JP2000154006A - Excitation ozonizer - Google Patents
Excitation ozonizerInfo
- Publication number
- JP2000154006A JP2000154006A JP10361832A JP36183298A JP2000154006A JP 2000154006 A JP2000154006 A JP 2000154006A JP 10361832 A JP10361832 A JP 10361832A JP 36183298 A JP36183298 A JP 36183298A JP 2000154006 A JP2000154006 A JP 2000154006A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- voltage
- corona discharge
- discharge tube
- generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は殺菌及び脱臭に利用
されるオゾンを、励起された状態で効率的に発生させる
と同時に励起状態から激しく崩壊させることにより殺菌
対象の最近や臭気成分に対する高い酸化反応性を維持
し、かつ残留性の少ないオゾン発生装置に関するもので
ある。The present invention relates to the recent generation of ozone used for sterilization and deodorization, in an excited state, and at the same time violent destruction from the excited state. The present invention relates to an ozone generator that maintains reactivity and has low residual properties.
【0002】[0002]
【従来の技術】オゾンの発生法は、プラズマ放電法、放
射線作用法、光化学作用法、無声放電法がある。このう
ち工業的に利用される方法は光化学作用法、無声放電法
が主なものである。光化学作用法では紫外線の波長(1
900Å)で酸素を分化させ、オゾンを発生させる、こ
の方法では低い濃度のオゾンしか発生しない。これは
(1)の反応が起こり、オゾンが生成すると、同時に光
化学分解(Photolisys)、電子衝突(ele
ctron impact)、加熱分解(therma
llydissociation)によるオゾンの消滅
(2)がおこる。生成される濃度はこれらの反応の平衡
濃度となるためである。 O2+e−(hν)→2O O+O2 →O3 (1) O3→O+O2 O+O3 → 2O2 (2) また広範囲でこの方法でオゾンを発生させるためには、
紫外線の透過できる領域を確保しなければならないが、
この領域に人間が居て、紫外線を直接人体に浴びること
は健康に害がある。(しかしこの反応機構は本発明では
有効に利用される。) コロナ放電(無声放電法corona(silent)
discharge)では誘電体を経由して電極間で
放電させ、ここで空気中の酸素を電離させ、オゾンを発
生させる。この方法は簡易で、比較的高濃度のオゾンが
発生するため、広く利用されているがオゾンの残留性が
大きい。一般社会での利用が進むにつれて、残留オゾン
による酸素フリーラジカル生成による過酸化物生成、カ
ルボニル化合物(アルデヒド、ケトン)の生成、thi
ol(R−SH)の酸化によるdisulfide(R
−S−S−R)の生成など、またオレフィンの酸化、高
分子量の不飽和脂質の酸化などによる生成化合物による
生化学的傷害とみられる環境の悪化が報告されている。
ここでは環境に放出されるオゾンの残留性が問題とな
り、その利用が広範囲に進まない要因となっている。2. Description of the Related Art Ozone generation methods include a plasma discharge method, a radiation action method, a photochemical action method, and a silent discharge method. Among these, the methods used industrially are mainly the photochemical method and the silent discharge method. In the photochemical method, the wavelength of ultraviolet light (1
At 900 °), oxygen is differentiated and ozone is generated. In this method, only a low concentration of ozone is generated. This is because when the reaction of (1) occurs and ozone is generated, at the same time, photochemical decomposition (Photolysis) and electron collision (elevation) occur.
tron impact, thermal decomposition (therma)
The ozone disappears (2) due to lyssociation. This is because the concentration produced is the equilibrium concentration for these reactions. O2 + e- (hν) → 2O O + O2 → O3 (1) O3 → O + O2 O + O3 → 2O2 (2) In order to generate ozone by this method in a wide range,
It is necessary to secure an area that can transmit ultraviolet light,
It is harmful for humans to be exposed to UV rays directly in the human body in this area. (However, this reaction mechanism is effectively used in the present invention.) Corona discharge (silona discharge)
In discharge, a discharge is caused between the electrodes via a dielectric, where oxygen in the air is ionized to generate ozone. Since this method is simple and generates a relatively high concentration of ozone, it is widely used but has high ozone persistence. As the use in the general society progresses, the generation of peroxides due to the generation of oxygen free radicals by residual ozone, the generation of carbonyl compounds (aldehydes, ketones), thi
ol (R-SH) by oxidation of disulfide (R
-S-S-R), and the deterioration of the environment, which is considered to be biochemical damage due to the generated compounds due to oxidation of olefins, oxidation of high-molecular-weight unsaturated lipids, etc., has been reported.
