Nothing Special   »   [go: up one dir, main page]

JP2000030740A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000030740A
JP2000030740A JP10200672A JP20067298A JP2000030740A JP 2000030740 A JP2000030740 A JP 2000030740A JP 10200672 A JP10200672 A JP 10200672A JP 20067298 A JP20067298 A JP 20067298A JP 2000030740 A JP2000030740 A JP 2000030740A
Authority
JP
Japan
Prior art keywords
organic
lithium secondary
volume
secondary battery
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200672A
Other languages
Japanese (ja)
Inventor
Toru Shiga
亨 志賀
Yoshifumi Aoki
良文 青木
Kensuke Takechi
憲典 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10200672A priority Critical patent/JP2000030740A/en
Publication of JP2000030740A publication Critical patent/JP2000030740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fireproofing Substances (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high battery characteristics, especially high charge/discharge cycle characteristics, high fire resistance, and capable of producing at low cost. SOLUTION: This lithium secondary battery consists of a positive electrode capable of absorbing/releasing lithium, a negative electrode using a graphite base carbon material as a negative active material, and an organic electrolyte prepared by dissolving a lithium salt in an organic solvent, and the organic solvent contains 15-50 vol.% ethylene carbonate based on 100 vol.% of the total volume, and also contains 0.5-2.5 vol.% phosphazene compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、黒鉛系炭素材料が
負極活物質に用いられているリチウム二次電池に関し、
詳しくは自動車のバッテリーに利用することができるも
のに関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery using a graphite-based carbon material as a negative electrode active material,
More specifically, the present invention relates to a device that can be used for a battery of an automobile.

【0002】[0002]

【従来の技術】黒鉛系炭素材料が負極活物質に用いられ
ているリチウム二次電池は、高い出力電圧と大きな放電
容量を有するため、携帯用パソコンや携帯電話、ビデオ
カメラなどの電子機器の分野で実用化され、広く普及す
るに至っている。このようなリチウム二次電池の電解液
には、誘電率が高いこと、電極に対する化学的安定性お
よび電気化学的安定性が高いこと、リチウムイオンの移
動を妨げないように粘度が低いこと、並びに安全性が高
いことなどが要求され、リチウム塩が有機溶媒に溶解さ
れてなる有機電解液が一般的に用いられている。
2. Description of the Related Art A lithium secondary battery using a graphite-based carbon material as a negative electrode active material has a high output voltage and a large discharge capacity, and thus is used in the field of electronic devices such as portable personal computers, mobile phones, and video cameras. And has been widely used. The electrolyte of such a lithium secondary battery has a high dielectric constant, a high chemical stability and electrochemical stability to the electrode, a low viscosity so as not to hinder the movement of lithium ions, and An organic electrolyte solution in which a lithium salt is dissolved in an organic solvent is generally required, for example, high safety is required.

【0003】誘電率が高いことについては、電池の基本
性能に関わることから優先的に考慮され、従来より、有
機電解液の有機溶媒には、エチレンカーボネート(E
C)などの高誘電率溶媒を主成分とするものが広く用い
られている。特に、このような有機電解液には、溶媒の
粘度を低くするためにジエチルカーボネート(DEC)
などの低粘度溶媒を第2成分として含ませたものが多く
用いられている。このような有機電解液は、黒鉛系炭素
材料または非黒鉛系炭素材料を負極活物質に用いた電池
のいずれにも使用できる。特に、反応性の高い黒鉛系炭
素材料を負極活物質に用いた電池においては、ECが電
極に対して化学的安定性および電気化学的安定性に優
れ、優れた電池性能を得るのに極めて有効であることが
知られている。
[0003] The high dielectric constant is considered with priority because it relates to the basic performance of the battery. Conventionally, ethylene carbonate (E) has been used as an organic solvent in an organic electrolytic solution.
Those having a high dielectric constant solvent such as C) as a main component are widely used. In particular, such an organic electrolytic solution contains diethyl carbonate (DEC) in order to reduce the viscosity of the solvent.
For example, those containing a low-viscosity solvent as the second component are often used. Such an organic electrolyte can be used for any battery using a graphite-based carbon material or a non-graphite-based carbon material as a negative electrode active material. In particular, in batteries using highly reactive graphite-based carbon material as the negative electrode active material, EC has excellent chemical and electrochemical stability to the electrodes, and is extremely effective in obtaining excellent battery performance. It is known that

【0004】自動車に搭載可能なリチウム二次電池の負
極には、電圧平坦性や大電流性能の良さから黒鉛系炭素
材料を用いることが望ましい。このような黒鉛系炭素材
料に対して安定で、かつ安価な電解液を提供する必要が
ある。さらに、リチウム二次電池を自動車に利用しよう
とする場合、安全性の観点から、不燃性または難燃性に
優れた電池が求められる。しかしながら、ECを主成分
とする有機電解液が用いられたリチウム二次電池におい
ては、有機電解液に引火の恐れがある。中でも、DEC
などの低粘度溶媒の引火点が室温の近傍にあることか
ら、有機電解液により引火の恐れがある。
It is desirable to use a graphite-based carbon material for the negative electrode of a lithium secondary battery that can be mounted on an automobile because of its excellent voltage flatness and large current performance. It is necessary to provide a stable and inexpensive electrolyte solution for such a graphite-based carbon material. Furthermore, when using a lithium secondary battery for an automobile, a battery excellent in noncombustibility or flame retardancy is required from the viewpoint of safety. However, in a lithium secondary battery using an organic electrolyte containing EC as a main component, the organic electrolyte may be ignited. Among them, DEC
Since the flash point of such a low-viscosity solvent is near room temperature, there is a risk of ignition due to the organic electrolyte.

【0005】このような有機電解液を難燃化する方法と
して、有機電解液にフッ素原子を導入する方法(特開平
10−50343号公報および特開平10−12272
号公報)や、−PN−結合を有するホスファゼン化合物
(特開平6−13108号公報および文献Journa
l of Electrochemical soci
ety、143巻、209ページ、1996年)などの
無機溶媒を用いる方法が提案されている。しかしなが
ら、前者の方法では、有機溶媒にフッ素原子を導入する
には複雑な合成を行う必要があり、コストが高くなると
いう問題がある。また、後者の方法では、ホスファゼン
化合物を用いる場合、特開平6−13108号公報に、
黒鉛系炭素材料を負極活物質として用いた電池において
も適用できる旨の記述があるが、本発明者らがその実施
形態の記述に従って追試を行った結果、黒鉛系炭素材料
とホスファゼン化合物とが充放電時に反応するなどし
て、充放電を繰り返すうちに充放電効率が低下していく
ことがわかった。
[0005] As a method of making such an organic electrolyte flame-retardant, a method of introducing a fluorine atom into the organic electrolyte solution (JP-A-10-50343 and JP-A-10-12272).
) And phosphazene compounds having a -PN- bond (Japanese Patent Laid-Open No. 6-13108 and Reference Journa).
l of Electrochemical soci
et al., Vol. 143, p. 209, 1996). However, in the former method, there is a problem that complicated synthesis needs to be performed in order to introduce a fluorine atom into an organic solvent, and the cost increases. In the latter method, when a phosphazene compound is used, JP-A-6-13108 discloses that
There is a statement that the invention can be applied to batteries using a graphite-based carbon material as a negative electrode active material, but as a result of additional tests by the present inventors according to the description of the embodiment, it was found that the graphite-based carbon material and the phosphazene compound were sufficient. It was found that the charge / discharge efficiency decreased as the charge / discharge cycle was repeated, for example, by reacting during the discharge.

