方向導電シート3の導体端
子2が熱硬化型絶縁シート1を貫通し、導体間を接触さ
せ電気的導通をはかる。さらに加熱圧着の第二工程とし
て、高温での加熱により熱硬化型絶縁シート1を熱硬化
させると同時に被接続体と接着させるものである(図
5)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 to 5 are examples of schematic diagrams of a process for connecting a semiconductor element and a substrate using a conductive sheet in the thickness direction of the present invention. FIG. 1 shows an example in which a thickness direction conductive sheet 3 is shown. Terminals 2 made of a conductor are arranged on one surface of a thermosetting insulating sheet 1 having adhesiveness. There is also a structure of a thickness direction conductive sheet 31 in which terminals 2 made of a conductor are arranged on both surfaces of a thermosetting insulating sheet 1 having adhesiveness (FIG. 2). 3 to 5 show examples of a method of connecting a connected body.
Shown in First, the conductor terminal 2 of the thickness direction conductive sheet 3, the electrode 5 of the semiconductor element which is the terminal of the body to be connected, and the connection terminal 7 on the substrate are aligned and overlapped (FIG. 3). In the first step of crimping, the thermosetting insulating sheet 1 is heated at a temperature that does not harden by heat, softened and melted and crimped (FIG. 4), and the conductor terminals 2 of the thickness direction conductive sheet 3 are converted into thermosetting insulating sheets. 1 through which the conductors are brought into contact to establish electrical continuity. Further, as a second step of thermocompression bonding, the thermosetting insulating sheet 1 is heat-cured by heating at a high temperature, and is simultaneously bonded to a connected body (FIG. 5).

【0012】本発明に用いる熱硬化型絶縁シートは室温
で固形で、熱硬化しない温度で軟化溶融する性質を有す
るものである。また、加熱圧着の第一工程において、熱
硬化型絶縁シートが熱硬化しない軟化溶融温度は、50
℃以上が必要であり使用する熱硬化型絶縁シートの種類
にもよるが、好ましくは50℃から200℃の範囲のも
のが良い。50℃より低い軟化溶融温度の熱硬化型絶縁
シートでは、シート表面にタックが生じ、作業性が著し
く低下する。また、200℃を越える軟化溶融温度の熱
硬化型絶縁シートにおいては、導体端子が熱硬化型絶縁
シートを貫通し、導体間を接触させ電気的導通をはかる
際、導体端子が貫通する前に熱硬化が進行する可能性が
あり、接続不良を起こす。更に、加熱圧着の第二工程に
おける熱硬化型絶縁シートの熱硬化温度は、前記の軟化
溶融温度より10℃以上高いことが重要となる。これ以
下の温度差であると温度制御が難しく、前記同様な接続
不良につながる。
The thermosetting insulating sheet used in the present invention has a property of being solid at room temperature and softening and melting at a temperature that does not cause thermosetting. In the first step of thermocompression bonding, the softening and melting temperature at which the thermosetting insulating sheet is not thermoset is 50
C. or higher is required, and although it depends on the type of thermosetting insulating sheet to be used, it is preferably in the range of 50 to 200.degree. In the case of a thermosetting insulating sheet having a softening and melting temperature lower than 50 ° C., tack occurs on the sheet surface, and workability is significantly reduced. In the case of a thermosetting insulating sheet having a softening and melting temperature exceeding 200 ° C., when the conductor terminals penetrate the thermosetting insulating sheet and make contact between the conductors for electrical conduction, heat is applied before the conductor terminals penetrate. Curing may proceed, causing poor connection. Further, it is important that the thermosetting temperature of the thermosetting insulating sheet in the second step of thermocompression bonding is higher by at least 10 ° C. than the softening and melting temperature. If the temperature difference is smaller than this, it is difficult to control the temperature, which leads to the same connection failure as described above.

