JP2000162387A - Method and device for judging exchange timing of chemical filter - Google Patents
Method and device for judging exchange timing of chemical filterInfo
- Publication number
- JP2000162387A JP2000162387A JP10335277A JP33527798A JP2000162387A JP 2000162387 A JP2000162387 A JP 2000162387A JP 10335277 A JP10335277 A JP 10335277A JP 33527798 A JP33527798 A JP 33527798A JP 2000162387 A JP2000162387 A JP 2000162387A
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- filter
- chemical filter
- concentration
- timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ケミカルフィルタ
ーの交換時期判定方法及び装置に係わり、特に原子力発
電所,再処理工場,放射性同位元素取扱施設、その他の
原子力施設から発生する放射性オフガスを除去するケミ
カルフィルター装置の交換時期判定方法及び装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for judging the replacement time of a chemical filter, and in particular, to remove radioactive off-gas generated from a nuclear power plant, a reprocessing plant, a radioisotope handling facility, and other nuclear facilities. The present invention relates to a method and an apparatus for determining a replacement time of a chemical filter device.
【0002】[0002]
【従来の技術】原子力発電所や核燃料再処理工場などの
原子力施設においては、環境保全の立場から、放射性物
質の放出防止対策が講じられている。特に、気体として
発生する放射性よう素(化学形態、単体よう素:I2,
ヨウ化メチル:CH3Iなど)の放出防止対策が重要視
されてきた。この結果、原子力発電所や核燃料再処理工
場の排気系に、銀添着吸着剤などのよう素吸着剤を充填
したよう素除去フィルターが設置されている。2. Description of the Related Art At nuclear facilities such as a nuclear power plant and a nuclear fuel reprocessing plant, measures to prevent the release of radioactive substances are taken from the viewpoint of environmental protection. In particular, radioactive iodine generated as a gas (chemical form, simple iodine: I2
(Methyl iodide: CH3I, etc.) has been emphasized. As a result, an iodine removal filter filled with an iodine adsorbent such as a silver-impregnated adsorbent is installed in an exhaust system of a nuclear power plant or a nuclear fuel reprocessing plant.
【0003】銀添着吸着剤は、単体よう素やヨウ化メチ
ルのよう素をヨウ化銀として化学的に銀添着吸着剤上に
固定化するものである。これらの吸着剤は使用済後、放
射性廃棄物として処分されるため、廃棄物発生量低減と
いう見地からできるだけ長く使用する必要がある。[0003] The silver-impregnated adsorbent is a substance for chemically fixing simple iodine or iodine such as methyl iodide as silver iodide on the silver-impregnated adsorbent. Since these adsorbents are disposed of as radioactive waste after use, they must be used as long as possible from the viewpoint of reducing the amount of waste generated.
【0004】フィルターの交換時期については、HEP
AフィルターやULPAフィルターなど微粒子除去フィ
ルターについては圧力損失で検知することができるが、
ケミカルフィルターはガス成分を除去対象とするので、
圧力損失等では検知することができなかった。[0004] Regarding the time to replace the filter, see HEP
For particulate filter such as A filter and ULPA filter, it can be detected by pressure loss,
Since chemical filters target gas components,
It could not be detected by pressure loss or the like.