Here, the persistence of ozone released into the environment becomes a problem, which is a factor that prevents its use from widespread.
【0003】[0003]
【発明が解決しようとする課題】オゾンは最近の衛生環
境を希求する社会環境の中で盛んに利用されてきた。し
かし利用が進むにつれて、殺菌能力だけではなく、空気
中に残留するオゾンによる人体への影響が実際に利用し
た人々から、労働環境の悪化という形で報告されてい
る。また比較的低い濃度の利用でも、生成機器のコスト
大きく、かつ低い濃度ではオゾンの殺菌力や脱臭能力が
十分に現場で発現しない事例もある。これは従来型のオ
ゾン発生装置で発生したオゾンが室温環境では徐々に分
解する性状であり、酸化分解しやすい臭気成分の基質と
共存した場合でも反応速度は比較的遅いものだからであ
る。ちなみに気相中では1wt%の濃度で半減期16時
間とされている。実際にオゾンと還元性の強い悪臭成分
である硫化水素の混合例では滞留時間を4分以上でもほ
とんど反応しないことが報告されている。またオゾンと
硫化水素を混合したものを紫外線放電場に導いても反応
は瞬時に起こるがオゾン量は2倍程度のモル数がいると
報告されている。ここではオゾンが硫化水素と反応する
ものと光化学反応で分解するものに分配されており、コ
ストの高いオゾン発生装置では有意なシステムを構築で
きない。しかし実際にオゾンの酸化力に期待して、利用
を考慮する環境は、食品工場等の工場、冷蔵庫、病院そ
の他の閉鎖環境であり、施工できる限られた時間で十分
な酸化分解、殺菌作用が発現し、かつ速やかに分解し消
滅することが期待される。すなわち脱臭処理、あるいは
殺菌処理後、比較的短時間で、空気中で分解し、酸素に
変化すること。脱臭及び殺菌の程度が、日々変化する環
境で、容易に調整できることも重要な要素であるが従来
の紫外線ランプによる方法では、発生量が少なく、コロ
ナ放電による方法では、空気の絶縁性のために、二次側
電圧の調整で極端に発生量が変化する。またこの発生部
位での生成量の変化が直接室内に放出されるてオゾン量
に反映されるため、実効性確保のために必要量に対して
絶えず過剰な発生量及び残留量となる。Ozone has been actively used in a social environment that requires a recent sanitary environment. However, as the use has progressed, not only the sterilizing ability but also the effect of ozone remaining in the air on the human body has been reported by people who actually used it in the form of a worsening working environment. In some cases, even when a relatively low concentration is used, the cost of the production equipment is large, and at a low concentration, the ozone disinfecting ability and the deodorizing ability are not sufficiently exhibited on site. This is because the ozone generated by the conventional ozone generator is gradually decomposed in a room temperature environment, and the reaction rate is relatively slow even when coexisting with a substrate of an odor component which is easily decomposed by oxidation. Incidentally, the half life is 16 hours at a concentration of 1 wt% in the gas phase. Actually, it has been reported that even in a mixed example of ozone and hydrogen sulfide which is a strong reducing odor component, even if the residence time is 4 minutes or more, almost no reaction occurs. It is also reported that the reaction occurs instantaneously when a mixture of ozone and hydrogen sulfide is introduced into an ultraviolet discharge field, but the amount of ozone is about twice as many as the number of moles. Here, ozone is divided into those that react with hydrogen sulfide and those that decompose by photochemical reaction, so that a significant system cannot be constructed with an expensive ozone generator. However, in consideration of the actual oxidizing power of ozone, the environment to be considered for use is factories such as food factories, refrigerators, hospitals, and other closed environments. It is expected to be expressed and to quickly decompose and disappear. That is, after the deodorizing treatment or the sterilizing treatment, it is decomposed in the air in a relatively short time to change into oxygen. It is also important that the degree of deodorization and sterilization can be easily adjusted in an environment that changes daily.However, the method using a conventional ultraviolet lamp has a small amount of generation, and the method using corona discharge has a problem of air insulation. In addition, the amount of generation extremely changes by adjusting the secondary voltage. Further, since the change in the generation amount at the generation site is directly discharged into the room and reflected on the ozone amount, the generation amount and the residual amount are constantly excessive with respect to the necessary amount for ensuring the effectiveness.
