JP2000142213A - Device for automatically adjusting optical axis direction of head lamp for vehicle - Google Patents
Device for automatically adjusting optical axis direction of head lamp for vehicleInfo
- Publication number
- JP2000142213A JP2000142213A JP10785399A JP10785399A JP2000142213A JP 2000142213 A JP2000142213 A JP 2000142213A JP 10785399 A JP10785399 A JP 10785399A JP 10785399 A JP10785399 A JP 10785399A JP 2000142213 A JP2000142213 A JP 2000142213A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- optical axis
- axis direction
- vehicle height
- headlight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、車両に配設される
前照灯による照射の光軸方向を自動的に調整する車両用
前照灯光軸方向自動調整装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicular headlamp automatic optical axis direction adjusting device for automatically adjusting the optical axis direction of irradiation by a headlamp provided in a vehicle.
【0002】[0002]
【従来の技術】従来、車両の前照灯においては、車体の
傾きによって前照灯の光軸方向が上向きになると対向車
等に眩光を与えたり、光軸方向が下向きになると運転者
の遠方視認性が低下することとなるため、前照灯の光軸
方向を一定に保持したいという要望がある。2. Description of the Related Art Conventionally, a headlight of a vehicle gives glare to an oncoming vehicle when the optical axis of the headlight is directed upward due to the inclination of the vehicle body, or a driver's distant light when the optical axis is directed downward. There is a demand that the optical axis direction of the headlamp be kept constant because the visibility is reduced.
【0003】[0003]
【発明が解決しようとする課題】ところで、荷重負荷に
よる車両姿勢の変化量を一次式で近似した傾き角を用い
た光軸制御が知られている。このものでは、「乗員荷重
のみ」または「乗員荷重及びトランク荷重50kgま
で」等の限られた荷重条件では前照灯の光軸方向を車両
姿勢に一致させることが可能である。ところが、前述の
ものでは、乗員荷重とトランク荷重との組合わせによる
多様な荷重条件には対処できないという不具合があっ
た。By the way, there is known an optical axis control using an inclination angle obtained by approximating a change amount of a vehicle attitude due to a load by a linear expression. In this case, under limited load conditions such as "only the occupant load" or "up to the occupant load and trunk load of 50 kg", it is possible to make the optical axis direction of the headlight coincide with the vehicle posture. However, the above-described vehicle has a problem that it cannot cope with various load conditions due to a combination of the occupant load and the trunk load.
【0004】そこで、この発明はかかる不具合を解決す
るためになされたもので、簡単なシステムで安価な車両
用前照灯光軸方向自動調整装置の提供を目的とし、特
に、車両の前照灯の光軸方向を1つの車高センサからの
出力に基づいて自動的に調整する際、多様な荷重条件に
対処可能な車両用前照灯光軸方向自動調整装置の提供を
課題としている。Accordingly, the present invention has been made to solve such a problem, and an object of the present invention is to provide a simple system and an inexpensive automatic headlight optical axis direction adjusting device for a vehicle. It is an object of the present invention to provide a vehicle headlight optical axis direction automatic adjustment device capable of coping with various load conditions when automatically adjusting the optical axis direction based on an output from one vehicle height sensor.
【0005】[0005]
【課題を解決するための手段】請求項1の車両用前照灯
光軸方向自動調整装置によれば、傾き角演算手段で1つ
の車高センサからの出力に基づき前照灯の光軸方向の水
平面に対する傾き角が、乗員荷重とトランク荷重との荷
重条件に対応し傾きが異なる複数の車両姿勢に分けた予
測式を用いて算出され、この傾き角に基づき光軸方向調
整手段で前照灯の光軸方向が調整される。このため、例
えば、車両タイプ等に対応させ乗員荷重とトランク荷重
との荷重条件に対応した複数の車両姿勢の予測式を予め
用意しておくことで1つの車高センサからの出力値が検
出されれば、そのときの荷重条件に対応する傾き角が算
出され、その傾き角から必要な目標光軸方向調整角度が
算出でき前照灯の光軸方向がそのときの荷重条件に対応
して適切に調整されるという効果が得られる。According to the automatic headlight optical axis direction adjusting device of the first aspect, the inclination angle calculating means adjusts the light axis direction of the headlight based on the output from one vehicle height sensor. The inclination angle with respect to the horizontal plane is calculated using a prediction formula divided into a plurality of vehicle postures having different inclinations corresponding to the load conditions of the occupant load and the trunk load, and based on the inclination angle, the headlight is adjusted by the optical axis direction adjusting means. Is adjusted in the optical axis direction. Therefore, for example, an output value from one vehicle height sensor is detected by preparing in advance a plurality of vehicle posture prediction formulas corresponding to the load conditions of the occupant load and the trunk load corresponding to the vehicle type and the like. Then, the tilt angle corresponding to the load condition at that time is calculated, and the required target optical axis direction adjustment angle can be calculated from the tilt angle, and the optical axis direction of the headlamp is appropriate according to the load condition at that time. Is obtained.
【0006】請求項2の車両用前照灯光軸方向自動調整
装置では、傾き角演算手段によって車高センサ以外のセ
ンサ出力に対応した複数の車両姿勢に分けた複数の予測
式からそのときの荷重条件に対応した予測式が択一され
る。このため、車両タイプ等に加えてそのときの複雑な
荷重条件の変化に対応してより適切な光軸方向の調整制
御が実施できるという効果が得られる。According to a second aspect of the present invention, there is provided a vehicle headlight optical axis direction automatic adjusting apparatus, wherein a load at that time is obtained from a plurality of prediction formulas divided into a plurality of vehicle postures corresponding to sensor outputs other than a vehicle height sensor by an inclination angle calculating means. The prediction formula corresponding to the condition is selected. Therefore, an effect is obtained that more appropriate adjustment control in the optical axis direction can be performed in response to a change in a complicated load condition at that time in addition to the vehicle type and the like.
【0007】請求項3の車両用前照灯光軸方向自動調整
装置によれば、傾き角演算手段で1つの車高センサから
の出力、記憶手段にシステム誤差情報として記憶された
車高センサの取付けに伴う誤差や車両の他の要因に基づ
く種々の誤差に基づき前照灯の光軸方向の水平面に対す
る傾き角が、乗員荷重とトランク荷重との荷重条件に対
応し傾きが異なる複数の車両姿勢に分けた予測式を用い
て算出され、この傾き角に基づき光軸方向調整手段で前
照灯の光軸方向が調整される。このため、例えば、車両
タイプやオプション装備等に対応させ乗員荷重とトラン
ク荷重との荷重条件に対応した複数の車両姿勢の予測式
を予め用意しておき、1つの車高センサで検出された出
力値にシステム誤差情報が加味されることで、そのとき
の荷重条件に対応する傾き角が算出され、その傾き角か
ら必要な目標光軸方向調整角度が算出でき前照灯の光軸
方向がそのときの荷重条件に対応して適切に調整される
という効果が得られる。According to a third aspect of the present invention, there is provided a vehicle headlight optical axis direction automatic adjusting device, wherein the output from one vehicle height sensor by the inclination angle calculating means and the vehicle height sensor stored in the storage means as system error information are attached. The angle of inclination of the headlight with respect to the horizontal plane in the optical axis direction depends on the load conditions of the occupant load and the trunk load. It is calculated using the divided prediction formula, and the optical axis direction of the headlight is adjusted by the optical axis direction adjusting means based on the inclination angle. For this reason, for example, a plurality of vehicle posture prediction formulas corresponding to the load conditions of the occupant load and the trunk load corresponding to the vehicle type and optional equipment are prepared in advance, and the output detected by one vehicle height sensor is prepared. By adding the system error information to the value, the tilt angle corresponding to the load condition at that time is calculated, and the required target optical axis direction adjustment angle can be calculated from the tilt angle, and the optical axis direction of the headlight can be calculated. The effect is obtained that the adjustment is appropriately made according to the load condition at that time.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を実施
例に基づいて説明する。 〈実施例1〉図1は本発明の実施の形態の第1実施例に
かかる車両用前照灯光軸方向自動調整装置の全体構成を
示す概略図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples. <Embodiment 1> FIG. 1 is a schematic view showing the entire configuration of a vehicle headlight optical axis direction automatic adjusting apparatus according to a first embodiment of the present invention.