【0005】ケミカルフィルターの交換時期判定方法と
しては、例えば特開平9−280640 号公報に開示されてい
るようにフィルター出口側のガス濃度が所定の濃度を超
えたときをケミカルフィルターの実効的な寿命と判断す
る方法やまた特開平10−137522号公報に開示されている
ように、本体ケミカルフィルターと同一の素材を充填し
たバイパスを設け、該バイパス内の濃度を測定すること
により、本体ケミカルフィルターの交換時期を判定する
方法などがある。As a method for determining the replacement time of a chemical filter, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-280640, the effective life of the chemical filter is determined when the gas concentration at the filter outlet side exceeds a predetermined concentration. As disclosed in Japanese Patent Application Laid-Open No. Hei 10-137522, a bypass filled with the same material as the main body chemical filter is provided, and by measuring the concentration in the bypass, the main body chemical filter is removed. There is a method of determining the replacement time.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来技術には次のような問題がある。除去対象成分を化学
反応によって除去するケミカルフィルターは、フィルタ
ー内で反応が全て終了する寿命となる。その寿命は、環
境中の放射性ガス濃度,湿度,フィルターの面積及び厚
さ(反応物質の量),フィルターに送る風量などに依存
する。However, the above prior art has the following problems. A chemical filter that removes a component to be removed by a chemical reaction has a life in which all the reactions are completed in the filter. Its life depends on the concentration of radioactive gas in the environment, humidity, the area and thickness of the filter (the amount of reactants), the amount of air sent to the filter, and the like.
【0007】ケミカルフィルターはある厚さのフィルタ
ーに放射性ガスを通したとき、まず表面部(上流側)で
よく反応し下流側では次第に低濃度化しているため反応
が鈍くなる。よって、フィルターは上流側から劣化が進
んでいく。このため、下流側の濃度を測定するだけで寿
命を決定する交換時期推定方法では、一般にフィルター
の上流側では反応が終了しているが、下流側では未だ反
応物質が残っているという状態になる。すなわち、ケミ
カルフィルターは、フィルター全体としては未だ吸着能
力を残したままの状態で交換時期と判定してしまう。ケ
ミカルフィルターの寿命はそのままランニングコストに
跳ね返るだけでなく、除去対象成分を吸着除去したケミ
カルフィルターは放射性廃棄物として処分しなくてはな
らないため、でき得る限りその放射性廃棄物量を低減し
なければならない。When a radioactive gas is passed through a filter having a certain thickness, the chemical filter first reacts well on the surface (upstream side) and gradually decreases in concentration on the downstream side, so that the reaction becomes slow. Therefore, the filter deteriorates from the upstream side. For this reason, in the replacement time estimation method in which the life is determined only by measuring the concentration on the downstream side, generally, the reaction is completed on the upstream side of the filter, but the reactant remains on the downstream side. . That is, the chemical filter determines that it is time to replace the chemical filter in a state where the entire filter still has the adsorption ability. The service life of a chemical filter is not only directly reflected in the running cost, but also the chemical filter from which the components to be removed have been adsorbed and removed must be disposed of as radioactive waste. Therefore, the amount of radioactive waste must be reduced as much as possible.
【0008】また、本体ケミカルフィルターと同一の素
材を充填したバイパスを設け、該バイパス内の濃度を測
定することにより、本体ケミカルフィルターの交換時期
を判定する方法は本体とは別にバイパスラインを設ける
ため、新たな配管や遮蔽用の設備を設置しなければなら
ないため、装置がコンパクトであるとは言えない。更
に、本体ケミカルフィルターと同様にバイパスライン上
のケミカルフィルターも交換するため、交換作業に余計
な作業が増えるため、ランニングコストを増大させるこ
とになる。Further, a method of determining the replacement time of the main body chemical filter by providing a bypass filled with the same material as the main body chemical filter and measuring the concentration in the bypass is to provide a bypass line separately from the main body. However, since new piping and shielding equipment must be installed, the apparatus cannot be said to be compact. Further, since the chemical filter on the bypass line is also replaced like the main body chemical filter, extra work is required for replacement work, and the running cost is increased.
【0009】本発明の目的は、上記に述べたような事情
から、ケミカルフィルターを破壊したり,接触したりす
ることなく、吸着能力を十分に活用して、ランニングコ
ストを抑え、放射性廃棄物量を低減することのできるケ
ミカルフィルターの交換時期を判定する方法を提供する
ことである。[0009] An object of the present invention is to reduce the running cost and reduce the amount of radioactive waste by fully utilizing the adsorption capacity without destroying or contacting the chemical filter in the circumstances described above. It is an object of the present invention to provide a method of determining a replacement time of a chemical filter which can be reduced.