【0013】本発明の厚さ方向導電シートで接続される
被接続体としては、半導体素子とリードフレーム、半導
体素子とサブストレート、半導体パッケージと実装用基
板回路、表面実装に使用されるチップ部品と実装用基
板、実装用基板と実装用基板、実装用基板とフレキシブ
ル基板など、厚さ方向に電気的接続を行うものに広く使
用できるが、微細な接続が可能なことから、半導体素子
とサブストレートの電気的接続に使用すると特に有用で
ある。
The objects to be connected by the thickness direction conductive sheet of the present invention include a semiconductor element and a lead frame, a semiconductor element and a substrate, a semiconductor package and a mounting substrate circuit, and chip components used for surface mounting. It can be widely used for electrical connection in the thickness direction, such as mounting substrates, mounting substrates and mounting substrates, mounting substrates and flexible substrates, etc. It is particularly useful when used for the electrical connection of

【0014】本発明の熱硬化型絶縁シートに用いる樹脂
としては、室温では固形であり、熱硬化しない温度で軟
化溶融する熱硬化型樹脂であれば種類を問わない。具体
的には、エポキシ系樹脂、アクリル系樹脂、マレイミド
系樹脂、フッ素系樹脂、ブロモ系樹脂、シリコーン系樹
脂などの樹脂を、1種または、複数種混合して用いるこ
とができる。中でも、エポキシ系樹脂が最も好ましい。
The resin used for the thermosetting insulating sheet of the present invention is not particularly limited as long as it is a solid at room temperature and softens and melts at a temperature that does not cause thermosetting. Specifically, a resin such as an epoxy resin, an acrylic resin, a maleimide resin, a fluorine resin, a bromo resin, and a silicone resin can be used singly or in combination. Among them, epoxy resins are most preferable.

【0015】また、熱硬化型絶縁シートに用いる樹脂
に、シート形成能に優れる熱可塑性樹脂を混合して用い
ても良い。例えば、ポリエステル樹脂類、ポリウレタン
樹脂類、ポリイミド樹脂、ポリブタジエン、ポリプロピ
レン、スチレン−ブタジエン−スチレン共重合体、ポリ
アセタール樹脂、ポリビニルブチラール樹脂、ブチルゴ
ム、クロロプレンゴム、ポリアミド樹脂、アクリロニト
リル−ブタジエン共重合体、アクリロニトリル−ブタジ
エン−メタクリル酸共重合体、アクリロニトリル−ブタ
ジエン−スチレン共重合体、ポリ酢酸ビニル樹脂、ナイ
ロン、スチレン−イソプレン共重合体、スチレン−ブチ
レン−スチレンブロック共重合体、スチレン−エチレン
−ブチレン−スチレンブロック共重合体、ポリメチルメ
タクリレート樹脂などを用いることができる。その中
で、厚さ方向導電シートとした際の接着性、接続信頼性
等の特性を考えると、アクリロニトリル−ブタジエン−
メタクリル酸共重合体、ポリエステル、ポリアミド樹
脂、ナイロン、ポリビニルブチラール樹脂、スチレン−
エチレン−ブチレン−スチレンブロック共重合体等をよ
り好適に用いることができる。
The resin used for the thermosetting insulating sheet may be mixed with a thermoplastic resin having excellent sheet forming ability. For example, polyester resins, polyurethane resins, polyimide resins, polybutadiene, polypropylene, styrene-butadiene-styrene copolymer, polyacetal resin, polyvinyl butyral resin, butyl rubber, chloroprene rubber, polyamide resin, acrylonitrile-butadiene copolymer, acrylonitrile- Butadiene-methacrylic acid copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl acetate resin, nylon, styrene-isoprene copolymer, styrene-butylene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer A polymer, a polymethyl methacrylate resin, or the like can be used. Among them, considering the properties such as adhesiveness and connection reliability when the thickness direction conductive sheet is formed, acrylonitrile-butadiene-
Methacrylic acid copolymer, polyester, polyamide resin, nylon, polyvinyl butyral resin, styrene
An ethylene-butylene-styrene block copolymer or the like can be more preferably used.

【0016】本発明の熱硬化型絶縁シートに用いる樹脂
の硬化剤として、60℃以上の温度で硬化を開始する硬
化剤であれば種類を問わない。具体的には、エポキシ系
樹脂の硬化剤として、潜伏性硬化剤であるジシアンジア
ミド、イミダゾール化合物、有機酸ヒドラジド、ジアミ
ノマレオニトリル、メラミン誘導体、アミンイミド化合
物、芳香族ジアゾニウム塩、ジアリルヨードニウム塩、
トリアリルスルホニウム塩、トリアリルセレニウム塩、
ケチミン化合物等を一種または、複数種混合して用いる
ことができる。また、熱硬化型絶縁シートに用いる樹脂
に、着色料や、無機充填材、各種のカップリング剤など
を添加しても良い。
The curing agent for the resin used in the thermosetting insulating sheet of the present invention is not particularly limited as long as it is a curing agent which starts curing at a temperature of 60 ° C. or higher. Specifically, as a curing agent for the epoxy resin, a latent curing agent such as dicyandiamide, imidazole compound, organic acid hydrazide, diaminomaleonitrile, melamine derivative, amine imide compound, aromatic diazonium salt, diallyliodonium salt,
Triallylsulfonium salts, triallylselenium salts,
A ketimine compound or the like can be used alone or as a mixture of two or more. Further, a colorant, an inorganic filler, various coupling agents, and the like may be added to the resin used for the thermosetting insulating sheet.