【0009】図1において、車両の後部の運転席側また
は助手席側の車軸には車高センサ11が取付けられてい
る。この車高センサ11からは後輪側の車軸と車体との
相対変位量(車高の変位量)としてのリヤ車高値(後輪
側の車高の変位量:以下、『リヤ車高測定値』とも言
う)HR、その他のセンサ(図示略)から各種センサ信
号等が車両に搭載されたECU(Electronic Control U
nit:電子制御ユニット)20に入力されている。なお、
ECU20は便宜上、車両の外部に図示されている。In FIG. 1, a vehicle height sensor 11 is mounted on the axle on the driver's seat side or the passenger's seat side at the rear of the vehicle. From this vehicle height sensor 11, a rear vehicle height value (a rear wheel side vehicle height displacement amount) as a relative displacement amount (a vehicle height displacement amount) between the rear wheel axle and the vehicle body is referred to as a "rear vehicle height measured value". ), An ECU (Electronic Control U) in which various sensor signals from HR and other sensors (not shown) are mounted on the vehicle.
nit: electronic control unit) 20. In addition,
The ECU 20 is shown outside the vehicle for convenience.
【0010】ECU20は、周知の中央処理装置として
のCPU21、制御プログラムを格納したROM22、
各種データを格納するRAM23、B/U(バックアッ
プ)RAM24、入出力回路25及びそれらを接続する
バスライン26等からなる論理演算回路として構成され
ている。このECU20からの出力信号が車両のヘッド
ライト(前照灯)30側のアクチュエータ35に入力さ
れ、後述するように、ヘッドライト30の光軸方向が調
整される。The ECU 20 includes a CPU 21 as a well-known central processing unit, a ROM 22 storing a control program,
It is configured as a logical operation circuit including a RAM 23 for storing various data, a B / U (backup) RAM 24, an input / output circuit 25, and a bus line 26 connecting them. The output signal from the ECU 20 is input to an actuator 35 on the headlight (headlight) 30 side of the vehicle, and the optical axis direction of the headlight 30 is adjusted as described later.
【0011】図2は図1のヘッドライト30の要部構成
を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a main part of the headlight 30 of FIG.
【0012】図2において、ヘッドライト30は主とし
て、ランプ31とそのランプ31を固定するリフレクタ
32、そのリフレクタ32を円弧矢印方向に揺動自在に
支持する一方の支持部33及びリフレクタ32を支持す
ると共に可動自在な他方の可動部34、その可動部34
を前後矢印方向に駆動するステップモータ等からなるア
クチュエータ35にて構成されている。なお、ヘッドラ
イト30の光軸方向は運転者1名が乗車した状態を想定
して初期設定されている。In FIG. 2, a headlight 30 mainly supports a lamp 31, a reflector 32 for fixing the lamp 31, one support portion 33 for supporting the reflector 32 so as to be swingable in the direction of an arc arrow, and a reflector 32. The other movable part 34 which is movable together with the movable part 34
Is constituted by an actuator 35 composed of a step motor or the like for driving the motor in the directions of front and rear arrows. Note that the optical axis direction of the headlight 30 is initially set assuming a state in which one driver gets on the vehicle.
【0013】次に、本発明の実施の形態の第1実施例に
かかる車両用前照灯光軸方向自動調整装置で使用されて
いるECU20内のCPU21における多様な荷重条件
に対処する光軸方向の調整制御の処理手順を示す図3の
フローチャートに基づいて説明する。なお、この制御ル
ーチンは所定時間毎にCPU21にて繰返し実行され
る。また、図3の制御ルーチンを実行する際には、車両
タイプに対応して図4、図5または図6のうち何れの予
測式のテーブルを用いるかが予め決定されており、その
車両タイプに必要なテーブルが予めROM22内に格納
されている。Next, the CPU 21 in the ECU 20 used in the vehicle headlamp automatic optical axis direction adjusting apparatus according to the first embodiment of the present invention copes with various load conditions in the optical axis direction. A description will be given based on a flowchart of FIG. 3 showing a processing procedure of the adjustment control. Note that this control routine is repeatedly executed by the CPU 21 at predetermined time intervals. When the control routine of FIG. 3 is executed, it is determined in advance which of the prediction formulas of FIG. 4, FIG. 5 or FIG. 6 to use in accordance with the vehicle type. Necessary tables are stored in the ROM 22 in advance.
【0014】ここで、図4はリヤ車高値〔mm〕に基づ
きピッチ角〔°〕を算出する荷重条件に対応し傾きが異
なる1次式をつなげた折れ線で2つの車両姿勢に分けた
予測式を示すテーブルであり、トランク荷重がリヤサス
ペンションより後ろ側にかかるセダンタイプやワゴンタ
イプ等に対応している。また、図5はリヤ車高値〔m
m〕に基づきピッチ角〔°〕を算出する荷重条件に対応
し傾きが異なる1次式をつなげた折れ線で2つの車両姿
勢に分けた予測式の変形例を示すテーブルであり、トラ
ンク荷重がリヤサスペンション上にかかる1BOXタイ
プや軽自動車等に対応している。そして、図6はフロン
ト車高値〔mm〕に基づきピッチ角〔°〕を算出する荷
重条件に対応し傾きが異なる1次式をつなげた折れ線で
2つの車両姿勢に分けた予測式を示すテーブルであり、
トランク荷重がフロントサスペンションにかかるミッド
シップ車やRR(リヤエンジン/リヤドライブ)車等に
対応している。本実施例では、セダンタイプを想定しそ
れに対応する図4のテーブルが予めROM22内に格納
されているものとする。Here, FIG. 4 is a prediction formula obtained by dividing the two vehicle postures by a polygonal line connecting linear expressions having different inclinations corresponding to the load conditions for calculating the pitch angle [°] based on the rear vehicle height value [mm]. This table is for sedan type and wagon type where the trunk load is applied to the rear side of the rear suspension. FIG. 5 shows the rear vehicle height [m
m] is a table showing a modified example of a prediction formula divided into two vehicle postures by a polygonal line connecting linear formulas having different inclinations corresponding to load conditions for calculating a pitch angle [°] based on a load condition. Compatible with 1BOX type and mini cars on suspension. FIG. 6 is a table showing a prediction formula divided into two vehicle postures by a polygonal line connecting linear expressions having different inclinations corresponding to the load conditions for calculating the pitch angle [°] based on the front vehicle height value [mm]. Yes,
It is compatible with midship vehicles and RR (rear engine / rear drive) vehicles with a trunk load applied to the front suspension. In the present embodiment, it is assumed that the table of FIG. 4 corresponding to the sedan type is stored in the ROM 22 in advance.