【0010】[0010]
【課題を解決するための手段】上記目的を達成する本発
明の特徴は、ケミカルフィルターの交換時期を判定する
装置において、少なくとも1基目のケミカルフィルター
装置の前後に設けた検出器または測定点で測定される除
去対象成分の濃度が一致した時期をケミカルフィルター
の交換時期と判定することを特徴とするケミカルフィル
ターの装置を提供する。A feature of the present invention to achieve the above object is that an apparatus for judging the replacement time of a chemical filter is provided by a detector or a measuring point provided before and after at least a first chemical filter apparatus. A chemical filter device is characterized in that a time when the measured concentrations of the components to be removed coincide with each other is determined as a chemical filter replacement time.
【0011】[0011]
【発明の実施の形態】以下、本発明を実施例により具体
的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples.
【0012】図1に本発明のケミカルフィルターの交換
時期判定方法を適用するためのよう素フィルター装置を
構成するオフガス処理設備のシステムの実施例を示す。
よう素フィルター装置1,2は2段に直列に構成され、
それぞれ硝酸銀添着よう素吸着剤が充填されている吸着
部3,4がある。よう素を含む放射性ガスがよう素フィ
ルター装置1,2へ導入されると、吸着装置内では吸着
部3,4において硝酸銀添着よう素吸着剤によって放射
性ガスであるよう素が吸着,固定化される。よう素が除
去された排ガスは出口ノズルから排出され、冷却装置に
よる冷却などのしかるべき処理が施されたのち、大気放
出される。FIG. 1 shows an embodiment of a system of an off-gas treatment facility which constitutes an iodine filter device to which the method for judging replacement time of a chemical filter of the present invention is applied.
The iodine filter devices 1 and 2 are configured in two stages in series,
There are adsorption sections 3 and 4 each filled with an iodine adsorbent impregnated with silver nitrate. When a radioactive gas containing iodine is introduced into the iodine filter devices 1 and 2, iodine, which is a radioactive gas, is adsorbed and immobilized by the iodine adsorbent impregnated with silver nitrate in the adsorption units 3 and 4 in the adsorption device. . The exhaust gas from which iodine has been removed is discharged from an outlet nozzle, subjected to appropriate processing such as cooling by a cooling device, and then released to the atmosphere.
【0013】1基目のよう素フィルター装置1の前後に
は放射性ガスのよう素を検出する検出器5,6が設置さ
れている。検出器はよう素129(I−129)を測定
するNaIシンチレーション検出器や半導体放射線検出
器(Ge)などを使用して、直接なおかつ延滞なくよう
素濃度が測定できることが望ましい。Detectors 5 and 6 for detecting iodine such as radioactive gas are provided before and after the first iodine filter device 1. It is desirable that the detector be able to measure iodine concentration directly and without delay using a NaI scintillation detector or semiconductor radiation detector (Ge) for measuring iodine 129 (I-129).
【0014】一般によう素濃度が高い方がケミカルフィ
ルターの吸着効率も高いため、フィルターの上流側では
高効率でよう素を吸着し、フィルター内では下流側に行
くにしたがってよう素濃度が低下するため、吸着効率も
低くなる。また、ケミカルフィルターの吸着効率は既に
吸着した不純物の量にも依存し、時間経過に伴って不純
物の吸着が進む吸着効率は低下していく。フィルターの
上流側は早くから吸着が進むため、吸着効率の劣化も大
きい。In general, the higher the iodine concentration is, the higher the adsorption efficiency of the chemical filter is. Therefore, iodine is adsorbed with high efficiency on the upstream side of the filter, and the iodine concentration decreases in the filter toward the downstream side. Also, the adsorption efficiency is reduced. Further, the adsorption efficiency of the chemical filter also depends on the amount of the impurities already adsorbed, and the adsorption efficiency of the adsorption of the impurities decreases with time. Since the adsorption proceeds from an early stage on the upstream side of the filter, the adsorption efficiency is greatly deteriorated.
