Nothing Special   »   [go: up one dir, main page]

JP2000035364A - Device for continuous temperature-measurement of melted metal device - Google Patents

Device for continuous temperature-measurement of melted metal device

Info

Publication number
JP2000035364A
JP2000035364A JP10201450A JP20145098A JP2000035364A JP 2000035364 A JP2000035364 A JP 2000035364A JP 10201450 A JP10201450 A JP 10201450A JP 20145098 A JP20145098 A JP 20145098A JP 2000035364 A JP2000035364 A JP 2000035364A
Authority
JP
Japan
Prior art keywords
protective tube
molten metal
temperature
outer protective
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10201450A
Other languages
Japanese (ja)
Inventor
Kengo Kainuma
研吾 貝沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10201450A priority Critical patent/JP2000035364A/en
Publication of JP2000035364A publication Critical patent/JP2000035364A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the relationship of the thermal resistance of each part and to improve temperature measurement accuracy, for example, by filling at least two kinds of fillers with different thermal conductivity between the sheathing protection tube of a thermocouple temperature-measuring sensor and a ceramic protection tube in separate layers. SOLUTION: A temperature-measuring sensor 1A of a melted metal continuous temperature-measuring device is constituted by filling a filler 13 of a high thermal conductivity such as MoZrO2 powder in a part corresponding to a projecting part from a furnace bottom 14 of sheathing protection tube 9 between a ceramic protection tube 8 and the protection tube 9 and a filler 15 of a low-thermal conductivity such as alumina powder into the remaining part. As a result, thermal resistance from molten metal in the furnace to the temperature measurement point of a thermocouple 6 can be made fully smaller than thermal resistance from the temperature measurement point to the outer wall of the furnace bottom 14. Even if there is a gap between the protection tube 9 and the tip of the ceramic protection tube 8, temperature measurement accuracy scarcely changes since the filler 13 being filled between them has a high thermal conductivity. The sheathing protection tube where tubes with different thermal conductivity are joined may also be constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、夜間溶解を行う
場合等連続して温度管理を必要とする際に使用するもの
で、溶融金属に連続して浸漬し、該溶融金属の温度を連
続測温する溶融金属連続測温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used when continuous temperature control is required, such as when melting at night, and is continuously immersed in a molten metal to measure the temperature of the molten metal continuously. The present invention relates to a continuous molten metal temperature measuring device for heating.

【0002】[0002]

【従来の技術】鋳物工場では多くの場合、溶解と注湯作
業とが平行して行われるため、工場内の作業環境は高
温雰囲気、粉塵が多い、騒音が大きい等作業者にと
って苛酷な条件下にある。その解決策の一つに夜間電力
を利用した自動溶解システムがある。このシステムを用
いると、翌朝必要となる鋳鉄溶湯を夜間電力を利用して
自動溶解することができ、作業環境の改善、生産性
の向上、電力費用の低減、安全性の向上、生産管
理の省力化をすることができる。そこで上記夜間溶解を
行う場合等連続して温度管理を行う必要がある。
2. Description of the Related Art In a foundry, in many cases, melting and pouring operations are performed in parallel, so that the working environment in the factory is a severe environment for workers such as a high-temperature atmosphere, a lot of dust, and a large amount of noise. It is in. One of the solutions is an automatic melting system using night power. Using this system, the cast iron melt required for the next morning can be automatically melted using nighttime power, improving the working environment, improving productivity, reducing power costs, improving safety, and saving labor in production management. Can be done. Therefore, it is necessary to control the temperature continuously, for example, when performing the above-mentioned nighttime melting.

【0003】その際、溶解炉(例えば夜間溶解システム
に使用する誘導加熱炉)の炉内の溶湯および溶融スラグ
等の溶解物の温度は、操業および製品の品質に大きな影
響を及ぼすので炉内の温度を連続して高精度に測定する
必要が有る。図5は従来例の構成図、図6(a)は図5
の測温センサの横断面構成図、図6(b)は図5の測温
センサの縦断面構成図を示す。この図5、図6におい
て、1は溶湯2に連続して浸漬し、溶湯2の温度を連続
して測温する測温センサ、3は前記溶湯2を溶解する溶
解炉の炉蓋、4は該炉蓋3に前記測温センサ1を通して
溶湯2に浸漬するための挿入孔、5は溶湯2から分離し
た酸化物、または付着物(鋳物砂等)が溶解して前記溶
湯2の表面に浮遊するスラグ、6は測温センサ1の、種
類の異なる2本の線の先端を接合してその接合点の温度
に比例した電圧が他端に発生することを利用した熱電
対、7は前記熱電対6の線を別々の孔に挿通することに
より線間を絶縁するようにした絶縁管、8は前記熱電対
6と絶縁管とを内臓して保護するセラミック保護管、9
は該セラミック保護管8を溶湯2に浸漬する際に溶湯2
およびスラグ5から保護する外装保護管を示す。この図
5、図6において、測温センサ1は絶縁管7にそれぞれ
の線を挿通して線間を絶縁した熱電対6をセラミック保
護管8に挿入し、さらにその外側を外装保護管9で包囲
して構成しており、溶解炉の炉蓋3に穿孔された挿入孔
4を通して溶湯2に浸漬されている。そして、溶湯2の
温度は外装保護管9およびセラミック保護管8を通して
熱電対6に熱伝達されて、連続測温される。
[0003] At this time, the temperature of the melt, such as molten metal and molten slag, in the furnace of a melting furnace (for example, an induction heating furnace used in a nighttime melting system) greatly affects the operation and the quality of the product. It is necessary to measure the temperature continuously and with high accuracy. FIG. 5 is a configuration diagram of a conventional example, and FIG.
FIG. 6B is a vertical sectional view of the temperature sensor shown in FIG. 5, and FIG. 5 and 6, reference numeral 1 denotes a temperature sensor for continuously immersing in the molten metal 2 and continuously measuring the temperature of the molten metal 2, 3 denotes a furnace lid of a melting furnace for melting the molten metal 2, and 4 denotes Insertion holes 5 for immersing the furnace lid 3 in the molten metal 2 through the temperature measuring sensor 1 are provided, and oxides separated from the molten metal 2 or deposits (casting sand and the like) are dissolved and float on the surface of the molten metal 2. 6 is a thermocouple utilizing the fact that a voltage proportional to the temperature of the junction is generated at the other end by joining the tips of two different types of wires of the temperature measuring sensor 1, and 7 is the thermocouple. An insulating tube 8 for inserting the wires of the pair 6 into separate holes to insulate the wires from each other, 8 is a ceramic protective tube for incorporating and protecting the thermocouple 6 and the insulating tube, 9
When the ceramic protective tube 8 is immersed in the molten metal 2,
2 shows an outer protective tube for protecting the slag 5 from the slag 5. 5 and 6, in the temperature measuring sensor 1, a thermocouple 6 whose wires are insulated by inserting respective wires into an insulating tube 7 is inserted into a ceramic protection tube 8, and the outside thereof is further covered with an exterior protection tube 9. It is immersed in the molten metal 2 through an insertion hole 4 formed in the furnace lid 3 of the melting furnace. Then, the temperature of the molten metal 2 is transferred to the thermocouple 6 through the outer protective tube 9 and the ceramic protective tube 8 and is continuously measured.