【0015】図3において、ステップS101で、車高
センサ11からのリヤ車高値(リヤ車高測定値)HRが
読込まれる。次にステップS102に移行して、ステッ
プS101で読込まれたリヤ車高値HRが、図4に破線
にて示す乗員荷重領域とトランク荷重領域とを分けるリ
ヤ車高値ha (=−9〔mm〕)以上であるかが判定さ
れる。ステップS102の判定条件が成立、即ち、リヤ
車高値HRがリヤ車高値ha 以上と大きく乗員荷重領域
(図4の右側の斜線で囲まれた領域)にあるときにはス
テップS103に移行し、2つの車両姿勢に分けた予測
式のうちステップS101で読込まれたリヤ車高値HR
が代入された一方の予測式f0(HR)によりピッチ角θ
pが算出される。In FIG. 3, a rear vehicle height value (rear vehicle height measurement value) HR from the vehicle height sensor 11 is read in step S101. Next, the process proceeds to step S102, where the rear vehicle height value HR read in step S101 is the rear vehicle height value ha (= -9 [mm]) that separates the occupant load region and the trunk load region indicated by the broken line in FIG. It is determined whether this is the case. When the determination condition in step S102 is satisfied, that is, when the rear vehicle height value HR is as large as the rear vehicle height value ha or more and is in the occupant load region (the region surrounded by oblique lines on the right side in FIG. 4), the process proceeds to step S103 and the two vehicles Rear vehicle height value HR read in step S101 of the prediction formula divided into postures
The pitch angle θ is obtained from one of the prediction formulas f0 (HR) into which
p is calculated.
【0016】一方、ステップS102の判定条件が成立
せず、即ち、リヤ車高値HRがリヤ車高値ha 未満と小
さくトランク荷重領域(図4の左側の斜線で囲まれてい
ない領域)にあるときにはステップS104に移行し、
ステップS101で読込まれたリヤ車高値HRが代入さ
れた他方の予測式f1(HR)によりピッチ角θpが算出
される。このとき、図4において、乗員荷重領域の予測
式を示す実線を延長したトランク荷重領域における従来
の一点鎖線にて示す予測式では「菱形黒塗」記号にて示
す実際の荷重条件から大きく逸脱してしまうが、本発明
として示すトランク荷重領域で傾きを変えた実線では実
際の荷重条件に略一致されている。なお、図4に示す
「菱形黒塗」記号は全席に乗員乗車状態のとき、「四角
白抜」記号は運転席に乗員乗車状態のときの荷重条件に
よる実測値である。On the other hand, when the determination condition of step S102 is not satisfied, that is, when the rear vehicle height HR is smaller than the rear vehicle height ha and is in the trunk load region (the region not surrounded by the oblique line on the left side in FIG. 4), the step is performed. Move to S104,
The pitch angle θp is calculated by the other prediction formula f1 (HR) into which the rear vehicle height value HR read in step S101 is substituted. At this time, in FIG. 4, in the conventional prediction formula indicated by the one-dot chain line in the trunk load region obtained by extending the solid line indicating the prediction formula of the occupant load region, the actual load condition greatly deviates from the symbol “black diamond”. However, the solid line in which the inclination is changed in the trunk load region shown as the present invention substantially matches the actual load condition. The symbol “black diamond” shown in FIG. 4 is an actually measured value based on the load condition when the occupant is in the occupant state in all the seats, and the symbol “white square” is the occupant occupying state in the driver seat.
【0017】ステップS103またはステップS104
でピッチ角θpが算出されたのちステップS105に移
行し、ピッチ角θpに対して対向車に眩光を与えること
のない目標光軸方向調整角度θT (≒−θp)が算出さ
れる。次にステップS106に移行して、ステップS1
05で算出された目標光軸方向調整角度θT に基づきア
クチュエータ35が駆動され、本ルーチンを終了する。
なお、アクチュエータ35に対する制御速度設定等につ
いては省略されている。Step S103 or step S104
After the pitch angle θp is calculated in step S105, the process proceeds to step S105, where the target optical axis direction adjustment angle θT (≒ −θp) that does not give glare to oncoming vehicles with respect to the pitch angle θp is calculated. Next, the process proceeds to step S106, and step S1
The actuator 35 is driven based on the target optical axis direction adjustment angle θT calculated in 05, and the routine ends.
The setting of the control speed for the actuator 35 and the like are omitted.
【0018】このように、本実施例の車両用前照灯光軸
方向自動調整装置は、車両の後部に配設され、車高の変
位量を検出する1つの車高センサ11と、車高センサ1
1からの出力であるリヤ車高値HRに基づき、車両の車
室内における乗員乗車状態にて決まる乗員荷重と車両の
トランク内における荷物積載状態にて決まるトランク荷
重との荷重条件に対応し傾きが異なる2つ(複数)の車
両姿勢に分けた予測式を用い、車両のヘッドライト(前
照灯)30の光軸方向の水平面に対する傾き角に対応す
るピッチ角θpを算出するECU20内のCPU21に
て達成される傾き角演算手段と、前記傾き角演算手段で
算出されたピッチ角θpに基づく目標光軸方向調整角度
θT によりヘッドライト30の光軸方向を調整するEC
U20内のCPU21にて達成される光軸方向調整手段
とを具備するものである。As described above, the apparatus for automatically adjusting the optical axis direction of the vehicle headlamp according to the present embodiment is provided at the rear portion of the vehicle and has one vehicle height sensor 11 for detecting the amount of displacement of the vehicle height, and the vehicle height sensor. 1
Based on the rear vehicle height value HR, which is an output from No. 1, the slope differs depending on the load conditions of the occupant load determined by the occupant riding state in the vehicle interior and the trunk load determined by the luggage loading state in the vehicle trunk. The CPU 21 in the ECU 20 calculates a pitch angle θp corresponding to the inclination angle of the headlight (headlight) 30 of the vehicle with respect to the horizontal plane in the optical axis direction using a prediction formula divided into two (plural) vehicle attitudes. EC for adjusting the optical axis direction of the headlight 30 by the achieved tilt angle calculating means and the target optical axis direction adjusting angle θT based on the pitch angle θp calculated by the tilt angle calculating means.
And an optical axis direction adjusting means achieved by the CPU 21 in the U20.
【0019】したがって、ECU20内のCPU21で
1つの車高センサ11からの出力であるリヤ車高値HR
に基づきヘッドライト30の光軸方向の水平面に対する
傾き角に対応するピッチ角θpがそのときの乗員荷重と
トランク荷重との荷重条件に対応し傾きが異なる2つの
車両姿勢に分けた予測式f0(HR),f1(HR)を用い
て算出され、このピッチ角θpに基づきヘッドライト3
0の光軸方向が調整される。このため、例えば、車両タ
イプ等に対応させ乗員荷重とトランク荷重との荷重条件
に対応し傾きが異なる2つの車両姿勢に分けた予測式を
予め用意しておくことで1つの車高センサ11からのリ
ヤ車高値HRが検出されれば、そのときの荷重条件に対
応するピッチ角θpが算出され、そのピッチ角θpから
必要な目標光軸方向調整角度θT が算出できヘッドライ
ト30の光軸方向がそのときの荷重条件に対応して適切
に調整されることとなる。Therefore, the rear vehicle height value HR, which is an output from one vehicle height sensor 11 by the CPU 21 in the ECU 20, is provided.
The pitch angle θp corresponding to the inclination angle of the headlight 30 with respect to the horizontal plane in the optical axis direction according to the load conditions of the occupant load and the trunk load at that time, and is divided into two vehicle postures having different inclinations, HR) and f1 (HR), and the headlight 3 is calculated based on the pitch angle θp.
The optical axis direction of 0 is adjusted. For this reason, for example, by preparing beforehand a prediction formula that is divided into two vehicle postures having different inclinations corresponding to the load conditions of the occupant load and the trunk load in accordance with the vehicle type, etc. Is detected, the pitch angle θp corresponding to the load condition at that time is calculated, and the required target optical axis direction adjustment angle θT can be calculated from the pitch angle θp, and the optical axis direction of the headlight 30 can be calculated. Is appropriately adjusted according to the load condition at that time.