【0004】[0004]
【課題を解決するための手段】本発明ではコロナ放電を
起こさせる電極対の一方を紫外線放電管の一端とし放電
管の封入ガスを経由して誘電体でシールドされた他方の
金属電極との間でコロナ放電を起こさせる。またこの際
の紫外線の発生量とオゾンの発生量を、一次側電圧を制
御することで同調させる。本発明の方法では、オゾンの
発生と分解が同時に起こる。また脱臭装置、殺菌装置と
して使用するため、通風ファンで室内空気を放電の起き
ている反応場に導入し、通過させる。また必要に応じ
て、この通風量を一次側電圧に同調させ、通風量、紫外
線発生量、オゾン発生量をなめらかに同調させる。また
本発明から派生する手法として、紫外線放電管は必ずし
も金属放電極が存在しない形状、つまりガス封入の樹脂
管及びガラス管や球体でも、紫外線発生が保証されるガ
ス封入形成体があれば、本方法の反応場を形成できる。
すなわち高圧交流放電場中に、紫外線発生が保証される
ガス封入形成体があれば、ガスの分子の励起により、紫
外線発生を保証できるため、本発明の装置と同様のオゾ
ン同時発生機構が存在すれば、本発明と同様の効果があ
る反応場が形成される。この方法では大規模な工業的利
用が可能になる。According to the present invention, one of a pair of electrodes for generating a corona discharge is connected to one end of an ultraviolet discharge tube and the other metal electrode shielded by a dielectric via a gas filled in the discharge tube. Causes corona discharge. At this time, the amount of generated ultraviolet light and the amount of generated ozone are synchronized by controlling the primary voltage. In the method of the present invention, generation and decomposition of ozone occur simultaneously. In addition, in order to use as a deodorizing device and a sterilizing device, room air is introduced into a reaction field where discharge occurs by a ventilation fan and passed therethrough. If necessary, the ventilation amount is tuned to the primary side voltage to smoothly tune the ventilation amount, the amount of ultraviolet radiation, and the amount of ozone generation. Further, as a technique derived from the present invention, the ultraviolet discharge tube is not necessarily provided with a metal discharge electrode, that is, a gas-filled resin tube, a glass tube, or a sphere, as long as there is a gas-encapsulated forming body that guarantees ultraviolet generation. A reaction field of the method can be formed.
In other words, if there is a gas-encapsulated body in which the generation of ultraviolet rays is guaranteed in the high-pressure AC discharge field, the generation of ultraviolet rays can be guaranteed by the excitation of gas molecules. Therefore, the same ozone simultaneous generation mechanism as the apparatus of the present invention exists. Thus, a reaction field having the same effect as the present invention is formed. This method allows for large-scale industrial use.