【0017】本発明の熱硬化型絶縁シートの製造方法と
しては、熱硬化性樹脂または熱硬化性樹脂と熱可塑性樹
脂の混合物を溶剤に溶かしたワニスを金属箔上に、バー
コータ、ダイコータ、コンマコータを用いて塗布する方
法や、スピンコートなどの方法が使用できる。その後、
熱硬化型絶縁シートが熱硬化しない温度で十分に乾燥さ
せることが必要である。金属箔には、通常、圧延銅箔や
電解銅箔、ステンレス箔、ニッケル箔、チタン箔、半田
箔が使用できる。この金属泊は、導体端子の形成に利用
でき、圧延銅箔や電解銅箔などの銅箔を使用することに
よって、電気抵抗の低い接続を可能とする。
As a method for producing the thermosetting insulating sheet of the present invention, a varnish obtained by dissolving a thermosetting resin or a mixture of a thermosetting resin and a thermoplastic resin in a solvent is provided on a metal foil by using a bar coater, a die coater and a comma coater. And a method such as spin coating can be used. afterwards,
It is necessary to sufficiently dry the thermosetting insulating sheet at a temperature at which the thermosetting insulating sheet does not thermoset. Usually, a rolled copper foil, an electrolytic copper foil, a stainless steel foil, a nickel foil, a titanium foil, and a solder foil can be used as the metal foil. This metal stay can be used to form a conductor terminal, and by using a copper foil such as a rolled copper foil or an electrolytic copper foil, connection with low electric resistance can be achieved.

【0018】本発明の厚さ方向導電シートの熱硬化型絶
縁シートの表面に導体端子を形成する方法としては、前
記の金属泊を用いる、または、あらかじめ熱硬化型絶縁
シートと金属箔をラミネートしておき、この金属箔をエ
ッチングして形成する方法、金属箔上に熱硬化型絶縁シ
ートに用いる樹脂を流延塗布後、乾燥製膜して得られた
構成物の金属箔をエッチングして形成する方法、また
は、熱硬化型絶縁シートの表面にマスクをかけてメッキ
によって形成する方法などを用いることができる。導体
端子は任意のピッチで格子状に配列する場合と、被接続
体の端子と対応するように位置を合わせて配列する場合
があり、目的に応じて選択することができる。また、導
体端子の高さは、使用する熱硬化型絶縁シートの厚みの
0.7〜1.5倍の高さが好ましい。高さが熱硬化型絶
縁シートの0.7倍よりも低いと、加熱圧着時に導体端
子が熱硬化型絶縁シートの裏面にまで達せず、表裏の導
通を得ることができない。また、1.5倍よりも高い
と、加熱圧着した時に導体端子が柱となり被接続体と熱
硬化型絶縁シートに間隙ができ接着させることができず
電気的信頼性が落ちる。導体端子は電気的接合をより高
める目的でその表面に第二の導体層を形成することもで
きる。その方法としては、例えば電解メッキや無電解メ
ッキなどが用いられ、導体には、例えば金、錫、鉛、イ
ンジウムなどの金属が用いることができる。
As a method of forming the conductor terminals on the surface of the thermosetting insulating sheet of the thickness direction conductive sheet of the present invention, the above-mentioned metal pad is used, or the thermosetting insulating sheet and the metal foil are laminated in advance. In advance, a method of forming the metal foil by etching, the resin used for the thermosetting insulating sheet is cast and applied on the metal foil, and then the metal foil of the composition obtained by dry film formation is etched and formed. Or a method in which a mask is formed on the surface of the thermosetting insulating sheet by plating, or the like. The conductor terminals may be arranged in a lattice at an arbitrary pitch, or may be arranged so as to correspond to the terminals of the body to be connected, and may be selected according to the purpose. The height of the conductor terminal is preferably 0.7 to 1.5 times the thickness of the thermosetting insulating sheet to be used. If the height is lower than 0.7 times that of the thermosetting insulating sheet, the conductor terminals do not reach the back surface of the thermosetting insulating sheet at the time of thermocompression bonding, so that conduction between the front and back cannot be obtained. On the other hand, if it is higher than 1.5 times, the conductor terminals become pillars when heated and press-bonded, and a gap is formed between the connected body and the thermosetting insulating sheet, so that they cannot be bonded to each other. A second conductor layer may be formed on the surface of the conductor terminal for the purpose of further improving electrical connection. For example, electrolytic plating or electroless plating is used as the method, and a metal such as gold, tin, lead, or indium can be used for the conductor.