【0020】次に、本発明の実施の形態の第1実施例に
かかる車両用前照灯光軸方向自動調整装置で使用されて
いるECU20内のCPU21における多様な荷重条件
に対処する光軸方向の調整制御の処理で、図7に示す2
つの車両姿勢に分けた予測式を車高センサ11以外のセ
ンサ出力に対応して3つ有するテーブルを用いたときに
ついて説明する。Next, the CPU 21 in the ECU 20 used in the vehicle headlamp automatic optical axis direction adjusting apparatus according to the first embodiment of the present invention copes with various load conditions in the optical axis direction. In the process of the adjustment control, 2 shown in FIG.
A case will be described in which a table having three prediction formulas divided into two vehicle attitudes corresponding to sensor outputs other than the vehicle height sensor 11 is used.
【0021】図7は上述の図4と同様、車両タイプとし
てトランク荷重がリヤサスペンションより後ろ側にかか
るセダンタイプやワゴンタイプ等に対応し、他のセンサ
信号に基づき択一される2つの車両姿勢に分けた予測式
を車高センサ以外のセンサ出力に対応してA,B,Cと
3つ有するテーブルを示す。ここで、他のセンサ信号と
は車両の助手席に設けられ助手席への乗車を検知する助
手席センサ(図示略)やトランク負荷を測定する負荷セ
ンサ(図示略)や周知のG(加速度)センサからのセン
サ信号である。つまり、車両タイプに対応させ2つの車
両姿勢に分けた予測式を3つ有するテーブルをECU2
0のROM22内に予め格納しておき、複雑な実際の荷
重条件の変化に応じて予測式を選択し切替えることでピ
ッチ角θpが算出できるため、より正確な車両姿勢が予
測でき、より適切な光軸方向の調整制御を実施すること
ができることとなる。FIG. 7 shows a vehicle type corresponding to a sedan type or a wagon type in which a trunk load is applied to a rear side of a rear suspension as in the case of FIG. 4, and two vehicle postures selected based on other sensor signals. A table having three prediction formulas A, B, and C corresponding to sensor outputs other than the vehicle height sensor is shown. Here, the other sensor signals include a passenger seat sensor (not shown) provided in the front passenger seat of the vehicle and detecting entry to the front passenger seat, a load sensor (not shown) for measuring a trunk load, and a known G (acceleration) This is a sensor signal from the sensor. That is, the ECU 2 stores a table having three prediction formulas corresponding to vehicle types and divided into two vehicle attitudes.
0 is stored in advance in the ROM 22, and the pitch angle θp can be calculated by selecting and switching the prediction formula according to a change in a complicated actual load condition, so that a more accurate vehicle attitude can be predicted, and a more appropriate The adjustment control in the optical axis direction can be performed.
【0022】このように、本変形例の車両用前照灯光軸
方向自動調整装置は、ECU20のCPU21にて達成
される傾き角演算手段が2つ(複数)の車両姿勢に分け
た予測式を車両に配設された車高センサ11以外のセン
サ出力に対応して3つ(複数)有し、車高センサ11以
外のセンサ出力によって択一するものである。したがっ
て、車両タイプ等に対応し2つの車両姿勢に分けた予測
式の3つからそのときの荷重条件に対応した予測式を選
択することができる。このため、車両タイプ等に加えて
そのときの複雑な荷重条件の変化に対応してより適切な
光軸方向の調整制御を実施することができる。 〈実施例2〉図8は本発明の実施の形態の第2実施例に
かかる車両用前照灯光軸方向自動調整装置の全体構成を
示す概略図である。As described above, in the vehicle headlight optical axis direction automatic adjusting apparatus of the present modification, the inclination angle calculating means achieved by the CPU 21 of the ECU 20 divides the prediction formula into two (plural) vehicle attitudes. It has three (plural) corresponding to sensor outputs other than the vehicle height sensor 11 provided in the vehicle, and selects one according to the sensor output other than the vehicle height sensor 11. Therefore, a prediction formula corresponding to the load condition at that time can be selected from three prediction formulas corresponding to the vehicle type and the like and divided into two vehicle postures. For this reason, more appropriate adjustment control in the optical axis direction can be performed in response to a change in a complicated load condition at that time in addition to the vehicle type and the like. <Embodiment 2> FIG. 8 is a schematic diagram showing the overall configuration of a vehicle headlamp optical axis direction automatic adjusting apparatus according to a second embodiment of the present invention.
【0023】図8において、上述の実施例における図1
の概略構成図との相違点は、システム誤差情報を予め記
憶しておく記憶媒体としてEEPROM29等の書換可
能な不揮発性メモリを備え、このEEPROM29がE
CU20に内蔵されていることのみである。なお、EE
PROM29はECU20の外部に接続されていてもよ
い。このため、他の構成については同一符号及び同一記
号を付し、その詳細な説明を省略する。また、ヘッドラ
イトの要部構成についても上述の実施例における図2の
断面図と同じであり、その詳細な説明も省略する。ここ
で、システム誤差情報とは、車両への車高センサ11の
取付け誤差やフロント・リヤサスペンションのばね定数
の誤差、車両の仕様の違いによる重量の誤差や重心の位
置の誤差等で傾き角の算出に影響を与える因子である。Referring to FIG. 8, FIG.
The difference from the schematic configuration diagram of FIG. 1 is that a rewritable nonvolatile memory such as an EEPROM 29 is provided as a storage medium for storing system error information in advance.
It is only that it is built in the CU 20. EE
The PROM 29 may be connected to the outside of the ECU 20. Therefore, the other components are denoted by the same reference numerals and symbols, and detailed description thereof will be omitted. The configuration of the main part of the headlight is also the same as the cross-sectional view of FIG. Here, the system error information includes an error in mounting the vehicle height sensor 11 to the vehicle, an error in the spring constant of the front and rear suspensions, an error in weight due to a difference in specifications of the vehicle, an error in the position of the center of gravity, and the like. It is a factor that affects the calculation.
【0024】次に、本発明の実施の形態の第2実施例に
かかる車両用前照灯光軸方向自動調整装置で使用されて
いるECU20内のCPU21におけるシステム誤差情
報を考慮し多様な荷重条件に対処する光軸方向の調整制
御の処理手順を示す図9のフローチャートに基づき、図
10、図11及び図12を参照して説明する。なお、こ
の制御ルーチンは所定時間毎にCPU21にて繰返し実
行される。Next, various load conditions are considered in consideration of system error information in the CPU 21 in the ECU 20 used in the vehicle headlamp automatic optical axis direction adjusting device according to the second embodiment of the present invention. A description will be given with reference to FIGS. 10, 11 and 12 based on the flowchart of FIG. 9 showing the processing procedure of the adjustment control in the optical axis direction to be dealt with. Note that this control routine is repeatedly executed by the CPU 21 at predetermined time intervals.