【0004】図7は従来例の別の構成図を示す。この図
7において、測温センサ1は溶解炉10のるつぼ11の
炉底に、溶湯2にその先端部が接触するようにして埋設
されている。5は溶湯2の表面に溶湯から分離して浮遊
するスラグ、12はこの溶解炉10の誘導コイルを示
す。この図7において、測温センサ1の断面構成は図6
と略同じであるのでその説明は省略する。この図7にお
いて、測温センサ1は溶解炉10のるつぼ11の炉底
に、溶湯2にその先端部が接触するようにして埋設され
ており、溶湯2はるつぼ11の外周に巻回された誘導コ
イル12により加熱、溶解される。溶解材料に付着した
鋳物砂、および金属酸化物が溶解したスラグ5は溶湯2
から分離して比重差により溶湯表面に浮遊する。
FIG. 7 shows another configuration of the conventional example. In FIG. 7, the temperature sensor 1 is embedded in the furnace bottom of the crucible 11 of the melting furnace 10 so that the tip of the temperature measuring sensor 1 contacts the molten metal 2. Reference numeral 5 denotes a slag that is separated from and floats on the surface of the molten metal 2, and 12 denotes an induction coil of the melting furnace 10. 7, the sectional configuration of the temperature sensor 1 is shown in FIG.
Therefore, the description is omitted. In FIG. 7, the temperature sensor 1 is buried in the furnace bottom of the crucible 11 of the melting furnace 10 so that the tip thereof contacts the molten metal 2, and the molten metal 2 is wound around the outer periphery of the crucible 11. It is heated and melted by the induction coil 12. Foundry sand adhering to the molten material and slag 5 in which the metal oxide has been dissolved
And float on the surface of the molten metal due to the difference in specific gravity.

【0005】従ってこの場合、測温センサ1の外装保護
管はスラグ5により侵蝕される機会が少なく、前記スラ
グ5による侵蝕が殆ど無いので、連続して測温すること
ができる。
[0005] Therefore, in this case, the outer protective tube of the temperature measurement sensor 1 is less likely to be eroded by the slag 5, and there is almost no erosion by the slag 5, so that the temperature can be continuously measured.

【0006】[0006]

【発明が解決しようとする課題】一般的に、鋳鉄溶解等
高温の金属溶解の24時間操業、または夜間溶解(深夜
電力を利用して翌日に必要な湯量を溶解して保持し昼間
は順次出湯して鋳物を生産する)のために連続して溶解
炉の温度を測温する浸漬形の測温センサは下記の事項を
満たさなければならない。
In general, a 24-hour operation of melting metal such as cast iron at a high temperature or melting at night (using a late-night electric power to melt and maintain a necessary amount of hot water on the next day and sequentially discharge hot water during the daytime) An immersion type temperature sensor that continuously measures the temperature of the melting furnace for producing a casting) must satisfy the following items.

【0007】鋳鉄等の比較的高温の溶湯温度を長期間
に亙り安定して測定できること。 溶湯の温度と測温点(測温素子がある位置)間の温度
差が小さく、高精度に測温できること。 スラグにより外装保護管が侵蝕されないようにするた
めに、溶湯表面のスラグに外装保護管が接触しないこ
と。
The ability to stably measure a relatively high temperature of a molten metal such as cast iron over a long period of time. The temperature difference between the temperature of the molten metal and the temperature measuring point (the position where the temperature measuring element is located) is small, and the temperature can be measured with high accuracy. In order to prevent the outer protective tube from being eroded by the slag, the outer protective tube must not come into contact with the slag on the molten metal surface.