【0019】[0019]

【実施例】以下、本発明の手段を用いた実施例を示す
が、なんらこれらに限定されない。 (実施例1)エポキシ樹脂(エポキシ当量620、軟化
点90℃)100部とビスフェノールF型エポキシ樹脂
(エポキシ当量175)40部をメチルエチルケトン
(以下MEKと略す)180部に攪拌しながら溶解し、
そこへ硬化剤として2−フェニル−4−メチルイミダゾ
ール4部、無機充填材としてシリカ(平均粒径1μm)
40部を添加して熱硬化型絶縁シート用ワニスを作製し
た。このワニスを18μm厚の圧延銅箔(日本鉱業製)
上にギャップ間隔を40μmに調節したコンマコータで
流延塗布後、80℃で20分乾燥させ、絶縁層厚が15
μmの銅箔付き熱硬化型絶縁シートを得た。得られた熱
硬化型絶縁シートの軟化溶融開始温度は、60℃であ
り、反応開始温度が100℃であった。被着体として回
路面の周辺に外部接続用の電極を持った半導体素子と、
半導体素子の電極に対応する位置に接続端子をもうけた
サブストレートを準備した。前記銅箔付き熱硬化型絶縁
シートの銅箔面にドライフィルムレジストをラミネート
し、マスク露光、ドライフィルム現像、エッチング及び
ドライフィルム剥離の工程により、半導体素子の電極に
対応する位置に導体端子を形成した厚さ方向導電シート
を得た。厚さ方向導電シートの導体端子と、半導体素子
の電極、およびサブストレート上の対応する端子とを、
各々の電極端子位置を合わせて重ね合わせた後に、半導
体素子面からヒートブロックで熱硬化型絶縁シートが8
0℃になるよう加熱しながら10kgf/cm2の圧力で加圧
して、導体端子を熱硬化型絶縁シートに貫通させた。熱
硬化型絶縁シートの反対面にまで到達した導体端子は、
半導体素子の電極及びサブストレート上の接続端子と接
合され電気導通が得られた。さらに、該熱硬化型絶縁シ
ートが180℃になるよう加熱し、熱硬化型絶縁シート
を熱硬化させることによって半導体素子の表面とサブス
トレートの表面の各々を接着した。
EXAMPLES Examples using the means of the present invention will be described below, but the present invention is not limited to these examples. Example 1 100 parts of an epoxy resin (epoxy equivalent: 620, softening point: 90 ° C.) and 40 parts of a bisphenol F type epoxy resin (epoxy equivalent: 175) were dissolved in 180 parts of methyl ethyl ketone (hereinafter abbreviated as MEK) with stirring,
4-phenyl-4-methylimidazole (4 parts) as a curing agent and silica (average particle size: 1 μm) as an inorganic filler
By adding 40 parts, a varnish for a thermosetting insulating sheet was prepared. This varnish is rolled into 18 μm thick rolled copper foil (manufactured by Nippon Mining)
After casting with a comma coater with the gap interval adjusted to 40 μm, it was dried at 80 ° C. for 20 minutes, and the thickness of the insulating layer was 15 μm.
A thermosetting insulating sheet with a copper foil of μm was obtained. The softening and melting onset temperature of the obtained thermosetting insulating sheet was 60 ° C., and the reaction onset temperature was 100 ° C. A semiconductor element having external connection electrodes around the circuit surface as an adherend,
A substrate having connection terminals at positions corresponding to the electrodes of the semiconductor element was prepared. Laminating a dry film resist on the copper foil surface of the thermosetting insulating sheet with copper foil, and forming conductor terminals at positions corresponding to the electrodes of the semiconductor element by mask exposure, dry film development, etching and dry film peeling steps. The obtained thickness direction conductive sheet was obtained. Conductor terminals of the thickness direction conductive sheet, electrodes of the semiconductor element, and corresponding terminals on the substrate,
After the respective electrode terminal positions are aligned and overlapped, the thermosetting insulating sheet is heated from the semiconductor element surface by a heat block.
While heating to 0 ° C., pressure was applied at a pressure of 10 kgf / cm 2 to penetrate the conductor terminals through the thermosetting insulating sheet. The conductor terminal that reaches the opposite side of the thermosetting insulating sheet is
It was joined to the electrode of the semiconductor element and the connection terminal on the substrate to obtain electrical continuity. Further, the thermosetting insulating sheet was heated to 180 ° C., and the thermosetting insulating sheet was thermoset to bond the surface of the semiconductor element and the surface of the substrate.