【0006】以上のように、従来のリチウム二次電池に
は、優れた充放電サイクル特性、難燃性および安価であ
ることの全てを合わせ持つものはなかった。
As described above, none of the conventional lithium secondary batteries has all of excellent charge / discharge cycle characteristics, flame retardancy and low cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、電池特性、特に充放電サイク
ル特性および難燃性に優れ、かつ安価に製造することの
できるリチウム二次電池を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has excellent battery characteristics, in particular, charge-discharge cycle characteristics and flame retardancy, and can be manufactured at low cost. The task is to provide

【0008】[0008]

【課題を解決する手段】本発明者らは上記課題を解決す
るべく、黒鉛系炭素材料を負極活物質に用いたリチウム
二次電池において、電解液に使用する溶媒成分を検討
し、特にECとホスファゼン化合物とを含む有機電解液
について、その最適な組成を鋭意研究した。その結果、
次のことがわかった。なお、ECおよびホスファゼン化
合物の含量は、有機電解液の全量を100体積%とした
ときの値である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have studied the solvent components used for the electrolyte in a lithium secondary battery using a graphite-based carbon material as a negative electrode active material, and have particularly studied the EC and EC. With respect to the organic electrolyte containing a phosphazene compound, the optimum composition was studied diligently. as a result,
We found the following: The contents of EC and the phosphazene compound are values when the total amount of the organic electrolyte is 100% by volume.

【0009】ECの含量が15体積%未満であると、電
解液の誘電率が低くて十分な電池特性が得られないばか
りでなく、黒鉛系炭素材料の負極活物質と有機電解液と
の間に分解反応が起こりやすくなる。そのため、充放電
を繰り返すうちに充放電効率が低下してしまう。また、
ECの含量が50体積%を超えると、−10℃付近より
低い温度でECが析出したり、電解液そのものが凍結す
る。そのため、低温域での充放電効率が低下してしま
う。
If the content of EC is less than 15% by volume, not only the dielectric constant of the electrolytic solution is low, and sufficient battery characteristics cannot be obtained, but also the gap between the negative electrode active material of the graphite-based carbon material and the organic electrolytic solution. The decomposition reaction easily occurs. Therefore, the charge / discharge efficiency is reduced while the charge / discharge is repeated. Also,
When the content of EC exceeds 50% by volume, EC precipitates at a temperature lower than around -10 ° C, or the electrolytic solution itself freezes. For this reason, the charge / discharge efficiency in a low temperature range is reduced.

【0010】一方、ホスファゼン化合物の含量が0.5
体積%未満であると、十分な難燃性を有する有機電解液
が得られない。また、ホスファゼン化合物の含量が2.
5体積%を超えると、充放電時に負極表面での分解反応
が増大する。そのため、充放電を繰り返すうちに充放電
効率が大きく低下してしまう。こうして、本発明者ら
は、ECを15〜50体積%の範囲内で含み、かつホス
ファゼン化合物を0.5〜2.5体積%の範囲内で含む
有機電解液を用いることにより、上記課題を解決できる
ことをついに見出した。本発明はこのような知見に基づ
いてなされたものである。
On the other hand, when the content of the phosphazene compound is 0.5
When the content is less than the volume%, an organic electrolyte having sufficient flame retardancy cannot be obtained. Further, the content of the phosphazene compound is 2.
If it exceeds 5% by volume, the decomposition reaction on the negative electrode surface during charge and discharge increases. For this reason, the charge / discharge efficiency is greatly reduced during repeated charge / discharge. Thus, the present inventors have solved the above problems by using an organic electrolyte containing EC in the range of 15 to 50% by volume and a phosphazene compound in the range of 0.5 to 2.5% by volume. I finally found something that could be solved. The present invention has been made based on such findings.

【0011】すなわち、本発明のリチウム二次電池は、
リチウムイオンを吸蔵・放出できる正極と、負極活物質
として黒鉛系炭素材料が用いられている負極と、リチウ
ム塩が有機溶媒に溶解されてなる有機電解液とから構成
されるリチウム二次電池において、前記有機電解液は、
その全量を100体積%とすると、エチレンカーボネー
トを15〜50体積%の範囲内で含み、かつホスファゼ
ン化合物を0.5〜2.5体積%の範囲内で含むことを
特徴とする。
That is, the lithium secondary battery of the present invention is:
In a lithium secondary battery including a positive electrode capable of inserting and extracting lithium ions, a negative electrode in which a graphite-based carbon material is used as a negative electrode active material, and an organic electrolyte in which a lithium salt is dissolved in an organic solvent, The organic electrolyte,
Assuming that the total amount is 100% by volume, ethylene carbonate is contained in the range of 15 to 50% by volume, and the phosphazene compound is contained in the range of 0.5 to 2.5% by volume.

【0012】本発明のリチウム二次電池は、電池特性、
特に充放電サイクル特性および難燃性に優れ、かつ安価
に製造することができる。その理由については、次のよ
うに考えられる。有機電解液に含まれるECの含量が1
5〜50体積%の範囲内に限定されているため、有機電
解液において十分に高い誘電率が得られ、かつ負極活物
質と有機電解液との間の分解反応も起こりにくい。さら
に低温域においても優れた充放電効率が得られる。
The lithium secondary battery of the present invention has battery characteristics,
In particular, it is excellent in charge / discharge cycle characteristics and flame retardancy, and can be manufactured at low cost. The reason is considered as follows. The content of EC contained in the organic electrolyte is 1
Since the content is limited to the range of 5 to 50% by volume, a sufficiently high dielectric constant is obtained in the organic electrolytic solution, and a decomposition reaction between the negative electrode active material and the organic electrolytic solution hardly occurs. Further, excellent charge / discharge efficiency can be obtained even in a low temperature range.

【0013】一方、ホスファゼン化合物の含量が0.5
〜2.5体積%の範囲内に限定されているため、有機電
解液において十分な難燃性が得られ、充放電時における
負極表面での分解反応を増大させることもない。また、
ホスファゼン化合物のECによる溶媒和が生じることに
より、ホスファゼン化合物のもつ高い難燃度が失われる
ことなく、その黒鉛系炭素材料との反応性が抑制されて
いると推察される。
On the other hand, when the content of the phosphazene compound is 0.5
Since the content is limited to the range of about 2.5% by volume, sufficient flame retardancy is obtained in the organic electrolytic solution, and the decomposition reaction on the negative electrode surface during charge / discharge is not increased. Also,
It is presumed that the occurrence of solvation of the phosphazene compound by EC does not cause loss of the high flame retardancy of the phosphazene compound and suppresses its reactivity with the graphite-based carbon material.

【0014】有機電解液にホスファゼン化合物を0.5
〜2.5体積%の範囲内で含ませるには、複雑な合成方
法などを必要とせず、他の成分と単に混合するだけでよ
いため、極めて容易に含ませることができる。それゆ
え、本発明に使用される有機電解液は極めて安価に調製
することができる。
A phosphazene compound is added in an amount of 0.5 to the organic electrolyte.
In order to make the content within the range of up to 2.5% by volume, a complicated synthesis method or the like is not required, and it is only necessary to simply mix with other components. Therefore, the organic electrolyte used in the present invention can be prepared at very low cost.