【0008】外装保護管の酸化を防止するために、高
温下では外装保護管が大気中に晒されないこと。 溶湯温度を正確に測定するために、センサの周囲の湯
が十分に攪拌され均一な温度になっていること。 材料投入等の機械的衝撃を受け難いこと。
In order to prevent oxidation of the outer protective tube, the outer protective tube must not be exposed to the atmosphere at high temperatures. In order to measure the temperature of the molten metal accurately, the hot water around the sensor must be sufficiently stirred and have a uniform temperature. Hard to receive mechanical shock such as material input.

【0009】測温センサの交換が容易に行えること。 また、炉蓋を通して浸漬する測温センサの場合は上記
溶湯表面のスラグに外装保護管が接触しないこと、高
温下では外装保護管が大気中に晒されないことの2条件
は不可能なのでこれに代わり、外装保護管が溶湯表面の
スラグにより侵蝕されないこと、および高温下で酸化し
ないことを満たさなければならないが両条件を満たすこ
とは困難なので炉蓋を通して浸漬する場合はこの発明の
対象外とする。
A temperature sensor can be easily replaced. In the case of a temperature sensor immersed through the furnace lid, the two conditions that the outer protective tube does not contact the slag on the surface of the molten metal and that the outer protective tube is not exposed to the atmosphere at high temperatures are impossible. It must satisfy that the outer protective tube is not corroded by the slag on the surface of the molten metal and that it does not oxidize at a high temperature, but it is difficult to satisfy both conditions.

【0010】これらの要求に対し、従来の構成では、炉
底に溝を設けるなどしてその溝内に先端が溶湯に十分接
触するように測温センサを埋設し、常時溶湯を残して、
高温下では外装保護管が大気に晒らされなくしたり、材
料投入の衝撃を炉底で受けて、溝内の測温センサには直
接とどかないようにしたり、外装保護管の材質を機械的
強度、および耐蝕性に優れ、熱伝導率の高いMo−Zr
O2にして長期間の測温に耐えるようにしているが、外
装保護管、および充填材、セラミック保護管を間に介し
て測温するので溶湯温度と、測温温度との間に温度差が
生じる問題がある。
In response to these demands, in the conventional configuration, a temperature measuring sensor is buried in the groove such as by providing a groove in the furnace bottom so that the tip sufficiently contacts the molten metal, and the molten metal is always left.
At high temperatures, the outer protective tube is not exposed to the atmosphere, the impact of material input is received at the furnace bottom, so that it does not directly reach the temperature sensor in the groove, or the material of the outer protective tube is made of mechanical strength Mo-Zr with excellent heat resistance and corrosion resistance
O2 is used to endure long-term temperature measurement. However, since the temperature is measured through an outer protective tube, a filler, and a ceramic protective tube, the temperature difference between the molten metal temperature and the measured temperature is low. There are problems that arise.

【0011】この発明は上記課題を解決するためになさ
れたもので、その目的とするところは、溶湯温度を高精
度で測温できる溶融金属連続測温装置を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a continuous molten metal temperature measuring device capable of measuring the temperature of a molten metal with high accuracy.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は、種類の異なる2本の線を先端
で接合し他の部分を別々の絶縁孔に挿通してセラミック
製の保護管に収納した熱電対測温センサを溶融金属の侵
食から保護する外装保護管内に粉末充填材とともに装着
し、溶融金属中に浸漬して連続して測温する溶融金属連
続測温装置において、外装保護管と、セラミック保護管
との間に充填する充填材は、それぞれ熱伝導率の異なる
2種類以上の充填材を層別して充填することを特徴とす
る。
In order to solve the above-mentioned problems, the invention according to claim 1 is a method in which two wires of different types are joined at the tip and the other portion is inserted into separate insulating holes to make a ceramic. A thermocouple temperature sensor installed in a protective tube with a powder filler inside an external protective tube that protects against the erosion of molten metal, and immersed in the molten metal to continuously measure the temperature The filler filled between the outer protective tube and the ceramic protective tube is characterized in that two or more types of fillers having different thermal conductivity are layered and filled.

【0013】炉底に先端を突出させて埋設した測温セン
サの、溶湯から外壁までを単純な一次元熱解析モデル
(図4参照)として考慮すると溶湯温度をTm、測温点
温度(熱電対の接合点温度)をT、外壁温度をToと
し、TmとTとの間の熱抵抗をR1、TとToとの間の
熱抵抗をR2とし、溶湯から外壁までの熱流をQとする
と、QxR1=Tm−T,QxR2=T−Toとなり、
R1/R2=(Tm−T)/(T−To)が成立する。
このことからTm−Tを小さくするためにはR1<<R
2にする必要がある。この熱抵抗は熱伝導率と熱伝導面
積とに反比例し距離に比例するが、距離は機械的強度な
どを満足させるために所定の長さが必要である。
Considering the temperature from the molten metal to the outer wall of the temperature measuring sensor embedded in the furnace bottom with its tip protruding from the furnace bottom as a simple one-dimensional thermal analysis model (see FIG. 4), the temperature of the molten metal is Tm, and the temperature of the temperature measuring point (thermocouple) T is the outer wall temperature, To is the outer wall temperature, R1 is the thermal resistance between Tm and T, R2 is the thermal resistance between T and To, and Q is the heat flow from the molten metal to the outer wall. QxR1 = Tm-T, QxR2 = T-To,
R1 / R2 = (Tm-T) / (T-To) holds.
From this, in order to reduce Tm-T, R1 << R
Must be 2. This thermal resistance is inversely proportional to the thermal conductivity and the thermal conductive area and is proportional to the distance, but the distance needs a predetermined length to satisfy mechanical strength and the like.