【0020】(実施例2)エポキシ樹脂(エポキシ当量
620、軟化点90℃)に替えエポキシ樹脂(エポキシ
当量920、軟化点110℃)、2−フェニル−4−メ
チルイミダゾールに替え2−フェニル−4−メチル−5
−ヒドロキシメチルイミダゾールを用いた以外は、実施
例1と同様にして軟化溶融開始温度が80℃であり、反
応開始温度が120℃である熱硬化型絶縁シートを得
た。この熱硬化型絶縁シートを用い、半導体素子面から
ヒートブロックで熱硬化型絶縁シートが100℃になる
よう加熱した以外は、実施例1と同様にしてサンプルを
作製した。
Example 2 Epoxy resin (epoxy equivalent: 620, softening point: 90 ° C.) was replaced by epoxy resin (epoxy equivalent: 920, softening point: 110 ° C.), and 2-phenyl-4 was replaced by 2-phenyl-4-methylimidazole. -Methyl-5
A thermosetting insulating sheet having a softening / melting start temperature of 80 ° C and a reaction start temperature of 120 ° C was obtained in the same manner as in Example 1 except that -hydroxymethylimidazole was used. Using this thermosetting insulating sheet, a sample was prepared in the same manner as in Example 1 except that the thermosetting insulating sheet was heated from a semiconductor element surface to 100 ° C. by a heat block.

【0021】(実施例3)エポキシ樹脂(エポキシ当量
620、軟化点90℃)に替えエポキシ樹脂(エポキシ
当量920、軟化点110℃)、2−フェニル−4−メ
チルイミダゾールに替え2−フェニル−4、5−ジヒド
ロキシメチルイミダゾールを用いた以外は、実施例1と
同様にして軟化溶融開始温度が80℃であり、反応開始
温度が150℃である熱硬化型絶縁シートを得た。この
熱硬化型絶縁シートを用い、半導体素子面からヒートブ
ロックで熱硬化型絶縁シートが100℃になるよう加熱
した以外は、実施例1と同様にしてサンプルを作製し
た。
Example 3 Epoxy resin (epoxy equivalent: 620, softening point: 90 ° C.) was changed to epoxy resin (epoxy equivalent: 920, softening point: 110 ° C.), and 2-phenyl-4 was changed to 2-phenyl-4-methylimidazole. A thermosetting insulating sheet having a softening / melting start temperature of 80 ° C and a reaction start temperature of 150 ° C was obtained in the same manner as in Example 1 except for using 1,5-dihydroxymethylimidazole. Using this thermosetting insulating sheet, a sample was prepared in the same manner as in Example 1 except that the thermosetting insulating sheet was heated from a semiconductor element surface to 100 ° C. by a heat block.