【0015】[0015]

【発明の実施の形態】本発明のリチウム二次電池は、正
極と、負極と、それらの電極の間に介在する電解液と、
これらを収容する電槽とから基本的に構成される。その
電極構造(積層構造)についてはそれぞれ特に限定され
るものではなく、公知の電極構造とすることができる。
例えば、正極および負極ともに平板状の電極板を用い、
それらの間に同じく平板状のセパレータを介在させて積
層してなるものが挙げられる。この電極構造を有する電
池には、コイン型電池や、角型電池等がある。また、正
極および負極ともに帯状の電極板を用い、それらの間に
セパレータを介在させて略円柱状に巻回してなるものも
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION A lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, an electrolytic solution interposed between the electrodes,
It is basically composed of a battery case containing these. The electrode structure (laminated structure) is not particularly limited, and may be a known electrode structure.
For example, using a flat electrode plate for both the positive and negative electrodes,
Those obtained by laminating them with a plate-shaped separator interposed therebetween are also mentioned. Batteries having this electrode structure include coin-type batteries and prismatic batteries. In addition, there is also an example in which a strip-shaped electrode plate is used for each of the positive electrode and the negative electrode, and a separator is interposed therebetween and wound in a substantially columnar shape.

【0016】以下、各部品に分けて本発明のリチウム二
次電池の実施形態を説明する。正極は、リチウムイオン
を吸蔵・放出できるものであれば、その形態で特に限定
されるものではなく、公知の形態のものを用いることが
できるが、次のような形態のものを用いることが好まし
い。正極活物質の種類については特に限定されるもので
はなく、公知の正極活物質を用いることができるが、L
iCoO2 、LiNiO2 、LiMn2 4 などのリチ
ウム遷移金属複合酸化物を用いることが好ましい。この
ようなリチウム遷移金属複合酸化物を正極活物質として
用いることにより、極めて優れた電池特性を得ることが
できる。
Hereinafter, embodiments of the lithium secondary battery of the present invention will be described for each component. The positive electrode is not particularly limited in its form as long as it can occlude and release lithium ions.A known form can be used, but it is preferable to use the following form . The type of the positive electrode active material is not particularly limited, and a known positive electrode active material can be used.
It is preferable to use a lithium transition metal composite oxide such as iCoO 2 , LiNiO 2 , and LiMn 2 O 4 . By using such a lithium transition metal composite oxide as the positive electrode active material, extremely excellent battery characteristics can be obtained.

【0017】また、適当な集電体の表面上に、正極活物
質を主成分とする正極活物質層が一様に形成された電極
体を用いることが好ましい。その形成方法については、
特に限定されるものではなく、公知の形成方法によって
形成することができる。一方、負極は、黒鉛系炭素材料
が負極活物質に用いられ、正極から放出されたリチウム
イオンを吸蔵・放出できるものであれば、その形態で特
に限定されるものではないが、次のような形態のものを
用いることが好ましい。
It is preferable to use an electrode body in which a positive electrode active material layer mainly composed of a positive electrode active material is uniformly formed on the surface of a suitable current collector. About the formation method,
There is no particular limitation, and it can be formed by a known forming method. On the other hand, the negative electrode is not particularly limited in its form as long as the graphite-based carbon material is used as the negative electrode active material and can absorb and release lithium ions released from the positive electrode. It is preferable to use the form.

【0018】負極活物質の種類については、天然黒鉛、
人造黒鉛などの黒鉛系炭素材料が含まれているものに限
られる。このような負極活物質には、ハードカーボンや
熱処理コークスなどの非黒鉛系炭素材料が黒鉛系炭素材
料に混合されているものを用いてもよい。また、黒鉛系
炭素材料の表面を非晶質の炭素材料で被覆したものを用
いてもよい。このような黒鉛系炭素材料の原料には、球
状、りん片状、繊維状などの黒鉛系炭素材料を用いるこ
とができる。
As for the type of the negative electrode active material, natural graphite,
It is limited to those containing a graphite-based carbon material such as artificial graphite. As such a negative electrode active material, a material in which a non-graphite-based carbon material such as hard carbon or heat-treated coke is mixed with a graphite-based carbon material may be used. Alternatively, a graphite-based carbon material whose surface is coated with an amorphous carbon material may be used. As a raw material of such a graphite-based carbon material, a spherical, flaky, fibrous, etc. graphite-based carbon material can be used.

【0019】負極についても、適当な集電体の表面上
に、負極活物質を主成分とする負極活物質層が一様に形
成された電極体を用いることが好ましい。その形成方法
については、特に限定されるものではなく、公知の形成
方法によって形成することができる。本発明を最も特徴
づける有機電解液は、リチウム塩が有機溶媒に溶解され
てなるものであり、その全量を100体積%とすると、
ECを15〜50体積%の範囲内で含み、かつホスファ
ゼン化合物を0.5〜2.5体積%の範囲内で含むもの
である。この有機電解液には、次のような形態のものを
用いることが好ましい。
As for the negative electrode, it is preferable to use an electrode body in which a negative electrode active material layer mainly composed of a negative electrode active material is uniformly formed on the surface of an appropriate current collector. The formation method is not particularly limited, and it can be formed by a known formation method. The organic electrolyte solution most characteristic of the present invention is a solution in which a lithium salt is dissolved in an organic solvent, and when the total amount is 100% by volume,
EC is contained in the range of 15 to 50% by volume, and the phosphazene compound is contained in the range of 0.5 to 2.5% by volume. Preferably, the organic electrolyte has the following form.

【0020】リチウム塩は特に限定されるものではな
く、LiPF6 、LiBF4 、LiClO4 、LiAs
6 、LiCF3 SO3 、リチウムトリフルオロメタン
スルホンイミドなどの公知のリチウム塩を用いることが
できる。これらリチウム塩の複数種を含んでいる有機電
解液を用いてもよい。一方、ホスファゼン化合物には環
状のものと鎖状のものとがあるが、本発明のリチウム二
次電池においてはいずれを用いてもよい。
The lithium salt is not particularly limited, and may be LiPF 6 , LiBF 4 , LiClO 4 , LiAs
Known lithium salts such as F 6 , LiCF 3 SO 3 , and lithium trifluoromethanesulfonimide can be used. An organic electrolyte containing a plurality of these lithium salts may be used. On the other hand, the phosphazene compound includes a cyclic compound and a chain compound, and any of the compounds may be used in the lithium secondary battery of the present invention.

【0021】前者のホスファゼン化合物を用いる場合に
は、化学式1に示される環状3量体または環状4量体
(n=3,4)のホスファゼン化合物を用いることが好
ましい。
When the former phosphazene compound is used, it is preferable to use a cyclic trimer or cyclic tetramer (n = 3, 4) phosphazene compound represented by the chemical formula 1.

【0022】[0022]

【化1】 Embedded image

【0023】P原子の側鎖Xにはアルコキシ基がある
が、炭素数5以上のものでは充放電時に分解しやすいた
め、炭素数1〜4のアルコキシ基が好ましい。このよう
な炭素数1〜4のアルコキシ基として、具体的にはメト
キシ基、エトキシ基、プロボキシ基、イソプロボキシ
基、ブトキシ基、SEC−ブトキシ基およびtert−
ブトキシ基などが挙げられる。また、アルコキシ基の一
部がフッ素化されたものを用いることもできる。一方、
P原子の側鎖として塩素や臭素なども考えられるが、還
元電位が低く分解しやすいので好ましくない。
The side chain X of the P atom has an alkoxy group. However, an alkoxy group having 5 or more carbon atoms is preferably an alkoxy group having 1 to 4 carbon atoms because it is easily decomposed during charge and discharge. Specific examples of such an alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a SEC-butoxy group and a tert-
Butoxy group and the like. Further, an alkoxy group in which a part of the alkoxy group is fluorinated can also be used. on the other hand,
Chlorine or bromine can be considered as the side chain of the P atom, but it is not preferable because the reduction potential is low and it is easily decomposed.