【0005】[0005]
【発明の実施の形態】図面によって本発明の具体例を説
明する。図1は本発明の具体例の構造図である。悪臭成
分を含んだ空気は樹脂または金属製の円筒形フィルター
ケース10内に吸気ファン7によって導入され、ガラス
繊維、金属繊維等のフィルター9によって除塵され、つ
いで吸気ファンを経由して、絶縁性樹脂製の紫外線シー
ルド8内に設置された紫外線ランプ、キセノンフラッシ
ュランプ等の紫外線放電管1、誘電体で被覆した銅、ス
テンレス、チタン、ハステロイ等の金属線または、金属
薄膜製のコロナ放電電極部2及びスペーサーとなる誘電
体3のある領域に流入する。ここでは高圧交流トランス
4により供給された高圧交流電源で、紫外線ランプ1と
誘電体3で隔離されたコロナ放電部2との間でコロナ放
電が発生している。この高圧交流電源は一次側電圧を電
圧調整器5で制御されており、コロナ放電部2と紫外線
放電管1にかかる二次側電圧を増減して、オゾン発生量
をボリューム調整できる。また吸気ファン7もこの一次
側電圧で稼働しているため電圧調整器5で速度調整され
る。この領域では導入された空気中の酸素が紫外線と放
電効果により一部オゾンに変化し、従来のオゾン発生器
とは異なり、紫外線の作用により、反応しやすいオゾン
に励起している。またこの領域は激しい励起オゾンの分
解と酸素分子のラジカル化が起きており、空気中に悪臭
成分があれば、瞬時にこれを酸化分解する。また紫外線
の作用により、未反応の励起したオゾンは紫外線シール
ド8から外気に放出されるが、反応性が大きく迅速に室
内で分解し消滅する。本発明では、これらの機構により
二次側電圧の低い状態から紫外線の働きで空気の電離が
起こり、コロナ放電がなめらかに立ち上がり、低いオゾ
ン発生量から濃度調整可能で、かつオゾンが励起してい
るため、低濃度からでも十分なオゾンの反応性が確保さ
れ、反応性が大きいために、室内残留性が小さいので、
産業上価値がある。DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of the present invention will be described with reference to the drawings. FIG. 1 is a structural diagram of an embodiment of the present invention. The air containing the offensive odor component is introduced into a cylindrical filter case 10 made of resin or metal by an intake fan 7, and is dust-removed by a filter 9 made of glass fiber, metal fiber, or the like. Discharge lamp 1 such as an ultraviolet lamp and a xenon flash lamp installed in an ultraviolet shield 8 made of a metal, a metal wire made of copper, stainless steel, titanium, hastelloy or the like coated with a dielectric, or a corona discharge electrode part 2 made of a metal thin film And flows into a certain region of the dielectric 3 serving as a spacer. Here, a corona discharge is generated between the ultraviolet lamp 1 and the corona discharge unit 2 separated by the dielectric 3 by the high-voltage AC power supplied by the high-voltage AC transformer 4. The high-voltage AC power source is controlled by a voltage regulator 5 on the primary side, and the volume of the ozone generation can be adjusted by increasing or decreasing the secondary side voltage applied to the corona discharge unit 2 and the ultraviolet discharge tube 1. The speed of the intake fan 7 is adjusted by the voltage regulator 5 since the intake fan 7 is also operated at the primary voltage. In this region, the oxygen in the introduced air is partially changed to ozone due to ultraviolet light and a discharge effect, and unlike a conventional ozone generator, is excited to ozone which easily reacts by the action of ultraviolet light. Also, in this region, intense decomposition of excited ozone and radicalization of oxygen molecules occur, and if there is a malodorous component in the air, it immediately oxidizes and decomposes it. The unreacted excited ozone is released to the outside air from the ultraviolet shield 8 by the action of the ultraviolet light, but has high reactivity and is quickly decomposed and eliminated in the room. In the present invention, these mechanisms cause the ionization of air by the action of ultraviolet rays from a state where the secondary voltage is low, the corona discharge rises smoothly, the concentration can be adjusted from a low ozone generation amount, and ozone is excited. Therefore, sufficient reactivity of ozone is ensured even from a low concentration, and since the reactivity is large, the indoor persistence is small.
It has industrial value.