【0022】(比較例1)エポキシ樹脂(エポキシ当量
1800、軟化点130℃)100部とビスフェノール
F型エポキシ樹脂(エポキシ当量175)30部をME
K170部に攪拌しながら溶解し、そこへ硬化剤として
2−フェニル−4−メチルイミダゾール4部、シリカ
(平均粒径1μm)40部を添加して熱硬化型絶縁シー
ト用ワニスを作製した。このワニスを用い、実施例1と
同様にして軟化溶融開始温度が120℃であり、反応開
始温度が100℃である熱硬化型絶縁シートを得た。こ
の熱硬化型絶縁シートを用い、半導体素子面からヒート
ブロックで熱硬化型絶縁シートが130℃になるよう加
熱した以外は、実施例1と同様にしてサンプルを作製し
た。
Comparative Example 1 100 parts of an epoxy resin (epoxy equivalent 1800, softening point 130 ° C.) and 30 parts of a bisphenol F type epoxy resin (epoxy equivalent 175) were mixed with ME.
K170 was dissolved with stirring, and 4 parts of 2-phenyl-4-methylimidazole as a curing agent and 40 parts of silica (average particle size: 1 μm) were added thereto to prepare a varnish for a thermosetting insulating sheet. Using this varnish, a thermosetting insulating sheet having a softening / melting start temperature of 120 ° C. and a reaction start temperature of 100 ° C. was obtained in the same manner as in Example 1. Using this thermosetting insulating sheet, a sample was produced in the same manner as in Example 1 except that the thermosetting insulating sheet was heated from a semiconductor element surface to 130 ° C. by a heat block.

【0023】(比較例2)エポキシ樹脂(エポキシ当量
620、軟化点90℃)70部とビスフェノールF型エ
ポキシ樹脂(エポキシ当量175)70部をMEK18
0部に攪拌しながら溶解し、そこへ硬化剤として2−フ
ェニル−4−メチル−5−ヒドロキシメチルイミダゾー
ル4部、シリカ(平均粒径1μm)40部を添加して熱
硬化型絶縁シートワニスを作製した。このワニスを用
い、実施例1と同様にして軟化溶融開始温度が40℃で
あり、反応開始温度が120℃である熱硬化型絶縁シー
トを得た。この熱硬化型絶縁シートを用い、半導体素子
面からヒートブロックで熱硬化型絶縁シートが60℃に
なるよう加熱した以外は、実施例1と同様にしてサンプ
ルを作製した。
Comparative Example 2 70 parts of an epoxy resin (epoxy equivalent: 620, softening point: 90 ° C.) and 70 parts of a bisphenol F type epoxy resin (epoxy equivalent: 175) were added to MEK18.
0 parts were dissolved with stirring, and 4 parts of 2-phenyl-4-methyl-5-hydroxymethylimidazole as a curing agent and 40 parts of silica (average particle size: 1 μm) were added thereto to prepare a thermosetting insulating sheet varnish. Produced. Using this varnish, a thermosetting insulating sheet having a softening / melting start temperature of 40 ° C. and a reaction start temperature of 120 ° C. was obtained in the same manner as in Example 1. Using this thermosetting insulating sheet, a sample was prepared in the same manner as in Example 1 except that the thermosetting insulating sheet was heated from a semiconductor element surface to 60 ° C. by a heat block.

【0024】表1に厚さ方向導電シートの熱特性、加工
条件及び信頼性試験の結果を示す。得られたサンプルの
接続抵抗を四端子法により測定し、接続抵抗が10mΩ
以下の場合、印とした。また、IRリフロー処理を2回行
った後、冷熱サイクル試験(-55〜125℃:各30
分、1000cyc、室温さらし時間5分)を行い、試
験後の接続抵抗がほとんど変化しなかった場合、○印と
した。
Table 1 shows the thermal properties, processing conditions and results of reliability tests of the conductive sheet in the thickness direction. The connection resistance of the obtained sample was measured by a four-terminal method, and the connection resistance was 10 mΩ.
Marked in the following cases. Further, after performing the IR reflow treatment twice, a cooling / heating cycle test (−55 to 125 ° C .: 30 for each)
, 1000 cyc, room temperature exposure time of 5 minutes), and when the connection resistance after the test hardly changed, it was marked with ○.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1においては、反応開始温度が軟化
溶融開始温度より高いため成形時に熱硬化が進行し、導
体が熱硬化型絶縁シートを貫通することができず電気的
接続が得られなかった。また、導体が熱硬化型絶縁シー
トを貫通しても、大きな樹脂変形により内部応力が蓄積
され接続信頼性は得られなかった。
In Comparative Example 1, since the reaction start temperature was higher than the softening and melting start temperature, thermosetting proceeded during molding, and the conductor could not penetrate the thermosetting insulating sheet, and electrical connection could not be obtained. . Further, even when the conductor penetrated the thermosetting insulating sheet, internal stress was accumulated due to large resin deformation, and connection reliability could not be obtained.