【0024】後者のホスファゼン化合物を用いる場合に
は、化学式2に示される鎖状のホスファゼン化合物を用
いることが好ましい。
When the latter phosphazene compound is used, it is preferable to use a chain phosphazene compound represented by the chemical formula 2.

【0025】[0025]

【化2】 Embedded image

【0026】P原子の側鎖Yは化学式1のXと同じとす
ることができる。ただし、化学式2における繰り返し単
位数mが5以上であると、このホスファゼン化合物を電
解液に溶解させることが難しくなるため5以下のものが
好ましい。有機電解液におけるECおよびホスファゼン
化合物の残りの溶媒成分は、特にその種類で限定される
ものではないが、低粘性溶媒であるDECや、ジメチル
カーボネート、エチルメチルカーボネート、ジメトキシ
メタン、2−メチルヒドロフランなどを含ませることが
好ましい。これらの有機溶媒の複数種を含んでいる有機
電解液を用いてもよい。
The side chain Y of the P atom may be the same as X in Formula 1. However, when the number m of repeating units in Chemical Formula 2 is 5 or more, it becomes difficult to dissolve this phosphazene compound in an electrolytic solution. The remaining solvent components of the EC and the phosphazene compound in the organic electrolyte are not particularly limited in their types, but DEC which is a low-viscosity solvent, dimethyl carbonate, ethyl methyl carbonate, dimethoxymethane, 2-methylhydrofuran It is preferable to include the like. An organic electrolyte containing a plurality of these organic solvents may be used.

【0027】また、スルホラン、ガンマブチロラクト
ン、プロピレンカーボネートなどの高誘電率溶媒を含ま
せることもできる。これら有機溶媒の複数種を含んでい
るものを用いてもよい。電槽については、その形態で特
に限定されるものではなく、公知のものを用いることが
できる。
Further, a high dielectric constant solvent such as sulfolane, gamma-butyrolactone, propylene carbonate and the like can be contained. A solvent containing a plurality of these organic solvents may be used. The battery case is not particularly limited in its form, and a known battery case can be used.

【0028】本発明のリチウム二次電池では、正極と負
極との間の間隔を維持することができれば、必ずしもそ
れらのセパレータを介在させる必要はないが、電極板を
積層するものにおいては、セパレータを介在させること
によりそれらの電極板の積層を容易にすることができ
る。また、セパレータに、ポリエチレンやポリプロピレ
ン製の微多孔質のものを用いれば、電流のシャットダウ
ン機能が得られ、電池の安全性を高めることができる。
In the lithium secondary battery of the present invention, if the distance between the positive electrode and the negative electrode can be maintained, it is not always necessary to interpose these separators. By interposing, the lamination of those electrode plates can be facilitated. If a microporous separator made of polyethylene or polypropylene is used for the separator, a current shut-down function can be obtained, and the safety of the battery can be improved.

【0029】[0029]

【実施例】以下、実施例により、本発明を具体的に説明
する。 (実施例1)本実施例では、ホスファゼン化合物とし
て、環状のヘキサエトキシトリシクロホスファゼン(H
ETCPN)を含む有機電解液を次のようにして調製し
た。ヘキサクロロトリシクロホスファゼン(フルカ製)
とナトリウムエチラート(和光純薬製)とをテトラヒド
ロフラン(THF)中で、THFを還流させながら反応
させてHETCPNを合成した。
The present invention will be described below in detail with reference to examples. (Example 1) In this example, cyclic hexaethoxytricyclophosphazene (H
An organic electrolyte solution containing (ETCPN) was prepared as follows. Hexachlorotricyclophosphazene (Fluka)
And sodium ethylate (manufactured by Wako Pure Chemical Industries, Ltd.) were reacted in tetrahydrofuran (THF) while refluxing THF to synthesize HETCPN.

【0030】こうして合成されたHETCPN、EC、
DECおよびLiPF6 (富山薬品工業製)をそれぞれ
所定の割合で混合して、表1に示すようにECとHET
CPNの含量が異なる有機電解液を9種類調製した。な
お、これら9種類の有機電解液はいずれも、LiPF6
の濃度が1モル/リットルであり、かつDECの含量が
50体積%である。これらの有機電解液を試料11〜1
9とした。 [難燃性試験]長さ120mm、厚さ25μm、幅8m
mのポリエチレン製セパレ−タ(東燃化学製、品名セテ
ラ)を9枚用意した。これらのセパレ−タを50℃にて
真空乾燥して十分に水分を除いた後、各セパレータを上
述の9種類の有機電解液(試料1〜9)に浸漬して、そ
れぞれに有機電解液を含浸させた。続いて、これらのセ
パレ−タをそれぞれ大気中に取り出して、一端を固定し
てぶらさげた後、マッチにより着火した。火が消えた
後、残存したセパレ−タをジメトキシエタンで十分に洗
浄し、乾燥させた後の重量を計測した。その計測結果を
表1に併せて示す。本難燃性試験においては、残存セパ
レータ量が8.5mg以上のものが難燃性に優れている
と言える。 [充放電サイクル特性]上述の9種類の有機電解液(試
料11〜19)を用いて、以下のようにしてリチウム二
次電池を作製した。なお、以下の説明では、「部」は重
量比を意味するものとする。
HETCPN, EC,
DEC and LiPF 6 (manufactured by Toyama Pharmaceutical Co., Ltd.) were mixed at a predetermined ratio, and EC and HET were mixed as shown in Table 1.
Nine types of organic electrolytes having different CPN contents were prepared. Note that all of these nine types of organic electrolytes were LiPF 6
Is 1 mol / l and the content of DEC is 50% by volume. These organic electrolytes were used as samples 11 to 1
It was set to 9. [Flame retardancy test] length 120mm, thickness 25μm, width 8m
and 9 polyethylene separators (product name: Cetera, manufactured by Tonen Chemical Co., Ltd.). After these separators were vacuum-dried at 50 ° C. to sufficiently remove water, each separator was immersed in the above-mentioned 9 types of organic electrolytes (samples 1 to 9), and the organic electrolytes were respectively applied to the separators. Impregnated. Subsequently, each of these separators was taken out to the atmosphere, and one end was fixed and hung, and then fired by a match. After the fire was extinguished, the remaining separator was sufficiently washed with dimethoxyethane, and the weight after drying was measured. The measurement results are also shown in Table 1. In this flame retardancy test, it can be said that those having a residual separator amount of 8.5 mg or more have excellent flame retardancy. [Charge / Discharge Cycle Characteristics] Using the above nine kinds of organic electrolytes (samples 11 to 19), lithium secondary batteries were produced as follows. In the following description, “part” means a weight ratio.

【0031】リチウムマンガン複合酸化物(本荘ケミカ
ル製)を18.5部、カーボンブラック(東海カーボン
製)を1.5部、ポリフッ化ビニリデン(PVDF)
(クレハ化学製)粉末を8部、Nーメチルピロリドン
(和光純薬製)を72部づつ用意し、これらを十分に混
合して正極用スラリーを得た。この正極用スラリーを厚
さ20μmのアルミ箔上に塗布して正極材料を得た。
18.5 parts of lithium manganese composite oxide (manufactured by Honjo Chemical), 1.5 parts of carbon black (manufactured by Tokai Carbon), polyvinylidene fluoride (PVDF)
8 parts of powder (manufactured by Kureha Chemical Co., Ltd.) and 72 parts of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared, and these were sufficiently mixed to obtain a slurry for a positive electrode. This positive electrode slurry was applied on a 20 μm-thick aluminum foil to obtain a positive electrode material.

【0032】一方、人造黒鉛(MCMB)(大阪ガス化
学製)を95部、PVDFを5部づつ用意し、これらを
Nーメチルピロリドン100部に溶解させて負極用スラ
リーを得た。この負極用スラリーを銅箔上に塗布して負
極材料に得た。次に、上述の正極材料と負極材料とか
ら、直径17mmの円盤状の正極板および負極板をそれ
ぞれ9枚づつ打ち抜いた。これらの円盤状の電極板の間
にそれぞれポリエチレン製セパレ−タを挟み込んだ。各
セパレータに上述の9種類の有機電解液(試料11〜1
9)をそれぞれ含浸させて9種類のリチウム二次電池を
作製した。
On the other hand, 95 parts of artificial graphite (MCMB) (manufactured by Osaka Gas Chemical) and 5 parts of PVDF were prepared, and these were dissolved in 100 parts of N-methylpyrrolidone to obtain a slurry for a negative electrode. This negative electrode slurry was applied on a copper foil to obtain a negative electrode material. Next, nine disk-shaped positive and negative electrode plates each having a diameter of 17 mm were punched from the above-described positive electrode material and negative electrode material. A polyethylene separator was sandwiched between these disc-shaped electrode plates. The above nine kinds of organic electrolytes (samples 11 to 1)
9) were respectively impregnated to produce 9 types of lithium secondary batteries.

【0033】各リチウム二次電池について、1mA/c
2 の定電流で4.2Vまで充電した後、4.2Vの定
電圧のままさらに充電を続けた。こうして充電が完了し
た各電池を0.5mA/cm2 の定電流で放電し、初期
の放電容量と10サイクル後の放電容量をそれぞれ測定
した。各電池の10サイクル後の放電容量を表1に併せ
て示す。なお、各電池の初期における放電容量は39〜
72mAh/gであった。また、本充放電試験において
は、10サイクル後の放電容量が45mAh/g以上で
あるものが充放電サイクル特性に優れていると言える。
For each lithium secondary battery, 1 mA / c
After charging to 4.2 V at a constant current of m 2 , charging was further continued at a constant voltage of 4.2 V. Each of the charged batteries was discharged at a constant current of 0.5 mA / cm 2 , and the initial discharge capacity and the discharge capacity after 10 cycles were measured. Table 1 also shows the discharge capacity of each battery after 10 cycles. The initial discharge capacity of each battery is 39 to
It was 72 mAh / g. In this charge / discharge test, it can be said that those having a discharge capacity after 45 cycles of 45 mAh / g or more have excellent charge / discharge cycle characteristics.

【0034】[0034]

【表1】 表1より、試料13〜15の有機電解液を用いたリチウ
ム二次電池が、充放電サイクル特性および難燃性の両方
に優れることがわかる。これらリチウム二次電池の有機
電解液は、いずれも、有機電解液の全量を100体積%
とすると、ECを15〜50体積%の範囲内で含み、か
つホスファゼン化合物(HETCPN)を0.5〜2.
5体積%の範囲内で含むものである。 (比較例1)実施例1と同様にして合成したHETCP
NとDECとを体積比にして1:1で混合して有機溶媒
を得た。この有機溶媒を用い、実施例1と同様にして、
LiPF6の濃度が1モル/リットルであり、かつDE
Cの含量が50体積%である有機電解液を調製した。
[Table 1] Table 1 shows that the lithium secondary batteries using the organic electrolytes of Samples 13 to 15 are excellent in both charge / discharge cycle characteristics and flame retardancy. In all of the organic electrolytes of these lithium secondary batteries, the total amount of the organic electrolyte was 100% by volume.
Then, EC is contained in the range of 15 to 50% by volume, and the phosphazene compound (HETCPN) is contained in the range of 0.5 to 2.
It is contained within the range of 5% by volume. Comparative Example 1 HETCP synthesized in the same manner as in Example 1.
N and DEC were mixed at a volume ratio of 1: 1 to obtain an organic solvent. Using this organic solvent, in the same manner as in Example 1,
The concentration of LiPF 6 is 1 mol / l and the DE
An organic electrolyte solution having a C content of 50% by volume was prepared.

【0035】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表2に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、充放電試験を行っ
た。10サイクル目での放電容量を表2に併せて示す。
なお、初期における放電容量は32mAh/gであっ
た。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 2 shows the results. Further, a lithium secondary battery was prepared using this organic electrolyte in the same manner as in Example 1, and a charge / discharge test was performed. Table 2 also shows the discharge capacity at the tenth cycle.
The initial discharge capacity was 32 mAh / g.

【0036】表2より、本比較例のリチウム二次電池
は、高い難燃性を示すものの、充放電サイクル特性に劣
ることがわかる。
Table 2 shows that the lithium secondary battery of this comparative example exhibits high flame retardancy, but is inferior in charge / discharge cycle characteristics.

【0037】[0037]

【表2】 (実施例2)本実施例では、ホスファゼン化合物とし
て、HETCPNの代わりに環状のヘキサ(トリフルオ
ロエトキシ)トリシクロホスファゼン(HFETCP
N)を用いた以外は実施例1の有機電解液と同じ有機電
解液を次のようにして調製した。
[Table 2] (Example 2) In this example, cyclic hexa (trifluoroethoxy) tricyclophosphazene (HFETCP) was used as the phosphazene compound instead of HETCPN.
An organic electrolyte solution identical to the organic electrolyte solution of Example 1 except that N) was used was prepared as follows.

【0038】トリフルオロエタノール(和光純薬)と水
素化ナトリウム(和光純薬)とを反応させてナトリウム
トリフルオロエトキシドを得た。このナトリウムトリフ
ルオロエトキシドとヘキサクロロトリシクロホスファゼ
ン(フルカ製)とをTHF中で、THFを還流しながら
反応させてHFETCPNを合成した。こうして合成さ
れたHFETCPN、EC、DECおよびLiPF
6 (富山薬品工業製)をそれぞれ所定の割合で混合し
て、表3に示すようにECとHFETCPNの含量が異
なる有機電解液を8種類調製した。なお、これら8種類
の有機電解液はいずれも、LiPF6の濃度が1モル/
リットルであり、かつDECの含量が50体積%であ
る。これらの有機電解液を試料21〜28とした。
By reacting trifluoroethanol (Wako Pure Chemical) with sodium hydride (Wako Pure Chemical), sodium trifluoroethoxide was obtained. This sodium trifluoroethoxide and hexachlorotricyclophosphazene (manufactured by Fluka) were reacted in THF while refluxing THF to synthesize HFETCPN. HFET CPN, EC, DEC and LiPF thus synthesized
6 (manufactured by Toyama Pharmaceutical Co., Ltd.) were mixed at predetermined ratios to prepare eight kinds of organic electrolytes having different contents of EC and HFETCPN as shown in Table 3. In each of these eight types of organic electrolytes, the concentration of LiPF 6 was 1 mol / mol.
Liter and the content of DEC is 50% by volume. These organic electrolytes were used as Samples 21 to 28.

【0039】こうして調製された各有機電解液(試料2
1〜28)について、実施例1と同様にして難燃性試験
を行った。その結果を表3に示す。また、これら各有機
電解液を用いて実施例1と同様にリチウム二次電池をそ
れぞれ作製し、各電池について同様に充放電試験を行っ
た。各電池の10サイクル目での放電容量を表3に併せ
て示す。なお、各電池の初期における放電容量は33〜
72mAh/gであった。
Each of the thus prepared organic electrolytes (sample 2
1 to 28), a flame retardancy test was conducted in the same manner as in Example 1. Table 3 shows the results. Further, a lithium secondary battery was produced using each of these organic electrolytes in the same manner as in Example 1, and a charge / discharge test was similarly performed on each battery. Table 3 also shows the discharge capacity at the 10th cycle of each battery. The initial discharge capacity of each battery was 33 to
It was 72 mAh / g.

【0040】[0040]

【表3】 表3より、試料22〜25の各有機電解液を用いたリチ
ウム二次電池は、いずれも、充放電サイクル特性および
難燃性の両方に優れることがわかる。これらのリチウム
二次電池の有機電解液は、いずれも、有機電解液の全量
を100体積%とすると、ECを15〜50体積%の範
囲内で含み、かつホスファゼン化合物(HFETCP
N)を0.5〜2.5体積%の範囲内で含むものであ
る。 (比較例2)実施例2と同様にして合成したHFETC
PNと、DECとを体積比にして1:1で混合して有機
溶媒を得た。この有機溶媒を用い、実施例1と同様にし
て、LiPF6の濃度が1モル/リットルであり、かつ
DECの含量が50体積%である有機電解液を調製し
た。
[Table 3] Table 3 shows that all of the lithium secondary batteries using each of the organic electrolytes of Samples 22 to 25 have excellent charge / discharge cycle characteristics and flame retardancy. All of the organic electrolytes of these lithium secondary batteries contain EC in the range of 15 to 50% by volume, and the phosphazene compound (HFETCP) when the total amount of the organic electrolyte is 100% by volume.
N) in the range of 0.5 to 2.5% by volume. (Comparative Example 2) HFETC synthesized in the same manner as in Example 2
PN and DEC were mixed at a volume ratio of 1: 1 to obtain an organic solvent. Using this organic solvent, an organic electrolytic solution having a LiPF 6 concentration of 1 mol / liter and a DEC content of 50% by volume was prepared in the same manner as in Example 1.

【0041】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表2に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、充放電試験を行っ
た。10サイクル目での放電容量を表2に併せて示す。
なお、初期における放電容量は25mAh/gであっ
た。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 2 shows the results. Further, a lithium secondary battery was prepared using this organic electrolyte in the same manner as in Example 1, and a charge / discharge test was performed. Table 2 also shows the discharge capacity at the tenth cycle.
The initial discharge capacity was 25 mAh / g.

【0042】表2より、本比較例のリチウム二次電池
は、高い難燃性を示すものの、充放電サイクル特性に劣
ることがわかる。 (比較例3)本比較例では、ECとDECとを体積比に
して1:1で混合して有機溶媒を得た。この有機溶媒に
LiBF4を1モル/リットルで溶解して有機電解液を
調製した。
Table 2 shows that the lithium secondary battery of this comparative example exhibited high flame retardancy, but was inferior in charge / discharge cycle characteristics. Comparative Example 3 In this comparative example, an organic solvent was obtained by mixing EC and DEC at a volume ratio of 1: 1. LiBF4 was dissolved in this organic solvent at 1 mol / liter to prepare an organic electrolyte.

【0043】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表2に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、充放電試験を行っ
た。10サイクル目での放電容量を表2に併せて示す。
なお、初期における放電容量は73mAh/gであっ
た。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 2 shows the results. Further, a lithium secondary battery was prepared using this organic electrolyte in the same manner as in Example 1, and a charge / discharge test was performed. Table 2 also shows the discharge capacity at the tenth cycle.
The initial discharge capacity was 73 mAh / g.

【0044】表2より、本比較例のリチウム二次電池は
優れた充放電サイクル特性を有するものの、その難燃性
は劣ることがわかった。 (実施例3)本実施例では、ホスファゼン化合物とし
て、HETCPNの代わりに鎖状のジブトキシホスホニ
ルホスホリミックトリブドキシド(BPPTB)を用い
た以外は実施例1の有機電解液と同じ有機電解液を次の
ようにして調製した。
Table 2 shows that the lithium secondary battery of this comparative example had excellent charge / discharge cycle characteristics, but was inferior in flame retardancy. (Example 3) In this example, the same organic electrolyte as the organic electrolyte of Example 1 except that a chain-like dibutoxyphosphonylphosphoric tributoxide (BPPTB) was used as the phosphazene compound instead of HETCPN. Was prepared as follows.

【0045】硫酸アンモニウム(和光純薬製)と五塩化
リン(和光純薬製)とを134℃に加熱されたテトラク
ロロエタン(和光純薬)中で反応させてクロロホスホニ
ルホスホリミックトリクロリド(CPPTC)を得た。
このCPPTCとナトリウムブトキシド(半井化学製)
とをTHF中で、THFを還流しながら反応させてBP
PTBを合成した。
Ammonium sulfate (manufactured by Wako Pure Chemical) and phosphorus pentachloride (manufactured by Wako Pure Chemical) are reacted in tetrachloroethane (Wako Pure Chemical) heated to 134 ° C. to produce chlorophosphonylphosphoric trichloride (CPPTC). I got
This CPPTC and sodium butoxide (Hanai Chemical)
Is reacted in THF while refluxing THF to obtain BP.
PTB was synthesized.

【0046】こうして合成されたBPPTB、EC、D
ECおよびLiBF4(富山薬品工業製)をそれぞれ所
定の割合で混合して、表4に示すようにECとBPPT
Bの含量が異なる有機電解液を6種類調製した。なお、
これら6種類の有機電解液はいずれも、LiPF6の濃
度が1モル/リットルであり、かつDECの含量が70
体積%である。これらの有機電解液を試料31〜36と
した。
The BPPTB, EC, D thus synthesized
EC and LiBF4 (manufactured by Toyama Pharmaceutical Co., Ltd.) were mixed at predetermined ratios, and as shown in Table 4, EC and BPPT were mixed.
Six types of organic electrolytes having different B contents were prepared. In addition,
All of these six types of organic electrolytes have a LiPF 6 concentration of 1 mol / liter and a DEC content of 70 mol / l.
% By volume. These organic electrolytes were designated as Samples 31 to 36.

【0047】こうして調製された各有機電解液(試料3
1〜36)について、実施例1と同様にして難燃性試験
を行った。その結果を表4に示す。また、これら各有機
電解液を用いて実施例1と同様にリチウム二次電池をそ
れぞれ作製し、各電池について同様に充放電試験を行っ
た。各電池の10サイクル目での放電容量を表4に併せ
て示す。なお、各電池の初期における放電容量は45〜
74mAh/gであった。
Each of the thus prepared organic electrolytes (sample 3
1 to 36), a flame retardancy test was performed in the same manner as in Example 1. Table 4 shows the results. Further, a lithium secondary battery was produced using each of these organic electrolytes in the same manner as in Example 1, and a charge / discharge test was similarly performed on each battery. Table 4 also shows the discharge capacity at the 10th cycle of each battery. The initial discharge capacity of each battery is 45 to 45.
It was 74 mAh / g.

【0048】[0048]

【表4】 表4より、試料33〜35の各有機電解液を用いたリチ
ウム二次電池は、いずれもサイクル特性および難燃性の
両方に優れることがわかる。これらのリチウム二次電池
の有機電解液は、その全量を100体積%とすると、E
Cを15〜50体積%の範囲内で含み、かつホスファゼ
ン化合物(BPPTB)を0.5〜2.5体積%の範囲
内で含むものである。 (比較例4)実施例3で得たCPPTC(塩素が置換さ
れたもの)と、EC、DECおよびLiBF4(富山薬
品工業製)をそれぞれ所定の割合で混合して、ECの含
量が25体積%であり、かつCPPTCの含量が5体積
%である有機電解液を調製した。なお、この有機電解液
は、LiBF4の濃度が1モル/リットルであり、かつ
DECの含量が70体積%である。
[Table 4] Table 4 shows that the lithium secondary batteries using each of the organic electrolytes of Samples 33 to 35 are excellent in both cycle characteristics and flame retardancy. Assuming that the total amount of the organic electrolyte of these lithium secondary batteries is 100% by volume, E
C is contained in the range of 15 to 50% by volume, and the phosphazene compound (BPPTB) is contained in the range of 0.5 to 2.5% by volume. (Comparative Example 4) The CPPTC (substituted with chlorine) obtained in Example 3 was mixed with EC, DEC and LiBF4 (manufactured by Toyama Pharmaceutical Co., Ltd.) at a predetermined ratio, respectively, to give an EC content of 25% by volume. And an organic electrolyte solution having a CPPTC content of 5% by volume was prepared. In this organic electrolyte, the concentration of LiBF 4 was 1 mol / liter, and the content of DEC was 70% by volume.

【0049】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表2に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、同様の充放電試験を
行った。10サイクル目での放電容量を表2に併せて示
す。なお、初期における放電容量は49mAh/gであ
った。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 2 shows the results. Further, a lithium secondary battery was fabricated using the organic electrolyte in the same manner as in Example 1, and a similar charge / discharge test was performed. Table 2 also shows the discharge capacity at the tenth cycle. The initial discharge capacity was 49 mAh / g.

【0050】表2より、本比較例のリチウム二次電池
は、高い難燃性を示すものの、サイクル特性にかなり劣
ることがわかる。 (比較例5)CPPTCの含量が0.1%である以外は
比較例4と同様の有機電解液を調製した。
From Table 2, it can be seen that the lithium secondary battery of this comparative example shows high flame retardancy, but is considerably inferior in cycle characteristics. (Comparative Example 5) An organic electrolyte solution similar to that of Comparative Example 4 was prepared except that the content of CPPTC was 0.1%.

【0051】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表2に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、同様の充放電試験を
行った。10サイクル目での放電容量を表2に併せて示
す。なお、初期における放電容量は63mAh/gであ
った。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 2 shows the results. Further, a lithium secondary battery was fabricated using the organic electrolyte in the same manner as in Example 1, and a similar charge / discharge test was performed. Table 2 also shows the discharge capacity at the tenth cycle. The initial discharge capacity was 63 mAh / g.

【0052】表2より、本比較例のリチウム二次電池
は、高い難燃性を示すものの、サイクル特性にかなり劣
ることがわかる。 (実施例4)ホスファゼン化合物として、BPPTBの
代わりにジ−tert−ブトキシホスホニルホスホリミ
ックジ(tertーブトキシド)を用いた以外は実施例
3の有機電解液と同じ有機電解液を実施例3と同様にし
て調製した。なお、本実施例では、tertーブトキシ
ドの含量を0.5体積%とした。
Table 2 shows that the lithium secondary battery of this comparative example exhibited high flame retardancy, but was considerably inferior in cycle characteristics. (Example 4) The same organic electrolytic solution as in Example 3 was used except that di-tert-butoxyphosphonylphosphoric di (tert-butoxide) was used instead of BPPTB as the phosphazene compound. Was prepared. In this example, the content of tert-butoxide was 0.5% by volume.

【0053】こうして調製された有機電解液について、
実施例1と同様にして難燃性試験を行った。その結果を
表5に示す。また、この有機電解液を用いて実施例1と
同様にリチウム二次電池を作製し、同様の充放電試験を
行った。10サイクル目での放電容量を表5に併せて示
す。なお、初期における放電容量は60mAh/gであ
った。
With respect to the organic electrolyte thus prepared,
A flame retardancy test was performed in the same manner as in Example 1. Table 5 shows the results. Further, a lithium secondary battery was fabricated using the organic electrolyte in the same manner as in Example 1, and a similar charge / discharge test was performed. Table 5 also shows the discharge capacity at the tenth cycle. The initial discharge capacity was 60 mAh / g.

【0054】[0054]

【表5】 表5より、この有機電解液を用いたリチウム二次電池
は、充放電サイクル特性および難燃性の両方に優れるこ
とがわかる。 (実施例5)ホスファゼン化合物として、HETCPN
の代わりに鎖状のポリホスホニトリックエトキシド(P
PPET)を用いた以外は実施例1の有機電解液と同じ
有機電解液を次のようにして調製した。
[Table 5] Table 5 shows that the lithium secondary battery using this organic electrolyte is excellent in both charge / discharge cycle characteristics and flame retardancy. (Example 5) As a phosphazene compound, HETCPN
Is replaced by a linear polyphosphonic ethoxide (P
An organic electrolyte solution identical to the organic electrolyte solution of Example 1 except that PPET was used was prepared as follows.

【0055】ヘキサクロロトリシクロホスファゼン(フ
ルカ製)を、過硫酸アンモニウムを触媒として用いて熱
重合させた。得られた重合体をベンゼンに溶かして不溶
の反応生成物を濾過した後、その濾液(ベンゼン溶液)
にナトリウムエチラート(和光純薬)を加えて加熱し、
PPPETを合成した。こうして合成されたPPPE
T、EC、DECおよびLiBF4(富山薬品工業製)
をそれぞれ所定の割合で混合して、表4に示すようにE
CとBPPTBの含量が異なる有機電解液を5種類調製
した。なお、これら5種類の有機電解液はいずれも、L
iPF6の濃度が1モル/リットルであり、かつDEC
の含量が70体積%である。これらの有機電解液を試料
51〜55とした。
Hexachlorotricyclophosphazene (Fluka) was thermally polymerized using ammonium persulfate as a catalyst. After dissolving the obtained polymer in benzene and filtering the insoluble reaction product, the filtrate (benzene solution)
And add sodium ethylate (Wako Pure Chemicals)
PPPET was synthesized. PPPE synthesized in this way
T, EC, DEC and LiBF 4 (Toyama Pharmaceutical)
Are mixed at predetermined ratios, and E is mixed as shown in Table 4.
Five kinds of organic electrolytes having different contents of C and BPPTB were prepared. Note that these five types of organic electrolytes are all L
The concentration of iPF 6 is 1 mol / l and DEC
Is 70% by volume. These organic electrolytes were used as samples 51 to 55.

【0056】こうして調製された各有機電解液(試料5
1〜55)について、実施例1と同様にして難燃性試験
を行った。その結果を表6に示す。また、これら各有機
電解液を用いて実施例1と同様にリチウム二次電池をそ
れぞれ作製し、各電池について同様に充放電試験を行っ
た。10サイクル目での放電容量を表6に併せて示す。
なお、各電池の初期における放電容量は35〜75mA
h/gであった。
Each of the thus prepared organic electrolytes (sample 5
1 to 55), a flame retardancy test was performed in the same manner as in Example 1. Table 6 shows the results. Further, a lithium secondary battery was produced using each of these organic electrolytes in the same manner as in Example 1, and a charge / discharge test was similarly performed on each battery. Table 6 also shows the discharge capacity at the tenth cycle.
The initial discharge capacity of each battery was 35 to 75 mA.
h / g.

【0057】[0057]

【表6】 表6より、試料51〜55の各有機電解液を用いたリチ
ウム二次電池は、いずれもサイクル特性および難燃性の
両方に優れることがわかる。このリチウム二次電池の有
機電解液は、その全量を100体積%とすると、ECを
15〜50体積%の範囲内で含み、かつホスファゼン化
合物(PPPET)を0.5〜2.5体積%の範囲内で
含むものである。
[Table 6] Table 6 shows that the lithium secondary batteries using each of the organic electrolytes of Samples 51 to 55 are excellent in both cycle characteristics and flame retardancy. Assuming that the total amount of the organic electrolyte of the lithium secondary battery is 100% by volume, the organic electrolyte contains EC in a range of 15 to 50% by volume and a phosphazene compound (PPPET) of 0.5 to 2.5% by volume. It is included within the range.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武市 憲典 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4H028 AA38 BA05 5H029 AJ02 AJ05 AJ12 AJ14 AK03 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ14 DJ08 EJ11 HJ07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor: Noritake Takeichi 41-cho, Chuchu-ji, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-term in Toyota Central Research Laboratory, Inc. (reference) 4H028 AA38 BA05 5H029 AJ02 AJ05 AJ12 AJ14 AK03 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ14 DJ08 EJ11 HJ07

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出できる正極
と、黒鉛系炭素材料が負極活物質に用いられている負極
と、リチウム塩が有機溶媒に溶解されてなる有機電解液
とから構成され、該有機電解液は、その全量を100体
積%とすると、エチレンカーボネートを15〜50体積
%の範囲内で含み、かつホスファゼン化合物を0.5〜
2.5体積%の範囲内で含むことを特徴とするリチウム
二次電池。
1. A positive electrode capable of occluding and releasing lithium ions, a negative electrode in which a graphite-based carbon material is used as a negative electrode active material, and an organic electrolyte in which a lithium salt is dissolved in an organic solvent. Assuming that the total amount is 100% by volume, the organic electrolytic solution contains ethylene carbonate in a range of 15 to 50% by volume and a phosphazene compound in a range of 0.5 to 50% by volume.
A lithium secondary battery, which is contained in a range of 2.5% by volume.
JP10200672A 1998-07-15 1998-07-15 Lithium secondary battery Pending JP2000030740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200672A JP2000030740A (en) 1998-07-15 1998-07-15 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200672A JP2000030740A (en) 1998-07-15 1998-07-15 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000030740A true JP2000030740A (en) 2000-01-28

Family

ID=16428328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200672A Pending JP2000030740A (en) 1998-07-15 1998-07-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000030740A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217004A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2001086746A1 (en) 2000-05-08 2001-11-15 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
WO2005036690A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
CN100377415C (en) * 2001-07-05 2008-03-26 株式会社普利司通 Non-aqueous electrolyte cell, electrolyte stabilizing agent
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
JP4664503B2 (en) * 1998-11-30 2011-04-06 日本化学工業株式会社 Non-aqueous electrolyte secondary battery
WO2012033089A1 (en) 2010-09-06 2012-03-15 新神戸電機株式会社 Nonaqueous electrolyte battery
JP2012059391A (en) * 2010-09-06 2012-03-22 Ntt Facilities Inc Lithium ion battery

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664503B2 (en) * 1998-11-30 2011-04-06 日本化学工業株式会社 Non-aqueous electrolyte secondary battery
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
JP4666540B2 (en) * 1999-11-25 2011-04-06 株式会社ブリヂストン Non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217004A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6955867B1 (en) 1999-11-25 2005-10-18 Brigdestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
EP1253662A4 (en) * 1999-11-25 2006-11-02 Bridgestone Corp Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
KR100775566B1 (en) * 1999-11-25 2007-11-09 가부시키가이샤 브리지스톤 Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
EP1253662A1 (en) * 1999-11-25 2002-10-30 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
US7229719B2 (en) 2000-05-08 2007-06-12 Bridgestone Corporation Non-aqueous electrolyte secondary battery
WO2001086746A1 (en) 2000-05-08 2001-11-15 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
JPWO2002021628A1 (en) * 2000-09-07 2004-02-12 株式会社ブリヂストン Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
JP5001507B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
EP1347530A1 (en) * 2000-09-07 2003-09-24 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A4 (en) * 2000-09-07 2007-08-15 Bridgestone Corp Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
EP1376732A1 (en) * 2001-03-30 2004-01-02 Bridgestone Corporation Additive for cell and electric double-layered capacitor
EP1376732A4 (en) * 2001-03-30 2007-10-10 Bridgestone Corp Additive for cell and electric double-layered capacitor
JP4588319B2 (en) * 2001-07-05 2010-12-01 株式会社ブリヂストン Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
CN100377415C (en) * 2001-07-05 2008-03-26 株式会社普利司通 Non-aqueous electrolyte cell, electrolyte stabilizing agent
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
JP2009161559A (en) * 2001-07-05 2009-07-23 Bridgestone Corp Phosphazene derivative and method for producing the same
JPWO2003005479A1 (en) * 2001-07-05 2004-10-28 株式会社ブリヂストン Non-aqueous electrolyte battery, electrode stabilizer, phosphazene derivative and method for producing the same
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
US8168831B2 (en) 2001-07-05 2012-05-01 Bridgestone Corporation Non-aqueous electrolyte cell, electrode stabilizing agent, phosphazene derivative and method of producing the same
WO2005036690A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
WO2012033089A1 (en) 2010-09-06 2012-03-15 新神戸電機株式会社 Nonaqueous electrolyte battery
JP2012059391A (en) * 2010-09-06 2012-03-22 Ntt Facilities Inc Lithium ion battery

Similar Documents

Publication Publication Date Title
JP7232357B2 (en) rechargeable battery cell
CN113782817B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP2000030740A (en) Lithium secondary battery
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
JP3218982B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP7172015B2 (en) Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2005005117A (en) Battery
KR20220148138A (en) Lithium secondary battery
US20230089885A1 (en) Non-Aqueous Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including Same
JP2001052736A (en) Lithium secondary battery
JP2002373704A (en) Nonaqueous electrolyte battery
JP6396136B2 (en) Lithium secondary battery
KR101535865B1 (en) electrolyte for secondary battery containing boron-based lithium salt and a secondary battery containing the same
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2005005118A (en) Battery
JP2002367675A (en) Non-aqueous electrolyte battery
CN114051665B (en) Nonaqueous electrolyte solution and lithium secondary battery comprising same
JP7250401B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR20220058016A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP7278657B2 (en) Non-aqueous electrolyte and lithium secondary battery containing the same
US12148891B2 (en) Polymer electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20150061903A (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same