Nothing Special   »   [go: up one dir, main page]

JP2000038628A - Copper alloy for semiconductor lead frame - Google Patents

Copper alloy for semiconductor lead frame

Info

Publication number
JP2000038628A
JP2000038628A JP20640498A JP20640498A JP2000038628A JP 2000038628 A JP2000038628 A JP 2000038628A JP 20640498 A JP20640498 A JP 20640498A JP 20640498 A JP20640498 A JP 20640498A JP 2000038628 A JP2000038628 A JP 2000038628A
Authority
JP
Japan
Prior art keywords
workability
copper alloy
lead frame
punching
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20640498A
Other languages
Japanese (ja)
Inventor
Masaaki Kurihara
正明 栗原
Takao Hirai
崇夫 平井
Kuniteru Mihara
邦照 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20640498A priority Critical patent/JP2000038628A/en
Publication of JP2000038628A publication Critical patent/JP2000038628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for a semiconductor lead frame excellent in strength, electric conductivity, bending workability, punching workability, stress corrosion cracking resistance, production workability or the like. SOLUTION: This is a copper alloy contg., by weight, 5 to 35% Zn, 0.1 to 3% Sn, one or >= two kinds selected from the groups of Ni, Si, Cr, Ti, Zr, Fe, Co, Mn, Al, Ag and Mg by 0.01 to 1% in total, and the balance Cu with inevitable impurities, in which the grain size is controlled to 5 to 35 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器のリード
材などに使用される銅合金に係り、特に、ICなどの半
導体機器のリード材(リードフレーム材)に好適な銅合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy used for a lead material of an electronic device, and more particularly to a copper alloy suitable for a lead material (lead frame material) of a semiconductor device such as an IC.

【0002】[0002]

【従来の技術】従来より、半導体機器のリードフレーム
材としては、鉄系材料の他、電気伝導性および熱伝導性
に優れているCu−Sn系、Cu−Fe系等の銅系材料
も広く用いられている。
2. Description of the Related Art Conventionally, as lead frame materials for semiconductor devices, copper-based materials such as Cu-Sn-based and Cu-Fe-based materials having excellent electrical and thermal conductivity have been widely used in addition to iron-based materials. Used.

【0003】ところで、前記リードフレーム材などに
は、強度、耐熱性、電気伝導性、および熱伝導性の他、
貴金属(Agなど)めっきや半田めっきが施されるた
め、めっき性、半田接合性、表面平滑性等の特性が重視
される。また、条および板からリードフレームを成型す
る際の寸法精度を確保するために、良好なエッチング性
又は打抜加工性などの成型加工性が要求され、さらに、
価格面で実用的なことも重要である。
[0003] By the way, in addition to the strength, heat resistance, electric conductivity, and heat conductivity, the lead frame material and the like include
Since noble metal (Ag or the like) plating or solder plating is applied, characteristics such as plating properties, solder bonding properties, and surface smoothness are emphasized. In addition, in order to ensure dimensional accuracy when molding a lead frame from a strip and a plate, molding workability such as good etching or punching workability is required.
It is also important to be practical in terms of price.

【0004】そして、これらの要求される特性は、近年
の半導体機器の高集積化、小型化、高機能化、低コスト
化に対応して、より厳しくなってきている。特に、近
年、リードフレームの多ピン化、小型化、薄肉化などが
進み、高度な寸法精度を確保するために、良好な成型加
工性を有する材料が強く求められている。
[0004] These required characteristics have become more severe in response to the recent high integration, miniaturization, high functionality, and low cost of semiconductor devices. In particular, in recent years, the number of pins in the lead frame has been increased, the size has been reduced, the thickness has been reduced, and a material having good moldability has been strongly demanded in order to ensure high dimensional accuracy.

【0005】リードフレームの成型加工法としては、打
抜加工法が主流であり、近年の技術革新により、多ピン
またはファインピッチのリードフレーム、ピン数は少な
いが多列に加工するマトリックス状のリードフレームな
どが、打抜加工により製造されるようになり、材料の打
抜加工性の重要性が、特に増している。また、打抜加工
は、コスト的にも有利な加工法である。
[0005] As a molding method of a lead frame, a punching method is predominant, and due to recent technological innovations, a multi-pin or fine-pitch lead frame, a matrix-shaped lead that has a small number of pins but is processed in multiple rows. Frames and the like have been manufactured by stamping, and the importance of stamping workability of materials has been particularly increasing. Punching is also a cost-effective processing method.