【0027】比較例2においては、熱硬化型絶縁シート
の軟化溶融温度が40℃と室温25℃に近いため、該熱
硬化型絶縁シートの表面のタックが強すぎて、前記銅箔
付き熱硬化型絶縁シートの銅箔面にドライフィルムレジ
ストをラミネートする際にラミネート機のロールに該熱
硬化型絶縁シートがこびりつき、ドライフィルムレジス
トをラミネートする事ができなかった。
In Comparative Example 2, since the softening and melting temperature of the thermosetting insulating sheet was 40 ° C. and close to room temperature of 25 ° C., the tack of the surface of the thermosetting insulating sheet was too strong and the thermosetting insulating sheet was heat-cured. When laminating the dry film resist on the copper foil surface of the mold insulating sheet, the thermosetting insulating sheet sticked to the roll of the laminating machine, and the dry film resist could not be laminated.

【0028】[0028]

【発明の効果】本発明の厚さ方向導電シートによれば、
従来の異方導電シートに比べ、半導体チップとサブスト
レートとの接続、多層板の層間接続などの厚さ方向の電
気的接続と機械的接続を確実に行うことができ、接続後
の信頼性は高くなる。
According to the thickness direction conductive sheet of the present invention,
Compared to conventional anisotropic conductive sheet, electrical connection and mechanical connection in the thickness direction such as connection between semiconductor chip and substrate, interlayer connection of multilayer board, etc. can be reliably performed, and reliability after connection is higher. Get higher.

【図面の簡単な説明】[Brief description of the drawings]

【図1】接着性を持つ熱硬化型絶縁シートの片方の表面
に導体端子を配列した厚さ方向導電シートの模式図
FIG. 1 is a schematic view of a thickness direction conductive sheet in which conductive terminals are arranged on one surface of an adhesive thermosetting insulating sheet.

【図2】接着性を持つ熱硬化型絶縁シートの両方の表面
に導体端子を配列した厚さ方向導電シートの模式図
FIG. 2 is a schematic view of a thickness direction conductive sheet in which conductor terminals are arranged on both surfaces of a thermosetting insulating sheet having adhesiveness.

【図3】片方の表面に導体端子を配列した厚さ方向導電
シートの導体端子と半導体素子の電極およびサブストレ
ート上の接続端子とを位置合わせした模式図
FIG. 3 is a schematic diagram in which conductor terminals of a thickness direction conductive sheet having conductor terminals arranged on one surface are aligned with electrodes of a semiconductor element and connection terminals on a substrate.

【図4】熱硬化絶縁シートを加熱して軟化溶融し圧着す
る加熱圧着の第一工程の模式図
FIG. 4 is a schematic diagram of a first step of heat compression bonding in which a thermosetting insulating sheet is heated, softened, melted, and compressed.

【図5】導体間を接触させ高温加熱で熱硬化型絶縁シー
トを熱硬化させると同時に被接触体と接着する加熱圧着
の第二工程の模式図
FIG. 5 is a schematic view of a second step of thermocompression bonding in which conductors are brought into contact with each other to thermally cure a thermosetting insulating sheet by heating at a high temperature, and at the same time adhere to a contacted body.

【符号の説明】[Explanation of symbols]

1 :熱硬化型絶縁シート 2 :導体端子 3 :厚さ方向導電シート 31:厚さ方向導電シート 4 :半導体素子 5 :半導体素子の電極 6 :サブストレート 7 :サブストレート上の接続端子 8 :ヒートブロック 1: Thermosetting insulating sheet 2: Conductive terminal 3: Thickness conductive sheet 31: Thickness conductive sheet 4: Semiconductor element 5: Electrode of semiconductor element 6: Substrate 7: Connection terminal on substrate 8: Heat block