【0015】時間tにおいて1基目のよう素フィルター
入口のよう素濃度をC0tとする。一方、1基目のよう素
フィルター出口のよう素濃度をC1tとする。最初は、硝
酸銀添着よう素吸着剤によう素が殆ど吸着していないた
め、除去効率がよく、よう素濃度をCt+1 は殆ど0に近
い。しかし、硝酸銀添着よう素吸着剤によう素が上流側
から吸着されていくに従って、除去効率も低下していく
ため、よう素フィルター出口のよう素濃度C1tも徐々に
増加していく。最終的には1基目のよう素フィルター入
口のよう素濃度C0tと出口のよう素濃度をC1tは一致す
ることになる。この一致した時間tをフィルターの交換
時期と判断し、フィルターの交換時期とする。At time t, the iodine concentration at the inlet of the first iodine filter is C 0t . On the other hand, let the concentration of iodine at the outlet of the first iodine filter be C 1t . Initially, since iodine is hardly adsorbed on the iodine adsorbent impregnated with silver nitrate, the removal efficiency is good and the iodine concentration Ct + 1 is almost zero. However, as iodine is adsorbed by the iodine adsorbent impregnated with silver nitrate from the upstream side, the removal efficiency also decreases, so that the iodine concentration C 1t at the iodine filter outlet also gradually increases. Eventually, the iodine concentration C 0t at the inlet of the first iodine filter and the iodine concentration C 1t at the outlet will match. The coincident time t is determined to be the time for replacing the filter, and is set as the time for replacing the filter.
【0016】1基目のよう素フィルター装置から下流側
に排出されたよう素は直列に設置された2基目でよう素
の吸着除去が達成できるので、環境へのよう素放出量は
確実に規制値以下に抑えることができる。The iodine discharged to the downstream side from the first iodine filter device can achieve adsorption and removal of iodine by the second iodine filter installed in series, so that the amount of iodine released to the environment can be assured. It can be kept below the regulation value.
【0017】[0017]
【発明の効果】本発明によれば、1基目の前後に除去対
象成分を測定する検出器を設け、その前後に設けた検出
器から測定される除去対象成分の濃度が一致した時期を
ケミカルフィルターの交換時期と判定することで、ケミ
カルフィルターを破壊したり、接触したりすることな
く、吸着能力を十分に活用して、よう素フィルターを破
過状態の直前まで使用できるため、フィルターの使用寿
命が延び、吸着剤に係るコストを低減できる。更には放
射性廃棄物量を低減することができる。According to the present invention, a detector for measuring the component to be removed is provided before and after the first unit, and the time when the concentration of the component to be removed measured from the detector provided before and after the first matches the chemical is determined. By judging when it is time to replace the filter, the iodine filter can be used up to just before the breakthrough state, making full use of the adsorption capacity without breaking or contacting the chemical filter. The life is extended, and the cost of the adsorbent can be reduced. Further, the amount of radioactive waste can be reduced.
【図1】本発明の実施例を示すオフガス処理システムの
構成の説明図。FIG. 1 is an explanatory diagram of a configuration of an off-gas processing system according to an embodiment of the present invention.
1,2…よう素フィルター装置、3,4…吸着部、5,
6…検出器。1, 2,... Iodine filter device, 3, 4,.
6 ... Detector.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01T 1/167 B01D 53/34 134C Fターム(参考) 2G088 EE12 EE25 HH03 KK29 4D002 AA25 AC09 BA04 CA07 DA25 DA70 GA02 GB02 4D012 CA14 CB05 CE02 CF05 CG01 CK10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01T 1/167 B01D 53/34 134C F-term (Reference) 2G088 EE12 EE25 HH03 KK29 4D002 AA25 AC09 BA04 CA07 DA25 DA70 GA02 GB02 4D012 CA14 CB05 CE02 CF05 CG01 CK10
Claims (3)
おいて、少なくとも1基目のケミカルフィルター装置の
前後に設けた検出器で測定される除去対象成分の濃度が
一致した時期を、ケミカルフィルターの交換時期と判定
することを特徴とするケミカルフィルターの交換時期判
定方法。In the method for determining the replacement time of a chemical filter, the time at which the concentration of the component to be removed measured by a detector provided at least before and after the first chemical filter device coincides with the replacement time of the chemical filter. A method for determining when to replace a chemical filter, characterized by determining.