【0006】[0006]

【発明が解決しようとする課題】前述のCu−Sn系合
金およびCu−Fe系合金は、リードフレーム材として
広く用いられているが、打抜加工性がやや劣るという問
題がある。その改善策として、打抜加工性に優れたCu
−Zn合金をベースとする合金が、特開平1−1627
37号公報や特開平5−36878号公報に開示されて
いる。
The above-mentioned Cu-Sn-based alloy and Cu-Fe-based alloy are widely used as lead frame materials, but have a problem that punching workability is slightly inferior. As an improvement measure, Cu with excellent punching workability
-An alloy based on a Zn alloy is disclosed in
No. 37 and JP-A-5-36878.

【0007】しかし、前者の特開平1−162737号
公報に開示されたCu−Zn合金は、応力腐食割れが発
生し易く、また、100ピン以上の多ピンリードフレー
ムでは十分な打抜加工性が得られないという問題があ
り、後者の特開平5−36878号公報に開示されたC
u−Zn系合金は、表面にNi/Pdめっきを施して応
力腐食割れを改善したものであるが、リードを曲げ加工
するとNiめっき層に亀裂が入って応力腐食割れが生じ
るという問題点がある。
However, the Cu-Zn alloy disclosed in the former JP-A-1-162737 is liable to cause stress corrosion cracking, and has sufficient punching workability with a multi-pin lead frame having 100 pins or more. However, there is a problem in that the C
The u-Zn-based alloy has a surface in which Ni / Pd plating is applied to improve stress corrosion cracking. However, when a lead is bent, the Ni plating layer is cracked and stress corrosion cracking occurs. .

【0008】本発明は、このような事情の下になされ、
強度、導電性、曲げ加工性、打抜加工性、耐応力腐食割
れ性、製造加工性などに優れた半導体リードフレーム用
銅合金を提供することを目的とする。
[0008] The present invention has been made under such circumstances,
An object of the present invention is to provide a copper alloy for a semiconductor lead frame excellent in strength, conductivity, bending workability, punching workability, stress corrosion cracking resistance, manufacturing workability, and the like.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、Znを5〜35wt%、Snを0.1〜
3wt%、Ni、Si、Cr、Ti、Zr、Fe、C
o、Mn、Al、AgおよびMgよりなる群より選ばれ
た1種又は2種以上を総計で0.001〜1wt%含
み、残部がCuと不可避的不純物からなる銅合金であっ
て、結晶粒度が5〜35μmであることを特徴とする半
導体リードフレーム用銅合金を提供する。
In order to solve the above-mentioned problems, the present invention provides a method for preparing Zn in an amount of 5 to 35 wt% and Sn in an amount of 0.1 to 0.1 wt%.
3 wt%, Ni, Si, Cr, Ti, Zr, Fe, C
a copper alloy containing a total of 0.001 to 1 wt% of one or more selected from the group consisting of o, Mn, Al, Ag, and Mg, with the balance being Cu and unavoidable impurities; Is 5 to 35 μm.

【0010】[0010]

【発明の実施の形態】本発明に係る銅合金は、Cu−Z
n系合金をベースとし、その欠点である応力腐食割れ
を、Snを適量添加することと、結晶粒度を適性に制御
することにより改善したものである。その他、Snは強
度向上に、また結晶粒度の適正化は曲げ加工性の改善に
も寄与する。
DETAILED DESCRIPTION OF THE INVENTION The copper alloy according to the present invention is Cu-Z
It is based on an n-type alloy, and its stress corrosion cracking, which is a drawback, is improved by adding an appropriate amount of Sn and appropriately controlling the crystal grain size. In addition, Sn contributes to the improvement of the strength, and the optimization of the crystal grain size contributes to the improvement of the bending workability.