【0014】従って、上記請求項1の構成のように外装
保護管と測温点近辺のセラミック保護管との間には高熱
伝導率の充填材を充填し、そこから層別して外壁までは
低熱伝導率の充填材を充填することにより、測温点近辺
から外壁までを同一充填材で充填する場合よりも、溶湯
から測温点までの熱抵抗R1を、測温点から外壁までの
熱抵抗R2に比べてさらに小さくすることが可能にな
り、測温精度を向上させることが可能になる。
Therefore, the space between the outer protective tube and the ceramic protective tube in the vicinity of the temperature measuring point is filled with a filler having a high thermal conductivity. By filling the filling material at a lower rate, the thermal resistance R1 from the molten metal to the temperature measuring point can be made smaller than that in the case of filling from the vicinity of the temperature measuring point to the outer wall with the same filler. It is possible to further reduce the size as compared with, and to improve the temperature measurement accuracy.

【0015】また、請求項2記載の発明は、種類の異な
る2本の線を先端で接合し他の部分を別々の絶縁孔に挿
通してセラミック製の保護管に収納した熱電対測温セン
サを溶融金属の侵食から保護する外装保護管内に粉末充
填材とともに装着し、溶融金属中に浸漬して連続して測
温する溶融金属連続測温装置において、外装保護管は、
熱伝導率の異なる材質の管を上下に接合して構成するこ
とを特徴とする。
According to a second aspect of the present invention, there is provided a thermocouple temperature sensor in which two different types of wires are joined at the tip and the other portion is inserted into separate insulating holes and housed in a ceramic protective tube. In a continuous molten metal temperature measuring device that is mounted together with a powder filler in an outer protective tube that protects the molten metal from erosion, and is immersed in the molten metal and continuously measures the temperature, the outer protective tube is
It is characterized in that tubes made of materials having different thermal conductivities are joined up and down.

【0016】上記構成により溶湯から測温点近辺までの
外装保護管を高熱伝導率の材質で構成し、測温点近辺か
ら外壁までの外装保護管を低熱伝導率の材料で構成する
ことにより溶湯から外壁までを同一材料の外装保護管と
する場合よりも、溶湯から測温点までの熱抵抗R1を、
測温点から外壁までの熱抵抗R2に比べてさらに小さく
することが可能になり、測温精度を向上させることが可
能になる。
With the above construction, the outer protective tube from the molten metal to the vicinity of the temperature measuring point is made of a material having a high thermal conductivity, and the outer protective tube from the vicinity of the temperature measuring point to the outer wall is made of a material having a low thermal conductivity. The heat resistance R1 from the molten metal to the temperature measuring point is more
It becomes possible to further reduce the thermal resistance R2 from the temperature measuring point to the outer wall, and it is possible to improve the temperature measuring accuracy.

【0017】さらに、請求項3記載の発明は、請求項2
記載の溶融金属連続測温装置において、上部の外装保護
管は高熱伝導率の外装保護管とし、下部に接合する外装
保護管は上部の外装保護管より薄肉で、低熱伝導率の外
装保護管とすることを特徴とする。上記構成により溶湯
から測温点近辺までの上部の外装保護管を高熱伝導率の
材質で構成し、下部の外装保護管の厚さを薄くした低熱
伝導率の材料で構成することにより溶湯から外壁までを
同一材料、同一厚さの外装保護管とする場合よりも、溶
湯から測温点までの熱抵抗R1を、測温点から外壁まで
の熱抵抗R2に比べてさらに小さくすることが可能にな
り、測温精度を向上させることが可能になる。
[0017] Further, the invention according to claim 3 is based on claim 2.
In the molten metal continuous temperature measuring device described above, the upper outer protective tube is an outer protective tube having a high thermal conductivity, and the outer protective tube to be joined to the lower portion is thinner than the upper outer protective tube and has a low thermal conductivity. It is characterized by doing. With the above configuration, the upper outer protective tube from the molten metal to the vicinity of the temperature measuring point is formed of a material having a high thermal conductivity, and the lower outer protective tube is formed of a material having a low thermal conductivity in which the thickness of the lower outer protective tube is reduced. The heat resistance R1 from the molten metal to the temperature measuring point can be made smaller than the thermal resistance R2 from the temperature measuring point to the outer wall, as compared with the case where the same material and the same thickness are used for the outer protective tube. Therefore, it becomes possible to improve the temperature measurement accuracy.

【0018】[0018]