【0025】ここで、図10は標準の車両の特性に対応
するシステム誤差情報が考慮される以前の予測式(細い
実線)と、車高センサ11の車両への取付け誤差により
リヤ車高値換算で−20〔mm〕ずれたときのシステム
誤差情報が考慮された予測式(太い実線)とを示すテー
ブルである。また、図11は標準の車両の特性に対応す
るシステム誤差情報が考慮される以前の予測式(細い実
線)と、フロント・リヤサスペンションのばね定数の誤
差により予測式の傾きが変化したときのシステム誤差情
報が考慮された予測式(太い実線)とを示すテーブルで
ある。そして、図12は車高センサ11の車両への取付
け誤差や車両の他の要因に基づく種々の誤差からなるシ
ステム誤差情報が考慮された5つの予測式を示すテーブ
ルである。なお、図10、図11及び図12に示すテー
ブルにおける「菱形黒塗」記号は全席に乗員乗車状態の
とき、「四角白抜」記号は運転席に乗員乗車状態のとき
の荷重条件による実測値であり、標準の車両の特性に対
応する予測式は予めROM22内に格納されている。Here, FIG. 10 shows a prediction formula (thin solid line) before the system error information corresponding to the characteristics of the standard vehicle is considered, and a rear vehicle height value conversion based on the mounting error of the vehicle height sensor 11 to the vehicle. It is a table which shows the prediction formula (thick solid line) which considered the system error information at the time of -20 [mm] shift. FIG. 11 shows a prediction formula (thin solid line) before the system error information corresponding to the characteristics of the standard vehicle is considered, and a system when the inclination of the prediction formula changes due to an error in the spring constant of the front and rear suspensions. 9 is a table showing a prediction formula (thick solid line) in which error information is considered. FIG. 12 is a table showing five prediction formulas in which system error information including various errors based on mounting errors of the vehicle height sensor 11 to the vehicle and other factors of the vehicle is considered. In the tables shown in FIGS. 10, 11 and 12, the symbols “black diamond” are measured values when all the seats are in the occupant state, and the “square white” symbols are measured values based on the load conditions when the driver is in the occupant state. The prediction formula corresponding to the standard vehicle characteristics is stored in the ROM 22 in advance.
【0026】図9において、ステップS201で、車高
センサ11からのリヤ車高値(リヤ車高測定値)HRが
読込まれる。次にステップS202に移行して、システ
ム誤差情報が読込まれる。次にステップS203に移行
して、ステップS201で読込まれたリヤ車高値HR
が、ステップS202で読込まれたシステム誤差情報に
基づく補正ゲインα、補正量(オフセット量)Δhにて
(α*HR−Δh)と更新される。In FIG. 9, in step S201, a rear vehicle height value (rear vehicle height measurement value) HR from the vehicle height sensor 11 is read. Next, the process proceeds to step S202, where the system error information is read. Next, the process proceeds to step S203, and the rear vehicle height value HR read in step S201.
Is updated to (α * HR−Δh) with the correction gain α and the correction amount (offset amount) Δh based on the system error information read in step S202.
【0027】ここで、図10に細い実線にてシステム誤
差情報が考慮される以前の予測式として示すように、単
純に車高センサ11の取付け誤差によりリヤ車高値HR
換算で−20〔mm〕ずれて取付けられているだけのと
きには、図10に太い実線にてシステム誤差情報が考慮
された予測式として示すように、その誤差分(補正量Δ
h)が補正されることで「菱形黒塗」記号及び「四角白
抜」記号にて示す実際の荷重条件に略一致されている。
また、図11に細い実線にてシステム誤差情報が考慮さ
れる以前の予測式として示すように、車高センサ11の
取付け誤差やフロント・リヤサスペンションのばね定数
の誤差により予測式の傾きが変化されたときには、図1
1に太い実線にてシステム誤差情報が考慮された予測式
として示すように、その誤差分(補正ゲインαや補正量
Δh)が補正されることで「菱形黒塗」記号及び「四角
白抜」記号にて示す実際の荷重条件に略一致されてい
る。Here, as shown in FIG. 10 as a prediction expression before the system error information is considered by a thin solid line, the rear vehicle height value HR is simply determined by the mounting error of the vehicle height sensor 11.
When they are simply shifted by -20 [mm] in conversion, as shown by a thick solid line in FIG. 10 as a prediction formula in which the system error information is taken into account, the error (correction amount Δ
The correction of h) substantially matches the actual load conditions indicated by the symbols “black diamond” and “square white”.
Further, as shown in FIG. 11 as a prediction equation before the system error information is considered by a thin solid line, the inclination of the prediction equation is changed due to an error in mounting the vehicle height sensor 11 and an error in the spring constant of the front and rear suspensions. Figure 1
As shown by a thick solid line in FIG. 1 as a prediction formula in which the system error information is taken into account, the error (correction gain α and correction amount Δh) is corrected, so that the “rhombic black” symbol and the “square white” This is almost the same as the actual load condition indicated by the symbol.
【0028】次にステップS204に移行して、ステッ
プS203で更新されたリヤ車高値HRが、更に、図1
2に破線にて示す乗員荷重領域とトランク荷重領域とを
分けるリヤ車高値ha (=−9〔mm〕)以上であるか
が判定される。ステップS204の判定条件が成立、即
ち、リヤ車高値HRがリヤ車高値ha 以上と大きく乗員
荷重領域(図12の右側の斜線で囲まれた領域)にある
ときにはステップS205に移行し、2つの車両姿勢に
分けた5つの予測式fxi(HR),(i=1,2,…,
5)から択一され、その予測式にステップS203で更
新されたリヤ車高値HRが代入されピッチ角θpが算出
される。Next, the process proceeds to step S204, and the rear vehicle height value HR updated in step S203 further shows the value shown in FIG.
It is determined whether or not the rear vehicle height value ha (= -9 [mm]) that separates the occupant load region and the trunk load region indicated by the broken line in FIG. When the determination condition of step S204 is satisfied, that is, when the rear vehicle height value HR is as large as the rear vehicle height value ha or more and is in the occupant load region (the region surrounded by oblique lines on the right side in FIG. 12), the process proceeds to step S205 and the two vehicles Five prediction formulas fx (HR), divided into postures, (i = 1, 2,...,
5), the rear vehicle height value HR updated in step S203 is substituted for the prediction formula, and the pitch angle θp is calculated.
【0029】一方、ステップS204の判定条件が成立
せず、即ち、リヤ車高値HRがリヤ車高値ha 未満と小
さくトランク荷重領域(図12の左側の斜線で囲まれて
いない領域)にあるときにはステップS206に移行
し、2つの車両姿勢に分けた5つの予測式fyi(H
R),(i=1,2,…,5)から択一され、その予測
式にステップS203で更新されたリヤ車高値HRが代
入されピッチ角θpが算出される。このとき、図12に
おいて、システム誤差情報が考慮され選択された予測式
では「菱形黒塗」記号及び「四角白抜」記号にて示す実
際の荷重条件に略一致されている。On the other hand, when the determination condition of step S204 is not satisfied, that is, when the rear vehicle height value HR is smaller than the rear vehicle height value ha and is in the trunk load region (region not surrounded by the oblique line on the left side of FIG. 12), step S204 is performed. The process proceeds to S206, and the five prediction formulas fyi (H
R), (i = 1, 2,..., 5), the rear vehicle height value HR updated in step S203 is substituted for the prediction formula, and the pitch angle θp is calculated. At this time, in FIG. 12, in the prediction formula selected in consideration of the system error information, the actual load condition substantially coincides with the symbol “black diamond” and the symbol “white square”.
【0030】ステップS205またはステップS206
でピッチ角θpが算出されたのちステップS207に移
行し、ピッチ角θpに対して対向車に眩光を与えること
のない目標光軸方向調整角度θT (≒−θp)が算出さ
れる。次にステップS208に移行して、ステップS2
07で算出された目標光軸方向調整角度θT に基づきア
クチュエータ35が駆動され、本ルーチンを終了する。
なお、アクチュエータ35に対する制御速度設定等につ
いては省略されている。Step S205 or S206
After the pitch angle θp is calculated in step S207, the process proceeds to step S207, and a target optical axis direction adjustment angle θT (≒ −θp) that does not give glare to oncoming vehicles with respect to the pitch angle θp is calculated. Next, the process proceeds to step S208, and step S2
The actuator 35 is driven based on the target optical axis direction adjustment angle θT calculated in step 07, and this routine ends.