時期を判定する装置において、直列に少なくとも1基以
上のバックアップのケミカルフィルター装置を設置する
ことを特徴とするケミカルフィルター装置。2. The chemical filter device according to claim 1, wherein at least one backup chemical filter device is installed in series with the chemical filter device.
時期を判定する装置において、少なくとも1基目以上の
ケミカルフィルター装置の前後の配管上に除去対象成分
を測定するための検出器を設置することを特徴とするケ
ミカルフィルター装置。3. An apparatus according to claim 1, wherein a detector for measuring a component to be removed is provided on pipes before and after at least the first or more chemical filter devices. A chemical filter device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10335277A JP2000162387A (en) | 1998-11-26 | 1998-11-26 | Method and device for judging exchange timing of chemical filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10335277A JP2000162387A (en) | 1998-11-26 | 1998-11-26 | Method and device for judging exchange timing of chemical filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000162387A true JP2000162387A (en) | 2000-06-16 |
Family
ID=18286726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10335277A Pending JP2000162387A (en) | 1998-11-26 | 1998-11-26 | Method and device for judging exchange timing of chemical filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000162387A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047418A (en) * | 2006-08-16 | 2008-02-28 | Nissan Motor Co Ltd | Air supply system of fuel battery |
JP2010127662A (en) * | 2008-11-26 | 2010-06-10 | Univ Of Tokyo | 18f-fdg synthesis chamber and method of removing radioactive material discharged therefrom |
JP2011173059A (en) * | 2010-02-24 | 2011-09-08 | Hitachi Ltd | Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same |
JP2012086215A (en) * | 2011-11-15 | 2012-05-10 | Central Res Inst Of Electric Power Ind | Fixed-bed reaction vessel and method for supplying absorbent |
JP2014021074A (en) * | 2012-07-23 | 2014-02-03 | Toda Kogyo Corp | Monitoring system of tap water contaminated with radioactive substance |
US20140260989A1 (en) * | 2013-03-14 | 2014-09-18 | Universal Laser Systems, Inc. | Multi-stage air filtration systems and associated apparatuses and methods |
WO2014204003A1 (en) * | 2013-06-21 | 2014-12-24 | ナブテスコ 株式会社 | Method and device for determining deterioration state of object |
JP2018069134A (en) * | 2016-10-26 | 2018-05-10 | 三菱重工業株式会社 | Toxic gas removal unit, toxic gas removal facility, and vehicle |
JP2019198656A (en) * | 2019-05-29 | 2019-11-21 | 三菱重工業株式会社 | vehicle |
JP2021092519A (en) * | 2019-12-12 | 2021-06-17 | 豊 橋本 | Polluted water treatment device |
US11598887B2 (en) | 2020-03-30 | 2023-03-07 | Korea Atomic Energy Research Institute | Method for measuring radioactivity of radioactive waste |
WO2024162209A1 (en) * | 2023-02-01 | 2024-08-08 | 日本精工株式会社 | Method for evaluating filtration filter |
-
1998
- 1998-11-26 JP JP10335277A patent/JP2000162387A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047418A (en) * | 2006-08-16 | 2008-02-28 | Nissan Motor Co Ltd | Air supply system of fuel battery |
JP2010127662A (en) * | 2008-11-26 | 2010-06-10 | Univ Of Tokyo | 18f-fdg synthesis chamber and method of removing radioactive material discharged therefrom |
JP2011173059A (en) * | 2010-02-24 | 2011-09-08 | Hitachi Ltd | Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same |