【発明の実施の形態】図1はこの発明の実施の形態の主
要部の構成を示し、(a)は外装保護管とセラミック保
護管との間に隙間が無い場合の断面図、(b)は外装保
護管とセラミック保護管との間に隙間がある場合の断面
図を示す。この図1において、従来例と同一の符号を付
けた部材はおおよそ同一の機能を有するのでその説明は
省略する。この図1において、6は測温センサ1Aの、
種類の異なる2本の線の先端を接合してその接合点の温
度に比例した電圧が他端に発生することを利用した熱電
対、7は前記熱電対6の線を別々の孔に挿通することに
より線間を絶縁するようにした絶縁管、8は前記熱電対
6と絶縁管とを内臓して保護するセラミック保護管、9
は該セラミック保護管8を溶湯2に浸漬する際に溶湯2
およびスラグ5から保護する外装保護管、13はセラミ
ック保護管8と外装保護管9との間の特に外装保護管9
が炉底14から突出している部分に相当する部分に充填
する高熱伝導率の充填材(例えばMoZrO2等)、1
5はセラミック保護管8と外装保護管9との間の、前記
高熱伝導率の充填材13を充填した部分の残りの部分を
充填する低熱伝導率の充填材(例えばアルミナ等)を示
す。この図1において、測温センサ1Aは絶縁管7にそ
れぞれの線を挿通して線間を絶縁した熱電対をセラミッ
ク保護管8に挿入し、さらにその外側を外装保護管9で
包囲して、セラミック保護管8と外装保護管9との間の
特に外装保護管9が炉底11から突出している部分に相
当する部分に高熱伝導率の充填材13を充填し、残りの
部分に低熱伝導率の充填材15を充填して構成してお
り、溶解炉の炉底14から外装保護管9の前述の部分を
突出させて埋設している。そして、溶湯2の温度は外装
保護管9および、充填材13、セラミック保護管8を通
して熱電対6に熱伝達されて、連続測温される。
FIG. 1 shows the structure of a main part of an embodiment of the present invention. FIG. 1 (a) is a cross-sectional view when there is no gap between an outer protective tube and a ceramic protective tube, and FIG. Shows a cross-sectional view when there is a gap between the outer protective tube and the ceramic protective tube. In FIG. 1, members denoted by the same reference numerals as those of the conventional example have approximately the same functions, and therefore description thereof will be omitted. In FIG. 1, reference numeral 6 denotes the temperature sensor 1A.
A thermocouple utilizing the fact that two different types of wires are joined at the other end and a voltage proportional to the temperature of the junction is generated at the other end, and the thermocouple 7 inserts the wires of the thermocouple 6 into separate holes. An insulating tube for insulating the wires between the wires, 8 is a ceramic protecting tube for protecting the thermocouple 6 and the insulating tube in a built-in manner, 9
When the ceramic protective tube 8 is immersed in the molten metal 2,
And an outer protective tube 13 for protecting from the slag 5, especially an outer protective tube 9 between the ceramic protective tube 8 and the outer protective tube 9.
Is filled into a portion corresponding to a portion protruding from the furnace bottom 14 with a high thermal conductivity filler (for example, MoZrO2 or the like);
Reference numeral 5 denotes a low-thermal-conductivity filler (for example, alumina or the like) which fills the remaining portion of the portion between the ceramic protective tube 8 and the outer protective tube 9 which is filled with the high-thermal-conductivity filler 13. In FIG. 1, a temperature measuring sensor 1 </ b> A inserts a thermocouple in which each wire is inserted into an insulating tube 7 and insulated between the wires into a ceramic protection tube 8, and further surrounds the outside with an exterior protection tube 9. A portion between the ceramic protection tube 8 and the exterior protection tube 9, particularly a portion corresponding to a portion where the exterior protection tube 9 protrudes from the furnace bottom 11, is filled with a filler 13 having a high thermal conductivity, and the remaining portion is provided with a low thermal conductivity. And the above-mentioned portion of the outer protective tube 9 is buried so as to protrude from the furnace bottom 14 of the melting furnace. The temperature of the molten metal 2 is transferred to the thermocouple 6 through the outer protective tube 9, the filler 13, and the ceramic protective tube 8, and is continuously measured.

【0019】図1(b)は好ましくはないが、セラミッ
ク保護管8の先端がと外装保護管の内壁に接触しないで
その間に充填材が充填されている例で実際の測温センサ
にはままある例の断面図であり、構成は図1(a)と同
じである。この場合充填材13は高熱伝導率であるので
測温精度は殆ど変化しないがこれが低熱伝導率の充填材
15であると測温精度に影響を及ぼす恐れがある。
Although FIG. 1B is not preferable, the tip of the ceramic protective tube 8 does not come into contact with the inner wall of the external protective tube and the filler is filled between the protective tube and the actual temperature measuring sensor. FIG. 2 is a cross-sectional view of an example, and the configuration is the same as FIG. In this case, since the filler 13 has a high thermal conductivity, the temperature measurement accuracy hardly changes. However, if the filler 13 has a low thermal conductivity, the accuracy of the temperature measurement may be affected.

【0020】図2はこの発明の別の実施の形態の主要部
の構成図を示す。この図2において、6は測温センサ1
Bの、種類の異なる2本の線の先端を接合してその接合
点の温度に比例した電圧が他端に発生することを利用し
た熱電対、7は前記熱電対6の線を別々の孔に挿通する
ことにより線間を絶縁するようにした絶縁管、8は前記
熱電対6と絶縁管とを内臓して保護するセラミック保護
管、9aは該セラミック保護管8を溶湯2に浸漬する際
に溶湯2およびスラグ5から保護する外装保護管を上下
で異なる材質にて接合した上部の高熱伝導率の外装保護
管(例えばMoZrO2等)、9bは前記上部の外装保
護管9aの下部に接合する低熱伝導率の外装保護管(例
えばアルミナ等)、16は測温センサ1Bの先端部を突
出させて埋設する際に炉底14からの着脱を容易にする
ために充填するキャスタブル(耐火物で構成する)を示
す。
FIG. 2 is a block diagram showing a main part of another embodiment of the present invention. In FIG. 2, reference numeral 6 denotes the temperature sensor 1
B is a thermocouple utilizing the fact that the ends of two different types of wires are joined and a voltage proportional to the temperature of the junction is generated at the other end. An insulating tube 8 is provided so as to insulate the wires by inserting the same, a ceramic protection tube 8 is provided for protecting the thermocouple 6 and the insulating tube therein, and 9a is used when the ceramic protection tube 8 is immersed in the molten metal 2. An outer protective tube (for example, MoZrO2 or the like) having an upper high thermal conductivity in which an outer protective tube for protecting the molten metal 2 and the slag 5 is bonded to the upper and lower materials, and 9b is bonded to a lower portion of the upper outer protective tube 9a. An outer protective tube (for example, alumina or the like) having a low thermal conductivity is castable (consisting of a refractory material) for facilitating attachment / detachment from the furnace bottom 14 when the temperature measuring sensor 1B is protruded from the furnace bottom 14 when it is buried. Do).