The setting of the control speed for the actuator 35 and the like are omitted.
【0031】このように、本実施例の車両用前照灯光軸
方向自動調整装置は、車両の後部に配設され、車高の変
位量を検出する1つの車高センサ11と、車高センサ1
1の取付けに伴う誤差や車両の他の要因に基づく種々の
誤差をシステム誤差情報として予め記憶する記憶手段と
してのEEPROM29と、車高センサ11からの出力
であるリヤ車高値HRとEEPROM29に記憶された
システム誤差情報とに基づき、車両の車室内における乗
員乗車状態にて決まる乗員荷重と車両のトランク内にお
ける荷物積載状態にて決まるトランク荷重との荷重条件
に対応し傾きが異なる2つ(複数)の車両姿勢に分けた
予測式を用い、車両のヘッドライト(前照灯)30の光
軸方向の水平面に対する傾き角に対応するピッチ角θp
を算出するECU20内のCPU21にて達成される傾
き角演算手段と、前記傾き角演算手段で算出されたピッ
チ角θpに基づく目標光軸方向調整角度θT によりヘッ
ドライト30の光軸方向を調整するECU20内のCP
U21にて達成される光軸方向調整手段とを具備するも
のである。As described above, the vehicle headlamp optical axis direction automatic adjusting device of the present embodiment is disposed at the rear of the vehicle, and detects one vehicle height sensor 11 for detecting the amount of vehicle height displacement, and the vehicle height sensor. 1
1 is stored in an EEPROM 29 as storage means for storing in advance system errors and various errors based on other factors of the vehicle and other factors based on other factors of the vehicle, and a rear vehicle height value HR and an EEPROM 29 output from the vehicle height sensor 11. (Two or more) having different inclinations corresponding to the load conditions of the occupant load determined by the occupant riding state in the vehicle interior and the trunk load determined by the luggage loading state in the vehicle trunk based on the system error information obtained. Pitch angle θp corresponding to the inclination angle of the headlight (headlight) 30 of the vehicle with respect to the horizontal plane in the optical axis direction using a prediction formula divided into vehicle postures
The optical axis direction of the headlight 30 is adjusted by a tilt angle calculating means achieved by the CPU 21 in the ECU 20 and a target optical axis direction adjusting angle θT based on the pitch angle θp calculated by the tilt angle calculating means. CP in ECU 20
And an optical axis direction adjusting means achieved in U21.
【0032】したがって、ECU20内のCPU21で
1つの車高センサ11からの出力であるリヤ車高値HR
とEEPROM29に記憶されたシステム誤差情報とに
基づきヘッドライト30の光軸方向の水平面に対する傾
き角に対応するピッチ角θpがそのときの乗員荷重とト
ランク荷重との荷重条件に対応し傾きが異なる2つの車
両姿勢に分けた予測式fxi(HR),fyi(HR)を用
いて算出され、このピッチ角θpに基づきヘッドライト
30の光軸方向が調整される。このため、例えば、車両
タイプ等に対応させ乗員荷重とトランク荷重との荷重条
件に対応し傾きが異なる2つの車両姿勢に分けた予測式
を予め用意しておき、1つの車高センサ11からのリヤ
車高値HRにシステム誤差情報が加味されることで、そ
のときの荷重条件に対応するピッチ角θpが算出され、
そのピッチ角θpから必要な目標光軸方向調整角度θT
が算出できヘッドライト30の光軸方向がそのときの荷
重条件に対応して適切に調整されることとなる。Therefore, the rear vehicle height value HR, which is an output from one vehicle height sensor 11 by the CPU 21 in the ECU 20, is provided.
The pitch angle θp corresponding to the inclination angle of the headlight 30 with respect to the horizontal plane in the optical axis direction based on the system error information stored in the EEPROM 29 and the inclination differs according to the load conditions of the occupant load and the trunk load at that time. It is calculated using the prediction formulas fxi (HR) and fyi (HR) divided into two vehicle attitudes, and the optical axis direction of the headlight 30 is adjusted based on the pitch angle θp. For this reason, for example, a prediction formula divided into two vehicle postures having different inclinations corresponding to the load conditions of the occupant load and the trunk load in accordance with the vehicle type and the like is prepared in advance, and a prediction formula from one vehicle height sensor 11 is provided. By adding the system error information to the rear vehicle height HR, the pitch angle θp corresponding to the load condition at that time is calculated,
From the pitch angle θp, the required target optical axis direction adjustment angle θT
Can be calculated, and the optical axis direction of the headlight 30 is appropriately adjusted according to the load condition at that time.
【0033】ところで、上記実施例では、荷重条件に対
応する複数の車両姿勢に分けた予測式として乗員荷重領
域とトランク荷重領域との2つの領域に分けたテーブル
を用いるとしたが、本発明を実施する場合には、これに
限定されるものではなく、同じ乗員荷重領域、トランク
荷重領域においても、荷重負荷位置によって車両姿勢が
異なる場合は、更に細分化し、3つ以上の領域に分けた
テーブルとしてもよい。また、予測式は荷重条件に対応
し傾きが異なる1次式をつなげた折れ線としているが、
高次式、指数関数等の任意の関数を用いることができ
る。このとき、予測式が高次式であっても、プログラム
簡略化のため領域を多数に分けそれぞれの領域を1次式
で近似するようにしてもよい。更に、リヤ車高値HRが
変化してもピッチ角θpが変化しないような車両タイプ
においては、予測式を定数(0次式)としてもよい。In the above embodiment, a table divided into two regions, ie, an occupant load region and a trunk load region, is used as a prediction formula divided into a plurality of vehicle postures corresponding to the load conditions. The present invention is not limited to this. If the vehicle attitude differs depending on the load position even in the same occupant load area and trunk load area, the table is further subdivided and divided into three or more areas. It may be. In addition, the prediction formula is a polygonal line connecting linear expressions having different inclinations corresponding to the load conditions,
Arbitrary functions such as higher-order expressions and exponential functions can be used. At this time, even if the prediction equation is a high-order equation, the area may be divided into a large number for approximation of the program, and each area may be approximated by a linear equation. Further, in a vehicle type in which the pitch angle θp does not change even when the rear vehicle height value HR changes, the prediction formula may be a constant (0th order formula).
【0034】また、上記実施例では、複数の車両姿勢に
分けた予測式のテーブルを用いリヤ車高値HRからピッ
チ角θpを算出しているが、例えば、リヤ車高値からフ
ロント車高値を推定したのちピッチ角を算出するように
してもよい。In the above embodiment, the pitch angle θp is calculated from the rear vehicle height HR by using a prediction formula table divided into a plurality of vehicle attitudes. For example, the front vehicle height is estimated from the rear vehicle height. Then, the pitch angle may be calculated.
【図1】 図1は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置の全体構成を示
す概略図である。FIG. 1 is a schematic diagram showing an overall configuration of a vehicle headlamp optical axis direction automatic adjustment device according to a first example of an embodiment of the present invention.
【図2】 図2は図1のヘッドライトの要部構成を示す
断面図である。FIG. 2 is a cross-sectional view showing a configuration of a main part of the headlight of FIG.
【図3】 図3は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置で使用されてい
るECU内のCPUにおける多様な荷重条件に対処する
光軸方向の調整制御の処理手順を示すフローチャートで
ある。FIG. 3 is an optical axis direction for coping with various load conditions in a CPU in an ECU used in a vehicle headlight optical axis direction automatic adjustment device according to a first example of an embodiment of the present invention; 5 is a flowchart showing a procedure of the adjustment control of FIG.