JP2012086215A (en) * | 2011-11-15 | 2012-05-10 | Central Res Inst Of Electric Power Ind | Fixed-bed reaction vessel and method for supplying absorbent |
JP2014021074A (en) * | 2012-07-23 | 2014-02-03 | Toda Kogyo Corp | Monitoring system of tap water contaminated with radioactive substance |
US9155988B2 (en) * | 2013-03-14 | 2015-10-13 | Universal Laser Systems, Inc. | Multi-stage air filtration systems and associated apparatuses and methods |
US20140260989A1 (en) * | 2013-03-14 | 2014-09-18 | Universal Laser Systems, Inc. | Multi-stage air filtration systems and associated apparatuses and methods |
WO2014204003A1 (en) * | 2013-06-21 | 2014-12-24 | ナブテスコ 株式会社 | Method and device for determining deterioration state of object |
JPWO2014204003A1 (en) * | 2013-06-21 | 2017-02-23 | ナブテスコ株式会社 | Method and apparatus for determining the deterioration state of an object |
JP2018069134A (en) * | 2016-10-26 | 2018-05-10 | 三菱重工業株式会社 | Toxic gas removal unit, toxic gas removal facility, and vehicle |
JP2019198656A (en) * | 2019-05-29 | 2019-11-21 | 三菱重工業株式会社 | vehicle |
JP2021092519A (en) * | 2019-12-12 | 2021-06-17 | 豊 橋本 | Polluted water treatment device |
JP7295004B2 (en) | 2019-12-12 | 2023-06-20 | 豊 橋本 | Contaminated water treatment equipment |
US11598887B2 (en) | 2020-03-30 | 2023-03-07 | Korea Atomic Energy Research Institute | Method for measuring radioactivity of radioactive waste |
WO2024162209A1 (en) * | 2023-02-01 | 2024-08-08 | 日本精工株式会社 | Method for evaluating filtration filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000162387A (en) | Method and device for judging exchange timing of chemical filter | |
JP5595110B2 (en) | Iodine filter leak test method, leak test apparatus, and fluorine-containing reagent | |
JP2526178B2 (en) | Exhaust gas adsorption device | |
JP5285171B1 (en) | Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste | |
JPH06300849A (en) | Method for detecting leakage of radioactive gas of nuclear reactor and radioactivity monitor for nuclear reactor | |
Choi et al. | Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions | |
JP3071057B2 (en) | Method and apparatus for detecting leak of adsorbent-filled filter | |
WO1981000413A1 (en) | Method for treating a nuclear process off-gas stream | |
JPH0475455B2 (en) | ||
JP3429522B2 (en) | Conveying device having gas cleaning means | |
JPS59126281A (en) | Leakage detection of radioactive iodine removing filter | |
JPS61237080A (en) | Measurement of radioactive substance in gas | |
McFarlane | Fission product tellurium chemistry from fuel to containment | |
JPH0351448B2 (en) | ||
JPH05307084A (en) | Sampling rack device | |
JP2906290B2 (en) | Method for measuring metal impurities in gas | |
Lamberger et al. | Tritium effluent removal system | |
JP2002202372A (en) | Method for monitoring exhaust gas | |
JP2583251Y2 (en) | Adsorption tower with bypass column | |
JPH0269658A (en) | Method for measuring volatile ruthenium | |
Ward | Tritium control technology | |
Routamo | Effect of hypoiodous acid volatility on the iodine source term in reactor accidents | |
Dutton et al. | Iodine behaviour in severe accidents | |
Pouyat et al. | DISSOLUTION OFF-GASES AT. THE MARCOULE PILOT FACILITY: IODINE TRAPPING AND OFF-GAS CHARACTERIZATION UNIT | |
JPH0796939B2 (en) | Method and device for preventing increase in contact angle of substrate or substrate surface |