【0011】本発明に係る銅合金において、Znは打抜
加工時のバリの発生やリードの捩じれを極めて少なくし
て、打抜加工性を向上させるという作用を示す。Znの
含有量を5〜35wt%に規定する理由は、5wt%未
満ではその添加効果が十分に得られず、35wt%を越
えるとβ相が出現して冷間加工性が悪化するためであ
る。好ましいZnの含有量は、6〜30wt%である。
[0011] In the copper alloy according to the present invention, Zn has an effect of improving the punching workability by minimizing the occurrence of burrs and the twisting of the leads during the punching process. The reason why the Zn content is specified to be 5 to 35 wt% is that if the content is less than 5 wt%, the effect of the addition is not sufficiently obtained, and if it exceeds 35 wt%, a β phase appears and the cold workability deteriorates. . The preferred Zn content is 6 to 30 wt%.

【0012】Snは、強度向上および耐応力腐食割れ性
の改善に寄与する。その含有量を0.1〜3wt%に規
定する理由は、0.1wt%未満ではその添加効果が十
分に得られず、3wt%を越えると導電性および熱間加
工性が低下するためである。
Sn contributes to improvement in strength and resistance to stress corrosion cracking. The reason for defining the content to be 0.1 to 3 wt% is that if it is less than 0.1 wt%, the effect of its addition cannot be sufficiently obtained, and if it exceeds 3 wt%, the conductivity and hot workability deteriorate. .

【0013】本発明に係る銅合金において、結晶粒度を
5〜35μmに規定する理由は、結晶粒度が5μm未満
でも35μmを越えても、その曲げ加工性および耐応力
腐食割れ性の改善効果が十分に得られないためである。
好ましい結晶粒度は、5〜20μmである。なお、本発
明に係る銅合金において、結晶粒度はJIS−H050
1に準じて決定される。
The reason why the grain size of the copper alloy according to the present invention is specified to be 5 to 35 μm is that even if the grain size is less than 5 μm or more than 35 μm, the effect of improving bending workability and stress corrosion cracking resistance is sufficient. Because they cannot be obtained.
The preferred grain size is 5 to 20 μm. In the copper alloy according to the present invention, the crystal grain size is JIS-H050.
Determined according to 1.

【0014】本発明に係る銅合金において、Ni、S
i、Cr、Ti、Zr、Fe、Co、Mn、Al、Ag
およびMgは、合金強度を高めることにより、打抜加工
性を改善する。これら元素の1種または2種以上の含有
量を総計で0.001〜1wt%に規定するのは、0.
001wt%未満ではその効果が十分に得られず、1w
t%を越えると導電率および熱間加工性が著しく低下す
るためである。これらの元素の好ましい含有量は、0.
005〜0.8wt%である。
In the copper alloy according to the present invention, Ni, S
i, Cr, Ti, Zr, Fe, Co, Mn, Al, Ag
And Mg improve the punching workability by increasing the alloy strength. The content of one or two or more of these elements is defined as a total of 0.001 to 1% by weight.
If it is less than 001 wt%, the effect cannot be sufficiently obtained, and 1 w
If the content exceeds t%, the conductivity and the hot workability are significantly reduced. The preferred content of these elements is 0.1.
005 to 0.8 wt%.

【0015】本発明に係る銅合金において、リードフレ
ーム材や端子材の強度および耐熱性の向上に有効な添加
元素として、In、Ba、Sb、Hf、Be、Nb、P
d、B、Cなどが挙げられる。その添加量は、導電率を
大幅に低下させない範囲であ、例えば0.001〜1w
t%であるのが望ましい。
In the copper alloy according to the present invention, In, Ba, Sb, Hf, Be, Nb, and P are effective as additional elements for improving the strength and heat resistance of the lead frame material and the terminal material.
d, B, C and the like. The addition amount is in a range that does not significantly lower the conductivity, for example, 0.001 to 1 w.
It is desirably t%.

【0016】また、溶解鋳造時に混入するOおよびSの
含有量を50ppm以下にすると、めっき性、半田性接
合性、半田漏れ性などの表面特性を良好に保持すること
が出来る。
When the content of O and S mixed during melting and casting is set to 50 ppm or less, it is possible to maintain good surface properties such as plating property, solderability, solderability and the like.