【0006】[0006]
【発明の効果】本発明の方法では従来のオゾン発生器に
比べて、次のような利点がある。 (1)オゾンはコロナ放電により発生すると同時に紫外
線で励起され、励起されたオゾンと、反応中に発生する
酸素ラジカルが、空気中に電子を受け取る分子種があれ
ば瞬時に反応する。これが臭気成分であれば臭気成分を
瞬時に分解する結果になり、通常のコロナ放電で放出さ
れるオゾンを導入した場合とは異なり、反応性が極端に
大きくなる。このため構造上堅固な飽和炭化水素類、芳
香族炭化水素類(灯油臭気など)も酸化迅速に分解でき
る。またこのような機構のため、オゾンの光化学分解の
行程もラジカル反応として有効に利用できる。 (2)紫外線とオゾンの発生量が電源の電圧調整デバイ
スで同調して増減する。また紫外線とコロナ放電が同時
に、二次側電圧の低い状態から、容易に紫外線放電管の
封入ガスが励起し、コロナ放電も紫外線による空気の電
離で誘発されるため、従来の発生法に比較して、広範囲
で、発生量が調整できる。またこのため臭気成分に対す
る分解の反応の度合い調整が容易にできる。 (3)本方法のオゾン発生法では、オゾンの反応性が大
きいことで、発生器内部では激しい反応場が形成でき、
かつ積極的な励起オゾンの分解が起こるため、空気中に
残留するオゾン量は時間とともに急速に減少するため、
作業環境に不要な未反応オゾンの残留が起こらない。こ
れはオゾンを空気の脱臭及び殺菌に実際に利用する場
合、非常に重要なことになる。 (4)オゾンが励起されていることで、通常ではオゾン
酸化しにくい炭化水素類も迅速に分解できるため、室内
脱臭だけでなく、今後予想される炭化水素類の低濃度の
環境汚染にも適用できる。 (5)発生方法が簡易で小規摸な装置から大規摸な工業
用まで低コストで制作可能である。 (6)本発明の方法では紫外線放電管、コロナ放電電極
の形状に応じて、安価でかつ容易に反応場を形成できる
ため、工業上の応用性が大きい。The method of the present invention has the following advantages over the conventional ozone generator. (1) Ozone is excited by ultraviolet rays at the same time as being generated by corona discharge, and the excited ozone reacts instantaneously with oxygen radicals generated during the reaction if there is a molecular species that receives electrons in the air. If this is an odor component, the result is that the odor component is instantaneously decomposed, and the reactivity becomes extremely large unlike the case where ozone released by ordinary corona discharge is introduced. For this reason, structurally solid saturated hydrocarbons and aromatic hydrocarbons (such as kerosene odor) can also be rapidly decomposed by oxidation. Also, due to such a mechanism, the process of photochemical decomposition of ozone can be effectively used as a radical reaction. (2) The generation amount of ultraviolet rays and ozone is increased and decreased in synchronization with the voltage adjusting device of the power supply. In addition, the ultraviolet gas and corona discharge simultaneously excite the gas in the ultraviolet discharge tube easily when the secondary voltage is low, and the corona discharge is also induced by the ionization of air by ultraviolet light. Therefore, the generation amount can be adjusted over a wide range. Therefore, the degree of the decomposition reaction to the odor component can be easily adjusted. (3) In the ozone generation method of the present method, a strong reaction field can be formed inside the generator due to the high reactivity of ozone,
Because the decomposition of excited ozone occurs and the amount of ozone remaining in the air decreases rapidly with time,
No unnecessary unreacted ozone remains in the working environment. This becomes very important when ozone is actually used for deodorization and sterilization of air. (4) Since ozone is excited, hydrocarbons that are normally difficult to oxidize with ozone can be rapidly decomposed, so it can be applied not only to indoor deodorization but also to low-level environmental pollution of hydrocarbons expected in the future. it can. (5) It can be produced at low cost from a small-scale device with a simple generation method to a large-scale industrial use. (6) According to the method of the present invention, a reaction field can be formed easily and inexpensively according to the shape of the ultraviolet discharge tube and the corona discharge electrode, so that the method has great industrial applicability.