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 接着性を持つ熱硬化型絶縁シートの片
方、あるいは両方の表面に、導体からなる独立した端子
が配列されており、被接続体との加熱圧着時に、熱硬化
型絶縁シートが軟化溶融することによって、前記の導体
が熱硬化型絶縁シートに貫通し、該熱硬化型絶縁シート
の反対面との導通が得られ、さらに高温での加熱時に熱
硬化すると同時に被接続体との接着が行われることを特
徴とする厚さ方向導電シート。
An independent terminal made of a conductor is arranged on one or both surfaces of a thermosetting insulating sheet having an adhesive property. By softening and melting, the conductor penetrates the thermosetting insulating sheet, and conduction with the opposite surface of the thermosetting insulating sheet is obtained. A conductive sheet in the thickness direction, wherein the sheet is bonded.
【請求項2】 熱硬化型絶縁シートが、室温では固形で
あり、熱硬化しない温度で軟化溶融することを特徴とす
る請求項1記載の厚さ方向導電シート。
2. The thickness direction conductive sheet according to claim 1, wherein the thermosetting insulating sheet is solid at room temperature and is softened and melted at a temperature that does not cause thermosetting.
【請求項3】 熱硬化型絶縁シートが、室温では固形で
あり、50℃以上の熱硬化しない任意の温度で軟化溶融
し、該軟化溶融温度より10℃以上の高い温度で熱硬化
することを特徴とする請求項1記載の厚さ方向導電シー
ト。
3. The thermosetting insulating sheet is a solid at room temperature, softens and melts at an arbitrary temperature of 50 ° C. or more that does not thermoset, and thermosets at a temperature higher than the softening melting temperature by 10 ° C. or more. The thickness direction conductive sheet according to claim 1, characterized in that:
JP33374598A 1998-11-25 1998-11-25 Thickwise conductive sheet Pending JP2000164629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33374598A JP2000164629A (en) 1998-11-25 1998-11-25 Thickwise conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33374598A JP2000164629A (en) 1998-11-25 1998-11-25 Thickwise conductive sheet

Publications (1)

Publication Number Publication Date
JP2000164629A true JP2000164629A (en) 2000-06-16

Family

ID=18269493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33374598A Pending JP2000164629A (en) 1998-11-25 1998-11-25 Thickwise conductive sheet

Country Status (1)

Country Link
JP (1) JP2000164629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181760A (en) * 2010-03-02 2011-09-15 Sumitomo Bakelite Co Ltd Method of connecting terminals, and method of manufacturing semiconductor device using the same, and method of forming connection terminal
JP2013219286A (en) * 2012-04-11 2013-10-24 Hitachi Chemical Co Ltd Adhesive for semiconductor encapsulation and film adhesive for semiconductor encapsulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181760A (en) * 2010-03-02 2011-09-15 Sumitomo Bakelite Co Ltd Method of connecting terminals, and method of manufacturing semiconductor device using the same, and method of forming connection terminal
JP2013219286A (en) * 2012-04-11 2013-10-24 Hitachi Chemical Co Ltd Adhesive for semiconductor encapsulation and film adhesive for semiconductor encapsulation

Similar Documents

Publication Publication Date Title
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
US6270363B1 (en) Z-axis compressible polymer with fine metal matrix suspension
TW523885B (en) Manufacturing method of electric device
US7901768B2 (en) Multilayer anisotropic conductive adhesive and connection structure using the same
US7943001B2 (en) Process for producing multilayer board
WO2001086716A1 (en) Semiconductor device mounting circuit board, method of producing the same, and method of producing mounting structure using the same
WO2005027604A1 (en) Method for mounting electronic component
US20080283280A1 (en) Method for Connecting Printed Circuit Boards
US8470438B2 (en) Electrode-connecting structure, conductive adhesive used for the same, and electronic apparatus
KR20120022580A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2000164629A (en) Thickwise conductive sheet
JP2008244191A (en) Method for manufacturing circuit board including built-in components
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JP3092118B2 (en) Conductive particle transfer type anisotropic conductive film and electrical connection method
JP3438583B2 (en) Anisotropic conductive film connection method
JP4378788B2 (en) IC chip connection method
JP2000208662A (en) Semiconductor mounting substrate, manufacture of the same, and mounting method for semiconductor chip
JP2919976B2 (en) Semiconductor device, wiring board for mounting semiconductor, and method of manufacturing semiconductor device
JP4181239B2 (en) Connecting member
JPH11260961A (en) Board for mounting semiconductor and its manufacture, and method of mounting semiconductor chip
JPH11135173A (en) Thickness direction conductive sheet and manufacture thereof
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
JP2000323620A (en) Semiconductor mounting board and manufacture thereof, and method of mounting semiconductor chip
JP3882967B2 (en) Circuit board manufacturing method
JPH1154180A (en) Thickness directional conductive sheet