【0017】[0017]

【実施例】次に、本発明の実施例を示し、本発明につい
てより具体的に説明する。 (実施例1)下記表1に示す組成の22種の合金(N
o.1〜22)を高周波溶解炉により溶解し、これを6
℃/秒の冷却速度で鋳造して、厚さ30mm、幅100
mm、長さ150mmの鋳塊を得た。この鋳塊を850
℃で熱間圧延し、厚さ12mmの熱間圧延材にした。次
に、この熱間圧延材を厚さ9mmに両面面削して酸化皮
膜を除去し、次いで、厚さ1.2mmに冷間圧延したの
ち、不活性ガス雰囲気中で530℃で1時間焼鈍した。
その後、厚さ0.21mmに冷間圧延したのち、不活性
ガス中で530℃で1時間の焼鈍し、更に、厚さ0.1
5mmの板材に仕上げ圧延し、22種の板材試料を得
た。
Next, examples of the present invention will be shown, and the present invention will be described more specifically. (Example 1) 22 kinds of alloys (N
o. 1 to 22) were melted by a high-frequency melting furnace.
Cast at a cooling rate of ° C./sec, thickness 30 mm, width 100
mm and a 150 mm long ingot were obtained. This ingot is 850
It hot-rolled at ° C, and set it as the hot-rolled material of thickness 12mm. Next, this hot-rolled material was cut on both sides to a thickness of 9 mm to remove an oxide film, then cold-rolled to a thickness of 1.2 mm, and then annealed at 530 ° C. for 1 hour in an inert gas atmosphere. did.
Then, after cold-rolling to a thickness of 0.21 mm, annealing at 530 ° C. for 1 hour in an inert gas,
Finish rolling was performed on a 5 mm plate to obtain 22 kinds of plate samples.

【0018】[0018]

【表1】 [Table 1]

【0019】(比較例1)下記表2に示す組成の6種の
合金(No.23〜28)を、実施例1と同じ方法によ
り板材に加工した。
Comparative Example 1 Six kinds of alloys (Nos. 23 to 28) having the compositions shown in Table 2 below were processed into sheet materials in the same manner as in Example 1.

【0020】(比較例2)下記表2に示す組成の2種の
合金(No.29、30)を、焼鈍条件以外は実施例1
と同じ方法により板材に加工した。
Comparative Example 2 Two alloys (Nos. 29 and 30) having the compositions shown in Table 2 below were used in Example 1 except for the annealing conditions.
It processed into the board | plate material by the same method as above.

【0021】(従来例1)下記表2に示す組成の合金
(No.31)を、実施例1と同じ方法により板材に加
工した。
(Conventional Example 1) An alloy (No. 31) having a composition shown in Table 2 below was processed into a sheet material in the same manner as in Example 1.

【0022】[0022]

【表2】 [Table 2]

【0023】以上のようにして得られた各々の板材試料
について、(1)結晶粒度、(2)引張強さ(TS)、
(3)導電率(EC)、(4)曲げ加工性、(5)打抜
加工性、(6)耐応力腐食割れ性を下記方法により調べ
た。その結果を下記表3、表4に示す。
For each of the sheet material samples obtained as described above, (1) grain size, (2) tensile strength (TS),
(3) Conductivity (EC), (4) Bending workability, (5) Punching workability, and (6) Stress corrosion cracking resistance were examined by the following methods. The results are shown in Tables 3 and 4 below.

【0024】各特性の測定法は次の通りである。 (1)結晶粒度:結晶組織を光学顕微鏡(200倍)に
より観察し、JIS−H0501の切断法に準じて測定
した。
The measuring method of each characteristic is as follows. (1) Crystal grain size: The crystal structure was observed with an optical microscope (200 times) and measured according to the cutting method of JIS-H0501.

【0025】(2)引張強さ(TS):JIS−Z22
41に準じて測定した。 (3)導電率(EC):JIS−H0505に準じて測
定した。 (4)曲げ加工性:板材を幅10mm、長さ50mm
(長さ方向と圧延方向が平行)に切出し、これに曲げ半
径0.1mmでW曲げし、曲げ部における割れの有無を
50倍の光学顕微鏡で目視観察した。割れおよび肌荒れ
の無いものを○、肌荒れが生じたものを△、割れが生じ
たものを×と評価した。
(2) Tensile strength (TS): JIS-Z22
41 was measured. (3) Conductivity (EC): Measured according to JIS-H0505. (4) Bendability: plate material is 10 mm wide and 50 mm long
(The length direction and the rolling direction were parallel to each other), and the sheet was bent in a W shape with a bending radius of 0.1 mm, and the presence or absence of cracks in the bent portion was visually observed with a 50-fold optical microscope. Those without cracks and rough skin were evaluated as ○, those with rough skin were evaluated as Δ, and those with cracks were evaluated as x.

【0026】(5)打ち抜き性:板材にSKD11製金
型で1mm×5mmの角穴を開け、5001回目から1
0000回目までの打抜分からサンプルを20個無作為
に抽出し、サンプルの厚さbに対する破断部割合(a/
b)×100%を求めた。この破断部割合は打抜加工性
の目安の一つとされ、この割合が大きい程、打抜加工性
は良好で、打抜での歩留まりが高く、かつ加工が精密に
行えると評価される。
(5) Punching property: A 1 mm × 5 mm square hole was made in a plate material using a SKD11 mold, and
Twenty samples were randomly extracted from the punching up to the 0000th time, and the ratio of the broken portion to the thickness b of the sample (a /
b) × 100% was determined. This broken portion ratio is regarded as one of the standards of the punching workability. It is evaluated that the larger the ratio is, the better the punching workability, the higher the yield in punching, and the more precise the processing.

【0027】(6)耐応力腐食割れ性(耐SCC性):
板材から幅8mm、長さ50mm(長さ方向と圧延方向
が平行)の引張試験片を切出し、これをJIS−C83
06に準拠するアンモニア雰囲気に曝露した。このサン
プルの両端に20kgf/mm2 の定荷重をかけ、破断
までの時間を測定した。
(6) Stress corrosion cracking resistance (SCC resistance):
A tensile test piece having a width of 8 mm and a length of 50 mm (the length direction and the rolling direction are parallel) was cut out from the plate material, and this was cut out according to JIS-C83.
Exposure to an ammonia atmosphere according to C.06. A constant load of 20 kgf / mm 2 was applied to both ends of the sample, and the time until breakage was measured.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】上記表3、4から明らかなように、本発明
例の試料No.1〜22は、いずれも、総ての特性にお
いて優れている。これに対し、比較例の試料No.23
はZnが少ないため、試料No.25はSnが添加され
ていないため、試料No.27はその他の元素が添加さ
れていないため、いずれも引張強さが低く、打抜加工性
が悪化していた。また、比較例の試料No.24、2
6、28はZn、Sn、その他元素のいずれかが多いた
め、製造加工性に劣り、特に、試料No.28は熱延割
れがひどく、製造することができなかった。
As is apparent from Tables 3 and 4, the sample No. of the present invention example. All of Nos. 1 to 22 are excellent in all characteristics. On the other hand, the sample No. 23
Has a small amount of Zn. Sample No. 25 does not contain Sn, In No. 27, since no other element was added, the tensile strength was low and the punching workability was deteriorated. In addition, the sample No. of the comparative example. 24, 2
Samples Nos. 6 and 28 are inferior in manufacturing workability due to the large content of any of Zn, Sn and other elements. Sample No. 28 was severely hot-rolled and could not be produced.

【0031】また、試料No.29、30は焼鈍条件が
適正でなく、結晶粒度が本発明の規格値外となり、曲げ
加工性が低下した。更に、比較例の試料No.25や従
来例の試料No.31は、Snが添加されていないため
に、耐SCC性が低下している。
The sample No. In Nos. 29 and 30, the annealing conditions were not appropriate, the crystal grain size was out of the standard value of the present invention, and the bending workability was lowered. Furthermore, the sample No. 25 and the sample No. of the conventional example. In No. 31, the SCC resistance was reduced because Sn was not added.

【0032】[0032]

【発明の効果】以上、詳細に述べたように、本発明の半
導体リードフレーム用銅合金は、打抜加工性に優れたC
u−Zn合金をベースとし、これにSnなどを適量添加
するとともに、結晶粒度を制御して、耐応力腐食割れ性
などを改善したものであり、強度、導電性、曲げ加工
性、打抜加工性、耐応力腐食割れ性、製造加工性などに
優れ、工業上顕著な効果を奏する。
As described above in detail, the copper alloy for a semiconductor lead frame according to the present invention has excellent punching workability.
Based on a u-Zn alloy, Sn and the like are added in an appropriate amount, and the grain size is controlled to improve stress corrosion cracking resistance and the like. Strength, conductivity, bending workability, punching work It has excellent properties, stress corrosion cracking resistance, manufacturing workability, etc., and has an industrially remarkable effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Znを5〜35wt%、Snを0.1〜3
wt%、Ni、Si、Cr、Ti、Zr、Fe、Co、
Mn、Al、AgおよびMgよりなる群より選ばれた1
種又は2種以上を総計で0.001〜1wt%含み、残
部Cuと不可避的不純物からなる銅合金であって、結晶
粒度が5〜35μmであることを特徴とする半導体リー
ドフレーム用銅合金。
1. A Zn content of 5 to 35 wt% and a Sn content of 0.1 to 3 wt.
wt%, Ni, Si, Cr, Ti, Zr, Fe, Co,
1 selected from the group consisting of Mn, Al, Ag and Mg
A copper alloy for a semiconductor lead frame, comprising a total of 0.001 to 1 wt% of a seed or two or more kinds, a balance of Cu and unavoidable impurities, and a crystal grain size of 5 to 35 μm.
JP20640498A 1998-07-22 1998-07-22 Copper alloy for semiconductor lead frame Pending JP2000038628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20640498A JP2000038628A (en) 1998-07-22 1998-07-22 Copper alloy for semiconductor lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20640498A JP2000038628A (en) 1998-07-22 1998-07-22 Copper alloy for semiconductor lead frame

Publications (1)

Publication Number Publication Date
JP2000038628A true JP2000038628A (en) 2000-02-08

Family

ID=16522807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20640498A Pending JP2000038628A (en) 1998-07-22 1998-07-22 Copper alloy for semiconductor lead frame

Country Status (1)

Country Link
JP (1) JP2000038628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining & Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
CN103667780A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-zinc alloy and preparation method thereof
CN104451248A (en) * 2014-12-12 2015-03-25 宁波展慈金属工业有限公司 Environment-friendly ROHS high-precision precise copper alloy bar and preparation method thereof
DE102018100440A1 (en) * 2018-01-10 2019-07-11 Phoenix Contact Gmbh & Co. Kg A method of making a cold-formable crimp contact, method of making an electro-mechanical crimp connection and crimp contact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining & Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
CN103667780A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-zinc alloy and preparation method thereof
CN104451248A (en) * 2014-12-12 2015-03-25 宁波展慈金属工业有限公司 Environment-friendly ROHS high-precision precise copper alloy bar and preparation method thereof
DE102018100440A1 (en) * 2018-01-10 2019-07-11 Phoenix Contact Gmbh & Co. Kg A method of making a cold-formable crimp contact, method of making an electro-mechanical crimp connection and crimp contact

Similar Documents

Publication Publication Date Title
JP2000087158A (en) Copper alloy for semiconductor lead frame
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP3465108B2 (en) Copper alloy for electric and electronic parts
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
CN1327016C (en) Copper base alloy with improved punchin and impacting performance and its preparing method
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JP2000038628A (en) Copper alloy for semiconductor lead frame
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP2000038627A (en) Copper alloy for semiconductor lead frame
JPH10110228A (en) Copper alloy for electronic equipment and its production
JP3014673B2 (en) Lead frame for semiconductor device
JP2000080426A (en) Copper alloy for electronic equipment
JPH09143597A (en) Copper alloy for lead frame and its production