【図4】 図4は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置で用いられるリ
ヤ車高値に基づきピッチ角を算出する2つの車両姿勢に
分けた予測式を示すテーブルである。FIG. 4 is divided into two vehicle postures for calculating a pitch angle based on a rear vehicle height value used in a vehicle headlight optical axis direction automatic adjustment device according to a first example of an embodiment of the present invention. It is a table which shows a prediction formula.
【図5】 図5は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置で用いられるリ
ヤ車高値に基づきピッチ角を算出する他の2つの車両姿
勢に分けた予測式を示すテーブルである。FIG. 5 is a view showing another two vehicle postures for calculating a pitch angle based on a rear vehicle height value used in a vehicle headlight optical axis direction automatic adjustment device according to a first example of an embodiment of the present invention; It is a table which shows the divided prediction formula.
【図6】 図6は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置で用いられるフ
ロント車高値に基づきピッチ角を算出する2つの車両姿
勢に分けた予測式を示すテーブルである。FIG. 6 is divided into two vehicle attitudes for calculating a pitch angle based on a front vehicle height value used in the vehicle headlight optical axis direction automatic adjustment device according to the first example of the embodiment of the present invention. It is a table which shows a prediction formula.
【図7】 図7は本発明の実施の形態の第1実施例にか
かる車両用前照灯光軸方向自動調整装置で用いられるリ
ヤ車高値及び他のセンサ出力に基づきピッチ角を算出す
る2つの車両姿勢に分けた予測式を車高センサ以外のセ
ンサ出力に対応して3つ示すテーブルである。FIG. 7 is a diagram showing two examples of calculating a pitch angle based on a rear vehicle height value and other sensor outputs used in a vehicle headlight optical axis direction automatic adjustment device according to a first example of an embodiment of the present invention. 6 is a table showing three prediction formulas classified into vehicle postures corresponding to sensor outputs other than the vehicle height sensor.
【図8】 図8は本発明の実施の形態の第2実施例にか
かる車両用前照灯光軸方向自動調整装置の全体構成を示
す概略図である。FIG. 8 is a schematic diagram showing the entire configuration of a vehicle headlight optical axis direction automatic adjustment device according to a second example of an embodiment of the present invention.
【図9】 図9は本発明の実施の形態の第2実施例にか
かる車両用前照灯光軸方向自動調整装置で使用されてい
るECU内のCPUにおけるシステム誤差情報を考慮し
多様な荷重条件に対処する光軸方向の調整制御の処理手
順を示すフローチャートである。FIG. 9 is a view showing various load conditions in consideration of system error information in a CPU in an ECU used in an automatic headlight optical axis direction adjusting device for a vehicle according to a second embodiment of the present invention; 6 is a flowchart showing a processing procedure of adjustment control in the optical axis direction to cope with the above.
【図10】 図10は本発明の実施の形態の第2実施例
にかかる車両用前照灯光軸方向自動調整装置で用いられ
る標準の車両の特性に対応するシステム誤差情報が考慮
される以前の予測式と、車高センサの車両への取付け誤
差によるシステム誤差情報が考慮された予測式とを示す
テーブルである。FIG. 10 is a diagram showing a state before system error information corresponding to a characteristic of a standard vehicle used in a vehicle headlamp automatic optical axis direction adjusting apparatus according to a second embodiment of the present invention is taken into consideration; 5 is a table showing a prediction formula and a prediction formula in which system error information due to a mounting error of a vehicle height sensor to a vehicle is considered.
【図11】 図11は本発明の実施の形態の第2実施例
にかかる車両用前照灯光軸方向自動調整装置で用いられ
る標準の車両の特性に対応するシステム誤差情報が考慮
される以前の予測式と、フロント・リヤサスペンション
のばね定数の誤差により予測式の傾きが変化したときの
システム誤差情報が考慮された予測式とを示すテーブル
である。FIG. 11 is a view showing a state before system error information corresponding to a characteristic of a standard vehicle used in a vehicle headlamp automatic optical axis direction adjusting apparatus according to a second embodiment of the present invention is taken into consideration; 9 is a table showing a prediction formula and a prediction formula that takes into account system error information when the inclination of the prediction formula changes due to an error in the spring constant of the front and rear suspensions.
【図12】 図12は本発明の実施の形態の第2実施例
にかかる車両用前照灯光軸方向自動調整装置で用いられ
る車高センサの車両への取付け誤差や車両の他の要因に
基づく種々の誤差からなるシステム誤差情報が考慮され
た5つの予測式を示すテーブルである。FIG. 12 is a diagram showing a vehicle height sensor used in a vehicle headlamp automatic optical axis direction adjusting apparatus according to a second embodiment of the present invention, which is based on a mounting error to a vehicle and other factors of the vehicle. 9 is a table showing five prediction formulas in which system error information including various errors is considered.
11 車高センサ 20 ECU(電子制御ユニット) 30 ヘッドライト(前照灯) 35 アクチュエータ 11 Vehicle Height Sensor 20 ECU (Electronic Control Unit) 30 Headlight (Headlight) 35 Actuator
Claims (3)
の変位量を検出する1つの車高センサと、 前記車高センサからの出力に基づき、荷重条件に対応し
傾きが異なる複数の車両姿勢に分けた予測式を用い、前
記車両の前照灯の光軸方向の水平面に対する傾き角を算
出する傾き角演算手段と、 前記傾き角演算手段で算出された前記傾き角に基づき前
記前照灯の光軸方向を調整する光軸方向調整手段とを具
備することを特徴とする車両用前照灯光軸方向自動調整
装置。A vehicle height sensor disposed at a front portion or a rear portion of a vehicle to detect a displacement amount of the vehicle height; and a plurality of vehicles having different inclinations corresponding to load conditions based on an output from the vehicle height sensor. A tilt angle calculating means for calculating a tilt angle of the headlight of the vehicle with respect to the horizontal plane in the optical axis direction using a prediction formula divided into vehicle postures, and the tilt angle calculated based on the tilt angle calculated by the tilt angle calculating means. An automatic optical axis direction adjusting device for a vehicle headlight, comprising: an optical axis direction adjusting means for adjusting an optical axis direction of a headlight.
姿勢に分けた予測式を前記車両に配設された前記車高セ
ンサ以外のセンサ出力に対応して複数有し、前記車高セ
ンサ以外のセンサ出力によって択一することを特徴とす
る請求項1に記載の車両用前照灯光軸方向自動調整装
置。2. The vehicle height sensor according to claim 2, wherein the inclination angle calculator has a plurality of prediction formulas divided into the plurality of vehicle attitudes corresponding to sensor outputs other than the vehicle height sensor disposed on the vehicle. 2. The automatic headlamp optical axis direction adjusting device according to claim 1, wherein the selection is made based on a sensor output other than the above.