【図面の簡単な説明】[Brief description of the drawings]
【図面1】[Drawing 1]
【図面1】は本発明の具体例の構造図である。悪臭成分
を含んだ空気は樹脂または金属製の円筒形フィルターケ
ース10内に吸気ファン7によって導入され、ガラス繊
維、金属繊維等のフィルター9によって除塵され、つい
で吸気ファンを経由して、絶縁性樹脂製の紫外線シール
ド8内に設置された紫外線ランプ、キセノンフラッシュ
ランプ等の紫外線放電管1、誘電体で被覆した銅、ステ
ンレス、チタン、ハステロイ等の金属線または、金属薄
膜製のコロナ放電電極部2及びスペーサーとなる誘電体
3のある領域に流入する。ここでは高圧交流トランス4
により供給された高圧交流電源で、紫外線ランプ1と誘
電体3で隔離されたコロナ放電部2との間でコロナ放電
が発生している。この高圧交流電源は一次側電圧を電圧
調整器5で制御されており、コロナ放電部2と紫外線放
電管1にかかる二次側電圧を増減して、オゾン発生量を
ボリューム調整できる。また吸気ファン7もこの一次側
電圧で稼働しているため電圧調整器5で速度調整され
る。FIG. 1 is a structural diagram of an embodiment of the present invention. The air containing the offensive odor component is introduced into a cylindrical filter case 10 made of resin or metal by an intake fan 7, and is dust-removed by a filter 9 made of glass fiber, metal fiber, or the like. Discharge lamp 1 such as an ultraviolet lamp and a xenon flash lamp installed in an ultraviolet shield 8 made of a metal, a metal wire made of copper, stainless steel, titanium, hastelloy or the like coated with a dielectric, or a corona discharge electrode part 2 made of a metal thin film And flows into a certain region of the dielectric 3 serving as a spacer. Here, high-voltage AC transformer 4
The corona discharge is generated between the ultraviolet lamp 1 and the corona discharge unit 2 separated by the dielectric 3 with the high-voltage AC power supplied by the above. The high-voltage AC power source is controlled by a voltage regulator 5 on the primary side, and the volume of the ozone generation can be adjusted by increasing or decreasing the secondary side voltage applied to the corona discharge unit 2 and the ultraviolet discharge tube 1. The speed of the intake fan 7 is adjusted by the voltage regulator 5 since the intake fan 7 is also operated at the primary voltage.
【図面1】本発明の方法によるオゾン発生装置構造図FIG. 1 is a structural view of an ozone generator according to the method of the present invention.
1:紫外線ランプ 2:コロナ放電電極 3:誘電体 4:高圧交流トランス 5:電圧調整期 6:交流電源 7:吸気ファン 8:紫外線シールド 9:フィルター 10:フィルターケース 1: UV lamp 2: Corona discharge electrode 3: Dielectric 4: High voltage AC transformer 5: Voltage adjustment period 6: AC power supply 7: Intake fan 8: UV shield 9: Filter 10: Filter case
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成11年4月28日(1999.4.2
8)[Submission date] April 28, 1999 (1999.4.2
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図面の簡単な説明】[Brief description of the drawings]
【図1】は本発明の具体例の構造図である。悪臭成分を
含んだ空気は樹脂または金属製の円筒形フィルターケー
ス10内に吸気ファン7によって導入され、ガラス繊
維、金属繊維等のフィルター9によって除塵され、つい
で吸気ファンを経由して、絶縁性樹脂製の紫外線シール
ド8内に設置された紫外線ランプ、キセノンフラッシュ
ランプ等の紫外線放電管1、誘電体で被覆した銅、ステ
ンレス、チタン、ハステロイ等の金属線または、金属薄
膜製のコロナ放電電極部2及びスペーサーとなる誘電体
3のある領域に流入する。ここでは高圧交流トランス4
により供給された高圧交流電源で、紫外線ランプ1と誘
電体3で隔離されたコロナ放電部2との間でコロナ放電
が発生している。この高圧交流電源は一次側電圧を電圧
調整器5で制御されており、コロナ放電部2と紫外線放
電管1にかかる二次側電圧を増減して、オゾン発生量を
ボリューム調整できる。また吸気ファン7もこの一次側
電圧で稼働しているため電圧調整器5で速度調整され
る。本発明の方法によるオゾン発生装置構造図FIG. 1 is a structural diagram of a specific example of the present invention. The air containing the offensive odor component is introduced into a cylindrical filter case 10 made of resin or metal by an intake fan 7, and is dust-removed by a filter 9 made of glass fiber, metal fiber, or the like. Discharge lamp 1 such as an ultraviolet lamp and a xenon flash lamp installed in an ultraviolet shield 8 made of a metal, a metal wire made of copper, stainless steel, titanium, hastelloy or the like coated with a dielectric, or a corona discharge electrode part 2 made of a metal thin film And flows into a certain region of the dielectric 3 serving as a spacer. Here, high-voltage AC transformer 4
The corona discharge is generated between the ultraviolet lamp 1 and the corona discharge unit 2 separated by the dielectric 3 with the high-voltage AC power supplied by the above. The high-voltage AC power source is controlled by a voltage regulator 5 on the primary side, and the volume of the ozone generation can be adjusted by increasing or decreasing the secondary side voltage applied to the corona discharge unit 2 and the ultraviolet discharge tube 1. The speed of the intake fan 7 is adjusted by the voltage regulator 5 since the intake fan 7 is also operated at the primary voltage. Ozone generator structure diagram by the method of the present invention
【符号の説明】 1:紫外線ランプ 2:コロナ放電電極 3:誘電体 4:高圧交流トランス 5:電圧調整期 6:交流電源 7:吸気ファン 8:紫外線シールド 9:フィルター 10:フィルターケース[Description of Signs] 1: Ultraviolet lamp 2: Corona discharge electrode 3: Dielectric 4: High voltage AC transformer 5: Voltage adjustment period 6: AC power supply 7: Intake fan 8: Ultraviolet shield 9: Filter 10: Filter case
Claims (3)
シュランプなどの紫外線発生を特徴とする放電管の周辺
に放電管のガラス面あるいは放電管の誘電体被覆に接触
または近接して誘電体で被覆した銅、ステンレス、チタ
ン、ハステロイ等の金属線または、金属薄膜を設置し、
放電管の端子とこの誘電体で被覆した金属線または金属
薄膜間に電圧5000から20000Vの高圧交流電圧
を加えて、コロナ放電を起こさせる。 (2)コロナ放電により発生したオゾンと高圧の電場と
そこでのコロナ放電により励起された放電管の封入ガス
により発生する紫外線を同時に発生させる。また本発明
の方法では、この同時性のためにオゾンの発生と分解が
同時に起こる。発生したオゾンは、同時に紫外線で励起
され、きわめて分解性の強い、酸化力の強いものとな
る。 (3)通風ファンで、臭気成分を含む空気を直接かつ連
続的に、紫外線とコロナ放電が同時に起こる激しい反応
場に導入し、通過させることを特徴とする殺菌兼用脱臭
装置。(1) The periphery of a discharge tube characterized by generation of ultraviolet light such as an ultraviolet lamp or a xenon flash lamp is coated with a dielectric in contact with or close to the glass surface of the discharge tube or the dielectric coating of the discharge tube. Install a metal wire such as copper, stainless steel, titanium, Hastelloy, or a metal thin film,
A high-voltage AC voltage of 5,000 to 20,000 V is applied between the terminal of the discharge tube and the metal wire or metal thin film coated with the dielectric to cause corona discharge. (2) The ozone generated by the corona discharge, the high-voltage electric field, and the ultraviolet light generated by the gas sealed in the discharge tube excited by the corona discharge thereat are simultaneously generated. Further, in the method of the present invention, generation and decomposition of ozone occur at the same time due to the synchronism. The generated ozone is simultaneously excited by ultraviolet rays, and becomes extremely decomposable and has strong oxidizing power. (3) A sterilizing and deodorizing apparatus characterized in that air containing an odor component is directly and continuously introduced into and passed through a violent reaction field where ultraviolet rays and corona discharge occur simultaneously by a ventilation fan.
る際の高圧交流トランスの一次側電圧を電子デバイスに
より連続的に制御し、紫外線の照射量とオゾンの発生量
を同調させること。2. The method according to claim 1, wherein the primary side voltage of the high-voltage AC transformer for generating ultraviolet rays and ozone is continuously controlled by an electronic device to synchronize the irradiation amount of ultraviolet rays with the generation amount of ozone.
量を高圧トランスの一次側電圧に同調させ、オゾン発生
と崩壊が起こっている反応場に適当量の殺菌対象あるい
は脱臭対象の雰囲気を導入すること。3. In addition to the first and second aspects, the amount of air blown by the ventilation fan is synchronized with the primary voltage of the high-voltage transformer, so that an appropriate amount of sterilization or deodorization can be performed in the reaction field where ozone generation and collapse occur. To introduce an atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10361832A JP2000154006A (en) | 1998-11-13 | 1998-11-13 | Excitation ozonizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10361832A JP2000154006A (en) | 1998-11-13 | 1998-11-13 | Excitation ozonizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000154006A true JP2000154006A (en) | 2000-06-06 |
Family
ID=18475011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10361832A Pending JP2000154006A (en) | 1998-11-13 | 1998-11-13 | Excitation ozonizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000154006A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100375965B1 (en) * | 2000-06-07 | 2003-03-15 | 김성중 | Radiation of atomic steric outer electron impact unit |
WO2011002006A1 (en) * | 2009-06-30 | 2011-01-06 | 新東ホールディングス株式会社 | Ion-generating device and ion-generating element |
CN103990359A (en) * | 2014-06-06 | 2014-08-20 | 北京航空航天大学 | Method and device for purifying nitric oxide and fog particles in wet desulphurization aerial fog by low-temperature plasma |
CN105056727A (en) * | 2015-08-25 | 2015-11-18 | 钱向然 | Air purification device |
CN111773408A (en) * | 2020-06-15 | 2020-10-16 | 珠海格力电器股份有限公司 | Sterilization regulation and control method and device and refrigerator |
-
1998
- 1998-11-13 JP JP10361832A patent/JP2000154006A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100375965B1 (en) * | 2000-06-07 | 2003-03-15 | 김성중 | Radiation of atomic steric outer electron impact unit |
WO2011002006A1 (en) * | 2009-06-30 | 2011-01-06 | 新東ホールディングス株式会社 | Ion-generating device and ion-generating element |
JP4918628B2 (en) * | 2009-06-30 | 2012-04-18 | 新東ホールディングス株式会社 | Ion generator and ion generator |
CN103990359A (en) * | 2014-06-06 | 2014-08-20 | 北京航空航天大学 | Method and device for purifying nitric oxide and fog particles in wet desulphurization aerial fog by low-temperature plasma |
CN105056727A (en) * | 2015-08-25 | 2015-11-18 | 钱向然 | Air purification device |
CN111773408A (en) * | 2020-06-15 | 2020-10-16 | 珠海格力电器股份有限公司 | Sterilization regulation and control method and device and refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pekárek | Non-thermal plasma ozone generation | |
US10207926B2 (en) | Ozone generator | |
KR20070028479A (en) | Air decontamination device and method | |
JP2705023B2 (en) | Oxidation method of workpiece | |
JP2000154006A (en) | Excitation ozonizer | |
JP2005079094A (en) | Three wave length lamp with negative ion generating function and air cleaning function | |
JP2013154145A (en) | Air cleaner | |
JP7287103B2 (en) | Ultraviolet irradiation device and gas treatment device provided with the same | |
JPH1057465A (en) | Ozonized water deodorizing method and deodorizing device | |
WO2021256450A1 (en) | Gas treatment method and gas treatment device | |
WO2013183300A1 (en) | Apparatus and method for processing gas | |
WO2020262478A1 (en) | Gas treatment method and gas treatment device | |
Lopez | Progress in large-scale ozone generation using microplasmas | |
JP3702852B2 (en) | Processing method using dielectric barrier discharge lamp | |
JP3815503B2 (en) | Processing method using dielectric barrier discharge lamp | |
JP3303389B2 (en) | Processing method using dielectric barrier discharge lamp | |
WO2004088706A2 (en) | Ultraviolet lamp | |
EP3944868A1 (en) | Multifunctional device for air treatment in healthcare and civil environments with rci technology (radiant catalytic ionization) | |
KR20110090329A (en) | Method and apparatus for processing freon gas using electrodeless ultra-violet lamp driven by microwave | |
US20240314915A1 (en) | Methods and apparatus for generating atmospheric pressure, low temperature plasma with changing parameters | |
楠元直樹 et al. | Generation and Decomposition of Ozone Gas by Ozone and Ozoneless Mercury Bulbs Excited by Microwave | |
RU2040935C1 (en) | Method for sterilizing things | |
EP3995156A1 (en) | Method for producing a disinfecting solution and device for carrying out said method | |
KR950009432Y1 (en) | Apparatus of deodorization | |
JP3815502B2 (en) | Processing method using dielectric barrier discharge lamp |