【0021】この図2が図1と異なる点は、熱電対の接
合点と溶湯との間の熱抵抗を小さくするために外装保護
管とセラミック保護管の間に充填する充填材の熱伝導率
の高低を利用する代わりに外装保護管を上下二段に接合
にして上部に高熱伝導率の保護管を下部に低熱伝導率の
保護管を配した点である。図3はこの発明の他の実施の
形態の主要部の構成図を示す。この図3において、6は
測温センサ1Cの、種類の異なる2本の線の先端を接合
してその接合点の温度に比例した電圧が他端に発生する
ことを利用した熱電対、7は前記熱電対6の線を別々の
孔に挿通することにより線間を絶縁するようにした絶縁
管、8は前記熱電対6と絶縁管とを内臓して保護するセ
ラミック保護管、9cは該セラミック保護管8を溶湯2
に浸漬する際に溶湯2およびスラグ5から保護する外装
保護管を上下で異なる材質にて接合した上部の高熱伝導
率の外装保護管、9dは前記上部の外装保護管9cの下
部に接合するもので上部の外装保護管9cより厚さを薄
くするとともに低熱伝導率の材料で形成した外装保護
管、16は測温センサ1Cの先端部を突出させて埋設す
る際に炉底14からの着脱を容易にするために充填する
キャスタブル(耐火物で構成する)を示す。
FIG. 2 is different from FIG. 1 in that the thermal conductivity of the filler filled between the outer protective tube and the ceramic protective tube in order to reduce the thermal resistance between the junction of the thermocouple and the molten metal. Instead of using the height, the outer protective tube is joined in two stages, and a protective tube with high thermal conductivity is arranged on the upper part and a protective tube with low thermal conductivity is arranged on the lower part. FIG. 3 shows a configuration diagram of a main part of another embodiment of the present invention. In FIG. 3, reference numeral 6 denotes a thermocouple using the fact that a voltage proportional to the temperature of the junction is generated at the other end by joining the tips of two different types of wires of the temperature measuring sensor 1C, and 7 is a thermocouple. An insulating tube configured to insulate between the wires by inserting the wires of the thermocouple 6 into separate holes, 8 is a ceramic protection tube that incorporates and protects the thermocouple 6 and the insulating tube, and 9c is the ceramic protection tube. Protective tube 8 is melted 2
An outer protective tube having a high thermal conductivity in which upper and lower outer protective tubes for protecting from the molten metal 2 and the slag 5 when immersed in the upper and lower materials are joined, and 9d is connected to a lower portion of the upper outer protective tube 9c. The outer protective tube 16 is made thinner than the upper outer protective tube 9c and made of a material having a low thermal conductivity. Show castables (comprising refractories) to be filled for ease.

【0022】この図3が図1と異なる点は、熱電対の接
合点と溶湯との間の熱抵抗を小さくするために外装保護
管とセラミック保護管の間に充填する充填材の熱伝導率
の高低を利用する代わりに外装保護管を上下二段接合に
して上部に高熱伝導率の保護管を下部に低熱伝導率で上
部より厚さの薄い保護管を配した点である。このように
外装保護管の厚さを薄くすることは熱伝導面積を小さく
することに繋がり、その分熱抵抗が増加することにな
る。
FIG. 3 differs from FIG. 1 in that the thermal conductivity of the filler filled between the outer protective tube and the ceramic protective tube to reduce the thermal resistance between the junction of the thermocouple and the molten metal is reduced. Instead of using the height, the outer protective tube is joined in two steps, and a protective tube with high thermal conductivity is provided at the upper part and a protective tube with low thermal conductivity and thinner than the upper part is arranged at the lower part. Reducing the thickness of the outer protective tube in this way leads to a reduction in the heat conduction area, and the thermal resistance increases accordingly.

【0023】なお、図2、図3においても図1の場合と
同様にセラミック保護管と外装保護管との間に充填する
充填材を高、低熱伝導率の二種類にして上下二層に充填
することにより、さらに測温精度を向上させることが可
能になる。
In FIGS. 2 and 3, as in the case of FIG. 1, the filler to be filled between the ceramic protective tube and the outer protective tube is made of two types of high and low thermal conductivity, and the upper and lower layers are filled. By doing so, it becomes possible to further improve the temperature measurement accuracy.

【0024】[0024]

【発明の効果】この発明によれば、溶湯から測温点まで
の熱抵抗を小さくして高精度で測温できるようにしてい
るので無人で自動溶解する際に溶解中は材料投入により
溶湯が凝固しない程度に低い温度で操業して出湯直前に
所定の温度に昇温する操業が可能になり、溶解炉の耐火
物が高温に晒される時間を短くして前記耐火物の寿命を
長くする効果がある。
According to the present invention, the thermal resistance from the molten metal to the temperature measuring point is reduced so that the temperature can be measured with high accuracy. It is possible to operate at a temperature low enough to prevent solidification and to raise the temperature to a predetermined temperature just before tapping, thereby shortening the time during which the refractory of the melting furnace is exposed to high temperatures and extending the life of the refractory. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態の主要部の構成を示し、
(a)は外装保護管とセラミック保護管との間に隙間が
無い場合の断面図、(b)は外装保護管とセラミック保
護管との間に隙間がある場合の断面図
FIG. 1 shows a configuration of a main part of an embodiment of the present invention,
(A) is a cross-sectional view when there is no gap between the outer protective tube and the ceramic protective tube, and (b) is a cross-sectional view when there is a gap between the outer protective tube and the ceramic protective tube.

【図2】この発明の別の実施の形態の主要部の構成図FIG. 2 is a configuration diagram of a main part of another embodiment of the present invention.

【図3】この発明の他の実施の形態の主要部の構成図FIG. 3 is a configuration diagram of a main part of another embodiment of the present invention.

【図4】溶湯から外壁までを単純な一次元熱解析モデル
を示す図
FIG. 4 is a diagram showing a simple one-dimensional thermal analysis model from the molten metal to the outer wall.

【図5】従来例の構成図FIG. 5 is a configuration diagram of a conventional example.

【図6】(a)は図5の測温センサの横断面構成図、
(b)は図5の測温センサの縦断面構成図
6A is a cross-sectional configuration diagram of the temperature measurement sensor of FIG. 5,
(B) is a longitudinal sectional configuration diagram of the temperature measurement sensor of FIG. 5.

【図7】従来例の別の構成図FIG. 7 is another configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1A,1B、1C 測温センサ 6 熱電対 7 絶縁管 8 セラミック保護管 9a、9b、9c、9d 外装保護管 13、15 充填材 14 炉壁 16 キャスタブル 1A, 1B, 1C Temperature sensor 6 Thermocouple 7 Insulation tube 8 Ceramic protection tube 9a, 9b, 9c, 9d Exterior protection tube 13, 15 Filler 14 Furnace wall 16 Castable

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】種類の異なる2本の線を先端で接合し他の
部分を別々の絶縁孔に挿通してセラミック製の保護管に
収納した熱電対測温センサを溶融金属の侵食から保護す
る外装保護管内に粉末充填材とともに装着し、溶融金属
中に浸漬して連続して測温する溶融金属連続測温装置に
おいて、外装保護管と、セラミック保護管との間に充填
する充填材は、それぞれ熱伝導率の異なる2種類以上の
充填材を層別して充填することを特徴とする溶融金属連
続測温装置。
1. A thermocouple sensor that is housed in a ceramic protective tube by joining two different types of wires at the tip and inserting the other part into separate insulating holes to protect the molten metal from erosion by molten metal. In the molten metal continuous temperature measuring device that is mounted together with the powder filler in the outer protective tube and immersed in the molten metal and continuously measures the temperature, the filler to be filled between the outer protective tube and the ceramic protective tube is: A continuous molten metal temperature measuring apparatus characterized in that two or more kinds of fillers having different thermal conductivity are layered and filled.
【請求項2】種類の異なる2本の線を先端で接合し他の
部分を別々の絶縁孔に挿通してセラミック製の保護管に
収納した熱電対測温センサを溶融金属の侵食から保護す
る外装保護管内に粉末充填材とともに装着し、溶融金属
中に浸漬して連続して測温する溶融金属連続測温装置に
おいて、外装保護管は、熱伝導率の異なる材質の管を上
下に接合して構成することを特徴とする溶融金属連続測
温装置。
2. A thermocouple sensor which is housed in a ceramic protective tube by joining two different kinds of wires at the tip and inserting the other portion into separate insulating holes to protect the molten metal from erosion by molten metal. In a continuous molten metal temperature measuring device that is mounted together with a powder filler in an outer protective tube, immersed in molten metal and continuously measures the temperature, the outer protective tube is made by joining pipes of materials with different thermal conductivity up and down. A continuous molten metal temperature measuring device characterized by comprising:
【請求項3】請求項2記載の溶融金属連続測温装置にお
いて、上部の外装保護管は高熱伝導率の外装保護管と
し、下部に接合する外装保護管は上部の外装保護管より
薄肉で、低熱伝導率の外装保護管とすることを特徴とす
る溶融金属連続測温装置。
3. The molten metal continuous temperature measuring device according to claim 2, wherein the upper outer protective tube is a high thermal conductivity outer protective tube, and the lower outer protective tube is thinner than the upper outer protective tube. A continuous molten metal temperature measuring device characterized by using an outer protective tube having a low thermal conductivity.
JP10201450A 1998-07-16 1998-07-16 Device for continuous temperature-measurement of melted metal device Withdrawn JP2000035364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201450A JP2000035364A (en) 1998-07-16 1998-07-16 Device for continuous temperature-measurement of melted metal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201450A JP2000035364A (en) 1998-07-16 1998-07-16 Device for continuous temperature-measurement of melted metal device

Publications (1)

Publication Number Publication Date
JP2000035364A true JP2000035364A (en) 2000-02-02

Family

ID=16441298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201450A Withdrawn JP2000035364A (en) 1998-07-16 1998-07-16 Device for continuous temperature-measurement of melted metal device

Country Status (1)

Country Link
JP (1) JP2000035364A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013984A (en) * 2000-06-30 2002-01-18 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP2002188965A (en) * 2000-12-21 2002-07-05 Isuzu Ceramics Res Inst Co Ltd Thermocouple
DE102004032561B3 (en) * 2004-07-05 2006-02-09 Heraeus Electro-Nite International N.V. Container for molten metal and use of the container
JP2007198806A (en) * 2006-01-24 2007-08-09 Mitsubishi Materials Corp Temperature sensor
EP1881308A1 (en) * 2006-07-21 2008-01-23 Beru Aktiengesellschaft Temperature sensor for a resistance thermometer, in particular for use in the exhaust section of combustion engines
KR100985492B1 (en) 2003-12-24 2010-10-05 주식회사 포스코 Apparatus of on-line measurement of temperature for molten steel
CN104797914A (en) * 2012-11-12 2015-07-22 埃普科斯股份有限公司 Temperature sensor system and method for producing a temperature sensor system
CN108088580A (en) * 2018-01-19 2018-05-29 锦州精微仪表有限公司 The temperature element of small slotting deep accurate measurement can be achieved

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833135A (en) * 1981-08-22 1983-02-26 Shuichi Sakai Sheath type temperature sensor
JPH01169329A (en) * 1987-12-24 1989-07-04 Kawasou Denki Kogyo Kk Continuous temperature measuring apparatus of fused metal
JPH1030967A (en) * 1996-07-12 1998-02-03 Isuzu Ceramics Kenkyusho:Kk Ceramic sheath-type thermocouple

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833135A (en) * 1981-08-22 1983-02-26 Shuichi Sakai Sheath type temperature sensor
JPH01169329A (en) * 1987-12-24 1989-07-04 Kawasou Denki Kogyo Kk Continuous temperature measuring apparatus of fused metal
JPH1030967A (en) * 1996-07-12 1998-02-03 Isuzu Ceramics Kenkyusho:Kk Ceramic sheath-type thermocouple

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013984A (en) * 2000-06-30 2002-01-18 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP2002188965A (en) * 2000-12-21 2002-07-05 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP4623481B2 (en) * 2000-12-21 2011-02-02 いすゞ自動車株式会社 thermocouple
KR100985492B1 (en) 2003-12-24 2010-10-05 주식회사 포스코 Apparatus of on-line measurement of temperature for molten steel
TWI417154B (en) * 2004-07-05 2013-12-01 Heraeus Electro Nite Int Container for molten metal, use of the container and method for determining an interface layer
DE102004032561B3 (en) * 2004-07-05 2006-02-09 Heraeus Electro-Nite International N.V. Container for molten metal and use of the container
US9829385B2 (en) 2004-07-05 2017-11-28 Heraeus Electro-Nite International N.V. Container for molten metal, use of the container and method for determining an interface
TWI399252B (en) * 2004-07-05 2013-06-21 Heraeus Electro Nite Int Container for molten metal, use of the container and method for determining an interface layer
JP2007198806A (en) * 2006-01-24 2007-08-09 Mitsubishi Materials Corp Temperature sensor
EP1881308A1 (en) * 2006-07-21 2008-01-23 Beru Aktiengesellschaft Temperature sensor for a resistance thermometer, in particular for use in the exhaust section of combustion engines
CN104797914A (en) * 2012-11-12 2015-07-22 埃普科斯股份有限公司 Temperature sensor system and method for producing a temperature sensor system
US10024725B2 (en) 2012-11-12 2018-07-17 Epcos Ag Temperature sensor system and method for producing a temperature sensor system
CN108088580A (en) * 2018-01-19 2018-05-29 锦州精微仪表有限公司 The temperature element of small slotting deep accurate measurement can be achieved
CN108088580B (en) * 2018-01-19 2024-06-07 锦州精微仪表有限公司 Temperature measuring element capable of realizing small insertion depth precision measurement

Similar Documents

Publication Publication Date Title
WO1991007643A1 (en) Thermocouple-type temperature sensor and method of measuring temperature of molten steel
US9829385B2 (en) Container for molten metal, use of the container and method for determining an interface
WO2010073736A1 (en) Continuous casting method and nozzle heating device
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
US4365788A (en) Process and apparatus for determining the level of molten metal in a metallurgical vessel, the temperature of the molten metal and the extent of wear of the refractory lining of the vessel
JP5118413B2 (en) Molten steel temperature measuring device in the pan
JP5745588B2 (en) Induction furnace crucible
US3115781A (en) Apparatus for measuring furnace temperature
JP5299032B2 (en) Continuous temperature measurement method for molten steel
US4102708A (en) Self-healing thermocouple
US6772921B2 (en) Refractory nozzle
JP4623481B2 (en) thermocouple
JP2013015488A (en) Thermo couple
JPH01299423A (en) Protective-tube type meter for continuous temperature measurement
US6577118B2 (en) System and method for measuring liquid metal levels or the like
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
RU100852U1 (en) THERMOELECTRIC CONVERTER FOR HIGH TEMPERATURE AND AGGRESSIVE MEDIA
JP2694847B2 (en) Method for measuring molten metal temperature in aluminum melting furnace
JP3932612B2 (en) Continuous temperature measuring device for molten metal
JP2629392B2 (en) Melt temperature measuring device for induction heating furnace
JP3118976B2 (en) Crucible induction furnace
JPH03248026A (en) Thermocouple protecting pipe characterized by high corrosion resistance for measuring temperature of molten iron
JPH037065Y2 (en)
JPH06226413A (en) Method for measuring molten steel temperature in continuous casting
CN116399461A (en) Continuous temperature measurement probe and fixing structure thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040507