の変位量を検出する1つの車高センサと、 前記車高センサの取付けに伴う誤差や前記車両の他の要
因に基づく種々の誤差をシステム誤差情報として予め記
憶する記憶手段と、 前記車高センサからの出力と前記記憶手段に記憶された
前記システム誤差情報とに基づき、荷重条件に対応し傾
きが異なる複数の車両姿勢に分けた予測式を用い、前記
車両の前照灯の光軸方向の水平面に対する傾き角を算出
する傾き角演算手段と、 前記傾き角演算手段で算出された前記傾き角に基づき前
記前照灯の光軸方向を調整する光軸方向調整手段とを具
備することを特徴とする車両用前照灯光軸方向自動調整
装置。3. A vehicle height sensor disposed at a front portion or a rear portion of the vehicle and detecting a displacement amount of the vehicle height, and various types based on an error caused by mounting the vehicle height sensor and other factors of the vehicle. And a plurality of vehicle postures having different inclinations corresponding to load conditions based on an output from the vehicle height sensor and the system error information stored in the storage unit. A tilt angle calculating unit that calculates a tilt angle of the headlight of the vehicle with respect to a horizontal plane in the optical axis direction using the divided prediction formula, and a head angle of the headlight based on the tilt angle calculated by the tilt angle calculating unit. An automatic optical axis direction adjusting device for a vehicle headlight, comprising: an optical axis direction adjusting means for adjusting an optical axis direction.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10785399A JP4140125B2 (en) | 1998-08-31 | 1999-04-15 | Automatic headlamp optical axis adjustment device for vehicles |
EP03023671A EP1380468B1 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting optical axis direction of a headlight of a vehicle |
DE69931407T DE69931407T2 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting the direction of the optical axis of a headlamp of a vehicle |
DE69941636T DE69941636D1 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting the direction of an optical axis of a vehicle headlight |
EP99111611A EP0965487B1 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting optical axis direction of vehicle headlight |
EP06004374A EP1671842B1 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting optical axis direction of vehicle headlight |
DE69927318T DE69927318T2 (en) | 1998-06-16 | 1999-06-15 | Method for automatically controlling the direction of the optical axis of a motor vehicle headlight |
EP07023091A EP1889747B1 (en) | 1998-06-16 | 1999-06-15 | System for automatically adjusting optical axis direction of vehicle headlight |
DE69938083T DE69938083T2 (en) | 1998-06-16 | 1999-06-15 | System for automatically controlling the direction of the optical axes of a motor vehicle headlight |
US09/333,686 US6193398B1 (en) | 1998-06-16 | 1999-06-16 | System for automatically adjusting optical axis direction of vehicle headlight |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24478298 | 1998-08-31 | ||
JP10-244782 | 1998-08-31 | ||
JP10785399A JP4140125B2 (en) | 1998-08-31 | 1999-04-15 | Automatic headlamp optical axis adjustment device for vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000142213A true JP2000142213A (en) | 2000-05-23 |
JP4140125B2 JP4140125B2 (en) | 2008-08-27 |
Family
ID=26447830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10785399A Expired - Lifetime JP4140125B2 (en) | 1998-06-16 | 1999-04-15 | Automatic headlamp optical axis adjustment device for vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4140125B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039211A (en) * | 1999-08-02 | 2001-02-13 | Nissan Motor Co Ltd | Vehicle pitch angle arithmetic unit |
US7086763B2 (en) | 2003-08-28 | 2006-08-08 | Denso Corporation | Apparatus for automatically adjusting direction of light axis of vehicle headlight |
US7118237B2 (en) | 2003-08-28 | 2006-10-10 | Denso Corporation | Apparatus for automatically adjusting direction of light axis of vehicle headlight |
JP2012076638A (en) * | 2010-10-04 | 2012-04-19 | Mitsubishi Motors Corp | Headlight optical axis adjusting device |
JP2012076633A (en) * | 2010-10-04 | 2012-04-19 | Mitsubishi Motors Corp | Headlight optical axis adjusting device |
JP2014080108A (en) * | 2012-10-16 | 2014-05-08 | Denso Corp | Vehicular headlamp control unit |
WO2023058628A1 (en) * | 2021-10-06 | 2023-04-13 | 株式会社小糸製作所 | Leveling control device and lamp system |
WO2023058629A1 (en) * | 2021-10-04 | 2023-04-13 | 株式会社小糸製作所 | Leveling control device and lamp system |
USRE49776E1 (en) * | 2010-10-26 | 2024-01-02 | Koito Manufacturing Co., Ltd. | Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method |
-
1999
- 1999-04-15 JP JP10785399A patent/JP4140125B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001039211A (en) * | 1999-08-02 | 2001-02-13 | Nissan Motor Co Ltd | Vehicle pitch angle arithmetic unit |
US7086763B2 (en) | 2003-08-28 | 2006-08-08 | Denso Corporation | Apparatus for automatically adjusting direction of light axis of vehicle headlight |
US7118237B2 (en) | 2003-08-28 | 2006-10-10 | Denso Corporation | Apparatus for automatically adjusting direction of light axis of vehicle headlight |
DE102004041414B4 (en) | 2003-08-28 | 2019-08-08 | Denso Corporation | Device for automatically adjusting the direction of the light beam axis of a vehicle headlight |
JP2012076638A (en) * | 2010-10-04 | 2012-04-19 | Mitsubishi Motors Corp | Headlight optical axis adjusting device |
JP2012076633A (en) * | 2010-10-04 | 2012-04-19 | Mitsubishi Motors Corp | Headlight optical axis adjusting device |
USRE49776E1 (en) * | 2010-10-26 | 2024-01-02 | Koito Manufacturing Co., Ltd. | Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method |
JP2014080108A (en) * | 2012-10-16 | 2014-05-08 | Denso Corp | Vehicular headlamp control unit |
WO2023058629A1 (en) * | 2021-10-04 | 2023-04-13 | 株式会社小糸製作所 | Leveling control device and lamp system |
WO2023058628A1 (en) * | 2021-10-06 | 2023-04-13 | 株式会社小糸製作所 | Leveling control device and lamp system |
Also Published As
Publication number | Publication date |
---|---|
JP4140125B2 (en) | 2008-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3384236B2 (en) | Automatic adjustment of headlight optical axis direction for vehicles | |
US6193398B1 (en) | System for automatically adjusting optical axis direction of vehicle headlight | |
JP3782619B2 (en) | Auto-leveling device for automotive headlamps | |
JP4726277B2 (en) | Automatic headlamp optical axis adjustment device for vehicles | |
US6572248B2 (en) | Apparatus for automatically adjusting optical axis of vehicle headlights | |
JP3168414B2 (en) | Optical axis adjustment device for vehicle headlights | |
US7552001B2 (en) | Irradiation direction controller and leveling angle setting method of vehicle lamp | |
US6693380B2 (en) | Auto leveling apparatus of vehicle headlamp | |
US10604062B2 (en) | Headlight adjusting system comprising gyroscopes | |
JP4036909B2 (en) | Vehicle headlamp optical axis automatic adjustment device | |
JP2000062525A (en) | Illuminating direction control device for vehicular lighting fixture | |
JP3847972B2 (en) | Auto-leveling device for automotive headlamps | |
JP2003040029A (en) | Irradiation direction controller for lighting device for vehicle | |
JP2010143506A (en) | Auto-leveling system for vehicular lamp | |
JP4140125B2 (en) | Automatic headlamp optical axis adjustment device for vehicles | |
JP2001318149A (en) | Front information detecting device for vehicle | |
JP4424067B2 (en) | Automatic headlamp optical axis adjustment device for vehicles | |
JP4269296B2 (en) | Vehicle headlight optical axis direction adjusting device | |
JP5372488B2 (en) | Auto leveling system for vehicle lamps | |
JP4145812B2 (en) | Auto-leveling device for automotive headlamps | |
JP3820299B2 (en) | Irradiation direction control device for vehicular lamp | |
JP6916038B2 (en) | Vehicle lighting control device and vehicle lighting system | |
JP2010241328A (en) | Vehicle height sensor, and device and method for adjusting projection direction of lighting fixture for vehicle | |
JP4396050B2 (en) | Automatic headlamp optical axis adjustment device for vehicles | |
KR20190006752A (en) | System and method for auto-leveling of vehicle head lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |