Nothing Special   »   [go: up one dir, main page]

JP2000019285A - Reactor heat removal system - Google Patents

Reactor heat removal system

Info

Publication number
JP2000019285A
JP2000019285A JP10190020A JP19002098A JP2000019285A JP 2000019285 A JP2000019285 A JP 2000019285A JP 10190020 A JP10190020 A JP 10190020A JP 19002098 A JP19002098 A JP 19002098A JP 2000019285 A JP2000019285 A JP 2000019285A
Authority
JP
Japan
Prior art keywords
heat exchanger
reactor
line
circulation loop
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10190020A
Other languages
Japanese (ja)
Other versions
JP3581021B2 (en
Inventor
Kouhei Hisamochi
康平 久持
Satoshi Miura
聡志 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP19002098A priority Critical patent/JP3581021B2/en
Publication of JP2000019285A publication Critical patent/JP2000019285A/en
Application granted granted Critical
Publication of JP3581021B2 publication Critical patent/JP3581021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor heat removal system with good aseismic performance and obtainable decay heat removable without continuous operation of an auxiliary component cooling system and decay heat removal pump. SOLUTION: A heat exchanger 6 is placed at a position higher than a suppression pool water surface 5a and lines 31, 33 and 34 from a reactor containment 2 to the heat exchanger primary side uppers part are provided. A circulation loop is formed out of these lines, lines from the heat exchanger 6 primary side lower part through a turbine-driven pump 7a to the reactor pressure vessel 1 and the line 37 leading to the suppression pool 5b. Furthermore, an air discharge line with remote valve 18 releasing to the air and a supply line 36 to the secondary side of the heat exchanger 6 are provided to the secondary side of the heat exchanger 6 in the constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉異常時に作
動する原子炉の冷却系に係り、特に最終的な除熱経路を
大気とする原子炉除熱系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for a nuclear reactor that operates when a reactor is abnormal, and more particularly, to a nuclear reactor cooling system in which a final heat removal path is the atmosphere.

【0002】[0002]

【従来の技術】原子炉除熱系を対象とした従来技術とし
ては、特開平6-222182号公報の「静的格納容器冷却系」
に開示の技術、特開平7-72280 号公報の「原子炉格納容
器冷却系」に開示の技術及び特開平8-201559号公報の
「原子炉格納容器の冷却装置」に開示の技術が見受けら
れる。
2. Description of the Related Art As a prior art for a heat removal system for a nuclear reactor, there is a "static containment vessel cooling system" disclosed in Japanese Patent Application Laid-Open No. 6-222182.
The technology disclosed in Japanese Patent Application Laid-Open No. 7-72280, "Reactor Containment Vessel Cooling System" and the technology disclosed in Japanese Patent Application Laid-Open No. 8-201559, "Reactor Containment Vessel Cooling System" .

【0003】特開平6-222182号公報に開示の技術は、静
的格納容器除熱系の熱交換器の性能向上に係わる技術
で、熱交換器の性能向上が図れるものの、格納容器の上
部に熱交換器を格納した静的格納容器除熱プール、重力
落下式冷却系プール及びサプレッションチェンバが設置
されるため、耐震設計上高度な技術が要求される。
The technique disclosed in Japanese Patent Application Laid-Open No. 6-222182 relates to a technique for improving the performance of a heat exchanger of a static containment heat removal system. Although the performance of the heat exchanger can be improved, the technique disclosed in Since a static containment heat-removal pool containing a heat exchanger, a gravity-fall type cooling system pool, and a suppression chamber are installed, advanced technology is required for seismic design.

【0004】また、特開平7-72280 号公報に開示の技術
は、大熱容量材を用いることで格納容器の熱容量を増加
させているため、除熱性能の向上が見られるものの、特
開平6-222182号公報に開示の技術と同様の設備構成であ
るため、耐震設計上高度な技術が要求される。
In the technology disclosed in Japanese Patent Application Laid-Open No. 7-72280, although the heat capacity of the containment vessel is increased by using a large heat capacity material, the heat removal performance is improved. Since the equipment configuration is similar to that of the technology disclosed in Japanese Patent No. 222182, advanced technology is required for seismic design.

【0005】さらに、特開平8-201559号公報に開示の技
術は、静的格納容器冷却プールの位置を低くすること
で、耐震設計上の支障を取り除くことに着目した技術で
ある。ここでは、従来技術として特開平8-201559号公報
に開示の技術の例を図8を用いて説明する。
Further, the technique disclosed in Japanese Patent Application Laid-Open No. Hei 8-201559 is a technique that focuses on removing the obstacle in the seismic design by lowering the position of the static containment cooling pool. Here, an example of a conventional technique disclosed in Japanese Patent Laid-Open Publication No. 8-201559 will be described with reference to FIG.

【0006】原子炉格納容器冷却系は、原子炉圧力容器
1を格納した原子炉格納容器2、サプレッションプール
液相部5bを水源とした炉心冷却ポンプ81、サプレッ
ションプール液相部5bの周囲に熱交換器82を収容し
た冷却水プール83、ドライウェル3と熱交換器82を
接続した蒸気供給管84、排気管85及び凝縮水戻り配
管86で構成されている。また、熱交換器82は、サプ
レッションプール気相部4をもつサプレッションプール
水面5aより上方に設置されている。
The reactor containment vessel cooling system includes a reactor containment vessel 2 containing a reactor pressure vessel 1, a core cooling pump 81 using the suppression pool liquid phase part 5b as a water source, and heat around the suppression pool liquid phase part 5b. The cooling water pool 83 accommodates the exchanger 82, the steam supply pipe 84 connecting the dry well 3 and the heat exchanger 82, the exhaust pipe 85, and the condensed water return pipe 86. Further, the heat exchanger 82 is installed above the suppression pool water surface 5 a having the suppression pool gas phase 4.

【0007】例えば、原子炉格納容器2内において異常
な事象が発生した場合は、炉心冷却ポンプ81の運転に
よりサプレッションプール液相部5bの水を原子炉圧力
容器1に注入し、炉心冷却を行う。また、冷却水プール
83内の熱交換器82によりドライウェル3の蒸気を吸
引し冷却して凝縮させた上で重力によりサプレッション
プール液相部5bに流下し、サプレッションプール水を
冷却し、原子炉圧力容器1と原子炉格納容器2の冷却を
行うことができる。
For example, when an abnormal event occurs in the reactor containment vessel 2, the core cooling pump 81 is operated to inject the water of the suppression pool liquid phase portion 5b into the reactor pressure vessel 1 to cool the core. . Further, the steam in the dry well 3 is sucked by the heat exchanger 82 in the cooling water pool 83, cooled and condensed, and then flows down to the suppression pool liquid phase portion 5b by gravity, thereby cooling the suppression pool water and cooling the reactor. The pressure vessel 1 and the reactor containment vessel 2 can be cooled.

【0008】さらに、冷却水プール83が低位置に設置
されることから原子炉格納容器2の重心が低くなり、耐
震性が向上すると共に、原子炉圧力容器1の上部に燃料
プールを設けるなど、プラントレイアウトが適切に行え
る。
Further, since the cooling water pool 83 is installed at a low position, the center of gravity of the reactor containment vessel 2 is lowered, the earthquake resistance is improved, and a fuel pool is provided above the reactor pressure vessel 1. Plant layout can be performed properly.

【0009】しかし、本従来の技術は、冷却水プール8
3を原子炉格納容器2の周囲に配置するため、原子炉格
納容器2の周囲に関するプラントレイアウトが困難とな
り、設備コストが過大となっていた。また、冷却水プー
ル83を低位置に設置することで耐震性が向上されてい
るものの、サプレッションプール水面5a以上に冷却水
プール83を配置する必要があるため、依然耐震設計上
の支障は残っていた。
[0009] However, this conventional technique is not applicable to the cooling water pool 8.
Since the fuel cell 3 is disposed around the containment vessel 2, the layout of the plant around the containment vessel 2 becomes difficult, and the equipment cost becomes excessive. In addition, although the earthquake resistance is improved by installing the cooling water pool 83 at a low position, since the cooling water pool 83 needs to be arranged at a level higher than the suppression pool water surface 5a, there still remains a problem in the earthquake resistant design. Was.

【0010】また、本従来の技術では、冷却水プール8
3の冷却水減少に対する対応方法が検討されていない。
そのため、冷却水プール83の冷却水補給設備を含めた
静的格納容器除熱系の概念が明確になっていなかった。
In the prior art, the cooling water pool 8
A method for coping with the cooling water decrease of No. 3 has not been studied.
For this reason, the concept of the static containment heat removal system including the cooling water supply facility of the cooling water pool 83 has not been clarified.

【0011】さらに、本従来の技術では、全交流電源喪
失のような事象が発生した場合に、炉心冷却ポンプが使
用できなくなるため、原子炉へ長期的に注水を継続する
方法が無かった。
Further, in the prior art, when an event such as a loss of all AC power occurs, the core cooling pump cannot be used, and there is no method for continuing the long-term injection of water into the reactor.

【0012】[0012]

【発明が解決しようとする課題】特開平6-222182号公報
及び特開平7-72280 号公報に開示の従来技術は、格納容
器上部に静的格納容器除熱プールを設置することにより
格納容器からの除熱を図るものであるが、静的格納容器
除熱プール及び重力落下式冷却系プールを原子炉圧力容
器及び原子炉格納容器の上方に設置する必要があり、耐
震設計上支障となっていた。
The prior art disclosed in Japanese Patent Application Laid-Open Nos. 6-222182 and 7-72280 disclose a method of removing a containment vessel by installing a static containment heat removal pool above the containment vessel. However, it is necessary to install a static containment heat removal pool and a gravity fall type cooling system pool above the reactor pressure vessel and the containment vessel, which is an obstacle to seismic design. Was.

【0013】また、特開平8-201559号公報に開示の従来
技術は、冷却水プールを低い位置に設置することで耐震
性能の向上を図っているが、依然耐震設計上の支障が残
っている。また、耐震性能の向上を図るために、原子炉
への注水を炉心冷却ポンプに頼ることとなり、全交流電
源喪失事象では、長期的な原子炉への注水ができない問
題点があった。
In the prior art disclosed in Japanese Patent Application Laid-Open No. Hei 8-201559, the seismic performance is improved by installing the cooling water pool at a low position, but there remains a problem in the seismic design. . In addition, in order to improve the seismic performance, water injection into the reactor relied on a core cooling pump, and there was a problem that long-term water injection into the reactor was not possible in the event of a loss of all AC power.

【0014】さらに、上記の従来の技術では、原子炉出
力が大きくなるにしたがって、崩壊熱を除去するために
必要となる冷却水プール及び静的格納容器除熱プールの
容積も大きくなるため、設備コストの増加が生じる。
Further, in the above-mentioned conventional technology, as the reactor power increases, the volumes of the cooling water pool and the static containment heat removal pool required for removing the decay heat also increase. There is an increase in costs.

【0015】また、従来の原子炉除熱系では、最終的な
除熱に際して原子炉除熱系のみならず補機冷却系を含め
た機器の継続的な運転が不可欠で、高い信頼性や高度な
保守・管理に加え、機器の故障を想定した多重性が要求
されていた。
Further, in the conventional reactor heat removal system, continuous operation of equipment including not only the reactor heat removal system but also the auxiliary equipment cooling system is indispensable for final heat removal, and high reliability and advanced In addition to simple maintenance and management, multiplicity that assumes equipment failure was required.

【0016】上記の従来の技術に対して、最終的な除熱
経路として静的除熱格納容器除熱プールや補機冷却系を
介した海水以外の経路を設けることにより、除熱経路の
冗長性及び多様性を確保しつつ、静的格納容器除熱プー
ルに要求される設備コストの増大及び耐震設計上の考慮
及び補機冷却系が要求する高い信頼性や高度な保守・管
理を大幅に軽減することが期待される。
In contrast to the above prior art, a route other than seawater via a static heat removal storage vessel heat removal pool or an auxiliary cooling system is provided as a final heat removal route, thereby making the heat removal route redundant. While maintaining reliability and versatility, increase the equipment costs required for static containment heat removal pools, consider seismic design, and significantly increase the high reliability and advanced maintenance and management required for auxiliary cooling systems It is expected to reduce.

【0017】上記問題点に鑑み、本発明の目的は、補機
冷却系や残留熱除去ポンプの継続運転がなくとも崩壊熱
除去が実施でき、かつ耐震性に優れた原子炉除熱系を提
供することにある。
In view of the above problems, an object of the present invention is to provide a reactor heat removal system capable of removing decay heat without continuous operation of an auxiliary equipment cooling system or a residual heat removal pump and having excellent earthquake resistance. Is to do.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明による原子炉除熱系は、特許請求の範囲の各
請求項に記載の特徴を有する。特に、独立項としての請
求項1に係る発明の原子炉除熱系は、原子炉圧力容器内
で発生する蒸気を、熱交換器を介して冷却・凝縮し、原
子炉圧力容器に戻すことで崩壊熱を除去する原子炉除熱
系において、前記原子炉圧力容器内の蒸気相部から前記
熱交換器の一次側の上部に至る隔離弁付きライン及び前
記熱交換器の一次側の下部から注入弁を介して前記原子
炉圧力容器に至るラインで形成した循環ループと、該循
環ループに配設した前記原子炉圧力容器の前記蒸気相部
から抽出した蒸気を駆動源とするタービン駆動ポンプ
と、前記熱交換器の二次側から大気へ開放した隔離弁付
き大気放出ラインと、前記熱交換器の二次側に至る補給
水ラインと、前記原子炉圧力容器を収納する原子炉格納
容器内に前記原子炉圧力容器より高い位置に設置したプ
ールと、前記タービン駆動ポンプの出口から前記プール
に至る隔離弁付きラインと、前記プールから前記原子炉
圧力容器に至る隔離弁付きラインと、を備えたことを特
徴とするものである。
In order to achieve the above object, a reactor heat removal system according to the present invention has the features described in each of the claims. In particular, the reactor heat removal system of the invention according to claim 1 as an independent claim cools and condenses steam generated in the reactor pressure vessel via a heat exchanger and returns the steam to the reactor pressure vessel. In a reactor heat removal system for removing decay heat, a line with an isolation valve extending from a vapor phase part in the reactor pressure vessel to an upper part on the primary side of the heat exchanger and injection from a lower part on the primary side of the heat exchanger. A circulation loop formed by a line leading to the reactor pressure vessel via a valve, and a turbine drive pump using a steam extracted from the steam phase portion of the reactor pressure vessel disposed in the circulation loop as a drive source, An air release line with an isolation valve that opens to the atmosphere from the secondary side of the heat exchanger, a makeup water line that reaches the secondary side of the heat exchanger, and a reactor containment vessel that houses the reactor pressure vessel. Installed higher than the reactor pressure vessel And pool, and the isolation valve with lines leading to the pool from the outlet of the turbine driven pump, is characterized in that and a isolation valve with lines leading to the reactor pressure vessel from the pool.

【0019】[0019]

【発明の実施の形態】本発明の第1実施例について図1
を用いて説明する。本発明の原子炉除熱系では、原子炉
圧力容器1で発生した蒸気は、主蒸気隔離弁11a、1
1bを介して熱交換器6の上部に導かれる。熱交換器6
の下部のライン32は、タービン駆動ポンプ7aを介し
て注入弁15及び逆止弁16に接続されている。
FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG. In the reactor heat removal system of the present invention, the steam generated in the reactor pressure vessel 1 is supplied to the main steam isolation valve 11a, 1
It is led to the upper part of the heat exchanger 6 via 1b. Heat exchanger 6
Is connected to the injection valve 15 and the check valve 16 via the turbine drive pump 7a.

【0020】この時、ドライウェル3及びサプレッショ
ンプール気相部4から熱交換器6上部へ接続されるライ
ン33、34の隔離弁13、14は閉状態にあり、原子
炉圧力容器1の蒸気相部から熱交換器6の上部、熱交換
器6の下部から原子炉圧力容器1の液相部への循環ルー
プが形成される。
At this time, the isolation valves 13 and 14 of the lines 33 and 34 connected from the dry well 3 and the suppression pool gas phase section 4 to the upper part of the heat exchanger 6 are closed, and the vapor phase of the reactor pressure vessel 1 is closed. A circulation loop is formed from the upper part of the heat exchanger 6 to the liquid phase part of the reactor pressure vessel 1 from the lower part of the heat exchanger 6.

【0021】原子炉圧力容器1と接続する熱交換器6の
一次側は、圧力調整弁21により減圧されるものの、高
圧条件となるために、熱交換器6の管側を対応させてい
る。このようにする理由は、一次側を熱交換器6の胴側
としても技術的な問題はないが、胴全体が高圧仕様とな
るために、製作コストが高くなるからである。
Although the primary side of the heat exchanger 6 connected to the reactor pressure vessel 1 is depressurized by the pressure regulating valve 21, the tube side of the heat exchanger 6 corresponds to the high pressure condition. The reason for this is that there is no technical problem even if the primary side is the trunk side of the heat exchanger 6, but the production cost is high because the entire trunk is of high-pressure specification.

【0022】一方、熱交換器6の二次側には冷却水が内
蔵されていると共に、その上部には大気開放弁18を介
して大気に開放するライン35が設けられている。これ
らの構成により、原子炉圧力容器1で発生した蒸気は、
熱交換器6の一次側から二次側の冷却水に熱を移行し、
凝縮する。
On the other hand, cooling water is contained on the secondary side of the heat exchanger 6, and a line 35 for opening to the atmosphere via an atmosphere opening valve 18 is provided above the cooling water. With these configurations, the steam generated in the reactor pressure vessel 1
Heat is transferred from the primary side of the heat exchanger 6 to the cooling water on the secondary side,
Condense.

【0023】熱交換器6の上部で凝縮した蒸気は、熱交
換器6の下部から、原子炉圧力容器1からの蒸気供給ラ
イン38を介した蒸気を駆動源とするタービン駆動ポン
プ7aにより昇圧され原子炉圧力容器1に戻る。
The steam condensed in the upper part of the heat exchanger 6 is pressurized from the lower part of the heat exchanger 6 by a turbine drive pump 7a driven by steam through a steam supply line 38 from the reactor pressure vessel 1. Return to the reactor pressure vessel 1.

【0024】ドライウェル3からの除熱を実施する場合
は、原子炉圧力容器1及びサプレッションプール気相部
4から熱交換器6上部へ接続されるそれぞれライン3
1、34の隔離弁12、14を閉状態に、ライン33の
隔離弁13を開状態にし、ドライウェル3から熱交換器
6の上部、熱交換器6の下部からライン37を介し、注
入弁17を開状態にし、サプレッションプール液相部5
bへの循環ループを形成する。但し、熱交換器6は、サ
プレッションプール水面5aより高い位置に設ける。
When heat removal from the dry well 3 is performed, each of the lines 3 connected to the upper part of the heat exchanger 6 from the reactor pressure vessel 1 and the suppression pool gas phase part 4 is used.
The isolation valves 12 and 14 of 1 and 34 are closed, the isolation valve 13 of a line 33 is opened, and an injection valve is provided from the drywell 3 to the upper part of the heat exchanger 6 and from the lower part of the heat exchanger 6 via a line 37. 17 is opened and the suppression pool liquid phase 5
Form a circulation loop to b. However, the heat exchanger 6 is provided at a position higher than the suppression pool water surface 5a.

【0025】上記の構成により、ドライウェル3の蒸気
は、熱交換器6の一次側から二次側の冷却水に熱を移行
し、凝縮する。熱交換器6の上部で凝縮した蒸気は、熱
交換器6の下部から重力に従ってサプレッションプール
液相部5bへ流入する。
With the above configuration, the steam in the dry well 3 transfers heat from the primary side of the heat exchanger 6 to the cooling water on the secondary side and condenses. The vapor condensed in the upper part of the heat exchanger 6 flows into the suppression pool liquid phase part 5b from the lower part of the heat exchanger 6 according to gravity.

【0026】サプレッションプール気相部4からの除熱
を実施する場合は、原子炉圧力容器1及びドライウェル
3から熱交換器6上部へ接続されるそれぞれライン3
1、33の隔離弁12、13を閉状態に、ライン34の
隔離弁14を開状態にし、サプレッションプール気相部
4から熱交換器6上部、熱交換器6の下部から、ライン
37を介し、注入弁17を開状態にし、サプレッション
プール液相部5bへの循環ループを形成する。
When heat is to be removed from the suppression pool gas phase section 4, each of the lines 3 connected from the reactor pressure vessel 1 and the dry well 3 to the upper part of the heat exchanger 6
The isolation valves 12 and 13 of 1 and 33 are closed, and the isolation valve 14 of a line 34 is opened. From the suppression pool gas phase part 4, from the upper part of the heat exchanger 6 and from the lower part of the heat exchanger 6, via a line 37. Then, the injection valve 17 is opened, and a circulation loop to the suppression pool liquid phase portion 5b is formed.

【0027】これらの構成により、サプレッションプー
ル気相部4の蒸気は、熱交換器6の一次側から二次側の
冷却水に熱を移行し、凝縮する。熱交換器6の上部で凝
縮した蒸気は、熱交換器6の下部から重力に従ってサプ
レッションプール液相部5bへ流入する。
With these configurations, the steam of the suppression pool gas phase section 4 transfers heat from the primary side of the heat exchanger 6 to the cooling water on the secondary side and condenses. The vapor condensed in the upper part of the heat exchanger 6 flows into the suppression pool liquid phase part 5b from the lower part of the heat exchanger 6 according to gravity.

【0028】熱交換器6の二次側における冷却水は、一
次側からの熱を得て蒸発し、大気開放弁18を介して大
気に開放される。この蒸発により熱交換器6二次側の冷
却水が減少する場合は、補給水弁19を開弁し、冷却水
を供給する。また、熱交換器二次側の補給水ライン36
には、補給水タンク8が熱交換器6より高い位置に設け
られ、補給水弁20を開弁することにより重力により冷
却水を補給することもできる。 但し、補給水タンク8
は原子炉格納容器2とは別の領域に設置される。
The cooling water on the secondary side of the heat exchanger 6 obtains heat from the primary side, evaporates, and is released to the atmosphere through an atmosphere opening valve 18. When the cooling water on the secondary side of the heat exchanger 6 decreases due to the evaporation, the supply water valve 19 is opened to supply the cooling water. In addition, the makeup water line 36 on the secondary side of the heat exchanger
The replenishing water tank 8 is provided at a position higher than the heat exchanger 6, and the replenishing water valve 20 is opened to supply the cooling water by gravity. However, make-up water tank 8
Is installed in an area different from the reactor containment vessel 2.

【0029】原子炉圧力容器1へ注水しない場合は、注
入弁15を閉止し、隔離弁25を開放することで、ター
ビン駆動ポンプ7aからプール9へ注水することができ
る。タービン駆動ポンプ7aを使用していると、原子炉
圧力容器1で発生する蒸気がいずれ喪失し、タービン駆
動ポンプ7aが使用できなくなる。
When water is not injected into the reactor pressure vessel 1, the injection valve 15 is closed and the isolation valve 25 is opened, whereby water can be injected into the pool 9 from the turbine drive pump 7a. When the turbine drive pump 7a is used, steam generated in the reactor pressure vessel 1 is eventually lost, and the turbine drive pump 7a cannot be used.

【0030】これに対して、プール9に蓄水された水
は、隔離弁24を開放することにより原子炉圧力容器1
へ注水され、長期間に亘って原子炉圧力容器1への補給
水が確保される。また、プール9の水源としては、熱交
換器6で凝縮した水だけでなく、ライン37の隔離弁2
7を開放することにより補給水タンク8と、ライン44
の隔離弁26を開放することによりサプレッションプー
ル液相部5bと、が使用できる。
On the other hand, the water stored in the pool 9 is released from the reactor pressure vessel 1 by opening the isolation valve 24.
To supply water to the reactor pressure vessel 1 for a long period of time. The water source of the pool 9 includes not only the water condensed in the heat exchanger 6 but also the isolation valve 2 in the line 37.
7 to open the makeup water tank 8 and the line 44
By opening the isolation valve 26, the suppression pool liquid phase portion 5b can be used.

【0031】これによりタービン駆動ポンプ7aの駆動
源である原子炉圧力容器1で発生した蒸気が喪失した場
合においても長期的な安全性が確保できる。これら熱交
換器6の二次側への間欠的な補給水が得られれば、弁の
ラインアップだけで小電力での長期的な原子炉の冷却と
崩壊熱の除去が確保できる。
As a result, long-term safety can be ensured even when the steam generated in the reactor pressure vessel 1, which is the drive source of the turbine drive pump 7a, is lost. If intermittent make-up water to the secondary side of the heat exchanger 6 is obtained, long-term cooling of the reactor and removal of decay heat with low power can be ensured only by the lineup of valves.

【0032】本発明の第2実施例を図2を用いて説明す
る。熱交換器6一次側の循環ループと、サプレッション
プール液相部5bからタービン駆動ポンプ7aによるプ
ール9への注水ラインは、図1と同様の構成であるた
め、説明を省略する。
A second embodiment of the present invention will be described with reference to FIG. The circulation loop on the primary side of the heat exchanger 6 and the water injection line from the suppression pool liquid phase portion 5b to the pool 9 by the turbine drive pump 7a have the same configuration as in FIG.

【0033】図2は、図1に設けた熱交換器6の二次側
への補給水タンク8からの補給水ライン36にタービン
駆動ポンプ7bを、該タービン駆動ポンプ7bに原子炉
圧力容器1からの蒸気供給ライン39を設けている。こ
れにより、補給水タンク8の補給水をタービン駆動ポン
プ7bにより昇圧し、熱交換器6の二次側へ補給するこ
とができる。
FIG. 2 shows a turbine drive pump 7b in a makeup water line 36 from a makeup water tank 8 to the secondary side of the heat exchanger 6 provided in FIG. 1, and a reactor pressure vessel 1 in the turbine drive pump 7b. A steam supply line 39 is provided. Thus, the pressure of the makeup water in the makeup water tank 8 can be increased by the turbine drive pump 7 b and can be supplied to the secondary side of the heat exchanger 6.

【0034】また、タービン駆動ポンプ7bからプール
9へ接続されたライン46により、熱交換器6の二次側
へ水を補給しない場合に隔離弁28を開放し、隔離弁8
7を閉止することにより、補給水タンク8からプール9
へ注水することができ、原子炉圧力容器1への注水のた
めの水源を確保することができる。この構成により、補
給水タンク8の配置を制限することなく、弁のラインア
ップだけで、小電力での長期的な原子炉の冷却と崩壊熱
除去が確保される。
A line 46 connected from the turbine drive pump 7b to the pool 9 opens the isolation valve 28 when water is not supplied to the secondary side of the heat exchanger 6, and opens the isolation valve 8
7 is closed, the makeup water tank 8 is moved to the pool 9
, And a water source for water injection into the reactor pressure vessel 1 can be secured. With this configuration, long-term reactor cooling and decay heat removal with low power can be ensured with only a lineup of valves without limiting the arrangement of the makeup water tank 8.

【0035】本発明の第3実施例を、図3を用いて説明
する。熱交換器6一次側の循環ループとサプレッション
プール液相部5bからタービン駆動ポンプ7aによるプ
ール9への注水ラインは、図1と同様の構成であるた
め、説明を省略する。
A third embodiment of the present invention will be described with reference to FIG. The circulation loop on the primary side of the heat exchanger 6 and the water injection line from the suppression pool liquid phase portion 5b to the pool 9 by the turbine drive pump 7a have the same configuration as in FIG.

【0036】図3は、図1に設けた熱交換器6の二次側
への補給水ライン36からタービン駆動ポンプ7aへの
ライン40及び隔離弁88と、タービン駆動ポンプ7a
の下流から熱交換器6の二次側への補給水ライン36へ
接続する隔離弁23付きライン41と、補給水ライン3
6に隔離弁22と、を設けている。
FIG. 3 shows a line 40 and an isolation valve 88 from the makeup water line 36 to the secondary side of the heat exchanger 6 provided in FIG. 1 to the turbine drive pump 7a, and the turbine drive pump 7a.
A line 41 with an isolation valve 23 connected to a make-up water line 36 from a downstream side of the heat exchanger 6 to the secondary side of the heat exchanger 6, and a make-up water line 3
6 is provided with an isolation valve 22.

【0037】これにより、補給水タンク8の補給水をタ
ービン駆動ポンプ7aで昇圧し、ライン41を介して熱
交換器6の二次側へ補給することができる。この構成に
より、ポンプの数を低減することができ、弁のラインア
ップだけで小電力での崩壊熱の除去が確保できる。
Thus, the pressure of the makeup water in the makeup water tank 8 can be increased by the turbine drive pump 7a and can be supplied to the secondary side of the heat exchanger 6 through the line 41. With this configuration, the number of pumps can be reduced, and the removal of decay heat with low power can be ensured only by the lineup of valves.

【0038】なお、本発明の弁には、次のようなインタ
ーロックが設けられていることが望ましい。
The valve of the present invention is desirably provided with the following interlock.

【0039】(1) 隔離弁12の開弁時には、サプレ
ッションプール戻りライン37の注入弁17、ドライウ
ェル3から熱交換器6上部へ接続されるライン33の隔
離弁13、サプレッションプール気相部4から熱交換器
6上部へ接続されるライン34の隔離弁14が閉弁のこ
と。
(1) When the isolation valve 12 is opened, the injection valve 17 in the suppression pool return line 37, the isolation valve 13 in the line 33 connected from the dry well 3 to the upper part of the heat exchanger 6, and the suppression pool gas phase 4 The isolation valve 14 of the line 34 connected to the upper part of the heat exchanger 6 is closed.

【0040】(2) 隔離弁13の開弁時には、隔離弁
12、サプレッションプール気相部4から熱交換器6上
部へ接続されるライン34の隔離弁14が閉弁のこと。
(2) When the isolation valve 13 is opened, the isolation valve 12 and the isolation valve 14 of the line 34 connected from the suppression pool gas phase 4 to the upper part of the heat exchanger 6 are closed.

【0041】(3) 隔離弁14の開弁時には、隔離弁
12、ドライウェル3から熱交換器6上部へ接続される
ライン33の隔離弁13が閉弁のこと。
(3) When the isolation valve 14 is opened, the isolation valve 13 of the line 33 connected from the dry well 3 to the upper part of the heat exchanger 6 is closed.

【0042】(4) 隔離弁15の開弁時には、タービ
ン駆動ポンプ7aからプール9へ接続されるライン43
の隔離弁25が閉弁のこと。
(4) When the isolation valve 15 is opened, a line 43 connected from the turbine drive pump 7a to the pool 9
That the isolation valve 25 is closed.

【0043】(5) 隔離弁87の開弁時には、タービ
ン駆動ポンプ7bからプール9へ接続されるライン46
の隔離弁28が閉弁のこと。
(5) When the isolation valve 87 is opened, the line 46 connected from the turbine drive pump 7b to the pool 9
Isolation valve 28 is closed.

【0044】本発明の制御ロジックの一例を、図4を用
いて説明する。図4は、ドライウェル圧力高信号(D/
W圧高と略記している)50、原子炉水位高信号51、
サプレッションプール圧力高信号(S/C圧高と略記し
ている)52、ドライウェル圧力からサプレッションプ
ール圧力を引いた差圧正信号53、スイッチ54と、ド
ライウェル3から熱交換器6を介してサプレッションプ
ール液相部5bへの循環ループの形成許可信号55と、
サプレッションプール4から熱交換器6を介してサプレ
ッションプール液相部5bへの循環ループの形成許可信
号56で構成される。
An example of the control logic of the present invention will be described with reference to FIG. FIG. 4 shows the dry well pressure high signal (D /
Abbreviated as W pressure height) 50, reactor water level high signal 51,
A suppression pool pressure high signal (abbreviated as S / C pressure high) 52, a differential pressure positive signal 53 obtained by subtracting the suppression pool pressure from the drywell pressure, a switch 54, and the drywell 3 via the heat exchanger 6. A signal 55 for permitting formation of a circulation loop to the suppression pool liquid phase portion 5b,
A signal 56 is provided for permitting formation of a circulation loop from the suppression pool 4 to the suppression pool liquid phase portion 5b via the heat exchanger 6.

【0045】原子炉圧力容器1から熱交換器6を介して
原子炉圧力容器1への循環ループ形成中に、原子炉水位
高51が発生し、かつドライウェル圧力高信号50が発
生した場合は、スイッチ54の信号が発生すれば循環ル
ープの形成許可信号55が成立する。
During the formation of a circulation loop from the reactor pressure vessel 1 to the reactor pressure vessel 1 via the heat exchanger 6, when the reactor water level high 51 is generated and the dry well pressure high signal 50 is generated, When the signal of the switch 54 is generated, a circulation loop formation permission signal 55 is established.

【0046】また、原子炉圧力容器1から熱交換器6を
介して原子炉圧力容器1への循環ループ形成中に、原子
炉水位高51が発生し、かつサプレッションプール圧力
高信号52が発生した場合は、スイッチ54の信号が発
生すれば循環ループの形成許可信号56が成立する。
During the formation of a circulation loop from the reactor pressure vessel 1 to the reactor pressure vessel 1 via the heat exchanger 6, a reactor water level high 51 was generated and a suppression pool pressure high signal 52 was generated. In this case, if the signal of the switch 54 is generated, the circulation loop formation permission signal 56 is established.

【0047】但し、ドライウェル圧力高信号50、原子
炉水位高信号51、サプレッションプール圧力高信号5
2及びスイッチ54が全て発生した場合は、差圧正信号
53が発生していれば循環ループの形成許可信号55が
成立するが、差圧正信号53が発生していない場合は、
循環ループの形成許可信号56が成立する。この構成に
より、最も除熱をすることが好ましい領域からの循環ル
ープが形成される。
However, a dry well pressure high signal 50, a reactor water level high signal 51, a suppression pool pressure high signal 5
2 and the switch 54 are all generated, if the positive differential pressure signal 53 is generated, the formation permission signal 55 of the circulation loop is established, but if the positive differential pressure signal 53 is not generated,
A circulation loop formation permission signal 56 is established. With this configuration, a circulation loop is formed from a region where heat removal is most preferable.

【0048】図5は、U字管形熱交換器の横置き例で、
第1実施例に適用した熱交換器6の二次側水位制御系の
構成例を示す。制御系は、熱交換器6胴部の水位を測定
する水位計70と該水位計の信号71、任意の水位設定
信号72、補給水弁19、20の制御信号73及び隔離
弁の開閉を設定する制御系74とで構成される。
FIG. 5 shows an example of a horizontal installation of a U-tube heat exchanger.
2 shows a configuration example of a secondary water level control system of the heat exchanger 6 applied to the first embodiment. The control system sets a water level gauge 70 for measuring the water level of the body of the heat exchanger 6, a signal 71 of the water level gauge, an optional water level setting signal 72, a control signal 73 for the makeup water valves 19 and 20, and the opening and closing of the isolation valve. And a control system 74 that performs the control.

【0049】熱交換器6の二次側水位制御系74の制御
ロジックを、図6を用いて説明する。制御ロジックは、
熱交換器6の二次側水位高信号57、所定の水位設定値
以上であることを示す信号58、熱交換器6の二次側水
位低信号59と、熱交換器6の二次側への補給停止要求
信号60及び熱交換器6の二次側への補給開始要求信号
61で構成されている。
The control logic of the secondary water level control system 74 of the heat exchanger 6 will be described with reference to FIG. The control logic is
To the secondary side of the heat exchanger 6, the secondary water level high signal 57 of the heat exchanger 6, the signal 58 indicating that the water level is higher than a predetermined water level set value, the secondary water level low signal 59 of the heat exchanger 6, And a supply start request signal 61 to the secondary side of the heat exchanger 6.

【0050】熱交換器6の二次側水位高信号57が発生
し、かつ水位設定値以上であることを示す信号58が成
立した場合は、熱交換器6の二次側への補給停止要求信
号が発生する。また、水位設定値以上であることを示す
信号58が発生せず、かつ熱交換器6の二次側水位低信
号59が成立した場合は、熱交換器6への補給開始要求
信号が発生する。このように熱交換器6の二次側の水位
を制御することにより継続的に除熱をすることができ
る。
When the secondary water level high signal 57 of the heat exchanger 6 is generated and the signal 58 indicating that the water level is equal to or higher than the set water level is established, a request to stop supply of heat to the secondary side of the heat exchanger 6 is issued. A signal is generated. When the signal 58 indicating that the water level is equal to or higher than the water level set value is not generated and the secondary water level low signal 59 of the heat exchanger 6 is established, a replenishment start request signal to the heat exchanger 6 is generated. . By controlling the water level on the secondary side of the heat exchanger 6 in this manner, heat can be continuously removed.

【0051】図7に、上記の制御ロジックの制御特性の
一例を示す。熱交換器6の二次側の水位は、熱交換器6
の管束上端まで上昇しているときが、基も熱交換量が大
きくなる。また、熱交換器6の管束下端以下の水位で
は、顕著な熱交換は期待できない。さらに、熱交換器6
の二次側の過大な水位上昇は、冷却水の熱交換器6外へ
の流出を伴い、好ましくない。
FIG. 7 shows an example of the control characteristics of the above control logic. The water level on the secondary side of the heat exchanger 6 is
When the tube bundle rises to the upper end, the heat exchange amount also increases. At a water level below the lower end of the tube bundle of the heat exchanger 6, remarkable heat exchange cannot be expected. Further, the heat exchanger 6
Excessive rise in the water level on the secondary side of the above is undesirable because the cooling water flows out of the heat exchanger 6.

【0052】これらのことから、熱交換器6の二次側の
水位変化範囲は、水位の制御信号の増加に対して、熱交
換器6の管束上端から熱交換器6の上端までの間で上限
を保つように設定する。また、水位の制御信号の減少に
対しては、熱交換器6の管束下端から熱交換器6の下端
までの間で下限を保つよう設定する。
From these facts, the water level change range on the secondary side of the heat exchanger 6 is changed from the upper end of the tube bundle of the heat exchanger 6 to the upper end of the heat exchanger 6 in response to the increase of the water level control signal. Set to keep the upper limit. Further, the lower limit of the water level control signal is set so as to maintain the lower limit from the lower end of the tube bundle of the heat exchanger 6 to the lower end of the heat exchanger 6.

【0053】熱交換器6の一次側は、原子炉圧力容器
1、ドライウェル3、サプレッションプール気相部4か
ら供給される蒸気相と、その下部に凝縮した液相が存在
する。また、二次側は、上部に蒸発蒸気相、下部に冷却
水相が存在する。
On the primary side of the heat exchanger 6, there are a vapor phase supplied from the reactor pressure vessel 1, the dry well 3, and the suppression pool gas phase 4, and a condensed liquid phase below. On the secondary side, there is an evaporative vapor phase at the top and a cooling water phase at the bottom.

【0054】このために、熱交換器6二次側の水位を上
昇させると、一次側蒸気と二次側冷却水の熱交換量が増
加し、除熱量を増加することができる。このように熱交
換器6二次側の水位を制御することにより除熱量を制御
することができる。
For this reason, when the water level on the secondary side of the heat exchanger 6 is raised, the amount of heat exchange between the primary side steam and the secondary side cooling water increases, and the amount of heat removal can be increased. By controlling the water level on the secondary side of the heat exchanger 6 in this manner, the heat removal amount can be controlled.

【0055】[0055]

【発明の効果】本発明によれば、最終除熱経路として、
従来の海水に加えて、大気への放熱が期待できる。これ
によりプラントのトラブル時における対応手段が増大
し、プラントの安全性の向上が期待できる。また、補機
冷却系への依存度が低くなるために、従来の補機冷却系
に要求されていた高い信頼性と高度な保守・管理が軽減
でき、建設や管理のコストを低減することができる。
According to the present invention, as the final heat removal path,
In addition to conventional seawater, heat release to the atmosphere can be expected. As a result, measures to be taken in the event of a plant trouble increase, and improvement in plant safety can be expected. In addition, since the dependence on the auxiliary cooling system is reduced, the high reliability and advanced maintenance and management required for the conventional auxiliary cooling system can be reduced, and the cost of construction and management can be reduced. it can.

【0056】また、プラントの上部に隣接した冷却プー
ルのような重量の大きな設備を省くことができ、耐震性
に優れ、プラントレイアウトが容易で、建設コストを低
減することができる。さらに、原子炉除熱系の動的機器
を、ラインの弁及びタービン駆動ポンプに限定し、原子
炉格納容器内でタービン駆動ポンプを使用して水源を確
保することにより、小電力で継続的に崩壊熱除去を達成
することができる。これにより、崩壊熱除去機能の信頼
性の向上が得られ、プラントの安全性を向上することが
できる。
Further, heavy equipment such as a cooling pool adjacent to the upper part of the plant can be omitted, excellent in earthquake resistance, plant layout is easy, and construction cost can be reduced. Furthermore, by limiting the dynamic equipment of the reactor heat removal system to line valves and turbine-driven pumps and securing a water source using a turbine-driven pump in the reactor containment vessel, it is possible to continuously operate with low power. Decay heat removal can be achieved. Thereby, the reliability of the decay heat removal function can be improved, and the safety of the plant can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を示すプロセスフロー。FIG. 1 is a process flow showing a first embodiment of the present invention.

【図2】本発明の第二実施例を示すプロセスフロー。FIG. 2 is a process flow showing a second embodiment of the present invention.

【図3】本発明の第三実施例を示すプロセスフロー。FIG. 3 is a process flow showing a third embodiment of the present invention.

【図4】本発明のインターロックの制御ロジック図。FIG. 4 is a control logic diagram of an interlock according to the present invention.

【図5】本発明の熱交換器の水位制御系の図。FIG. 5 is a diagram of a water level control system of the heat exchanger of the present invention.

【図6】本発明の水位制御ロジック図。FIG. 6 is a water level control logic diagram of the present invention.

【図7】本発明の熱交換器の水位制御特性。FIG. 7 shows a water level control characteristic of the heat exchanger of the present invention.

【図8】従来技術のプロセスフロー。FIG. 8 is a process flow of a conventional technique.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器 2…原子炉格納
容器 3…ドライウェル 4…サプレッシ
ョンプール気相部 5a…サプレッションプール水面 5b…サプレッ
ションプール液相部 6…熱交換器 7a、7b…タ
ービン駆動ポンプ 8…補給水タンク 9…プール 11a、11b…主蒸気隔離弁 12…隔離弁 13…隔離弁 14…隔離弁 15…注入弁 16…逆止弁 17…注入弁 18大気開放弁 19…補給水弁 20…補給水弁 21…圧力調整弁 22…隔離弁 23…隔離弁 24…隔離弁 25…隔離弁 26…隔離弁 27…隔離弁 28…隔離弁 31、32、33、34、35、36、37、38、3
9、40、41、42、43、44、45、46…接続
される配管ライン 50、51、52、53、54、55、56、57、5
8、59、60、61…制御信号 70…水位計 71…水位信号 72…任意の水位設定信号 73…制御信号 74…制御系 81…炉心冷却
ポンプ 82…熱交換器 83…冷却水プ
ール 84…蒸気供給管 85…排気管 86…凝縮水戻り配管 87…隔離弁 88…隔離弁
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel 2 ... Reactor containment vessel 3 ... Dry well 4 ... Suppression pool gas phase part 5a ... Suppression pool water surface 5b ... Suppression pool liquid phase part 6 ... Heat exchanger 7a, 7b ... Turbine drive pump 8 ... Supply Water tank 9 ... Pool 11a, 11b ... Main steam isolation valve 12 ... Isolation valve 13 ... Isolation valve 14 ... Isolation valve 15 ... Injection valve 16 ... Check valve 17 ... Injection valve 18 Atmospheric release valve 19 ... Refill water valve 20 ... Replenishment Water valve 21 ... Pressure regulating valve 22 ... Isolation valve 23 ... Isolation valve 24 ... Isolation valve 25 ... Isolation valve 26 ... Isolation valve 27 ... Isolation valve 28 ... Isolation valve 31,32,33,34,35,36,37,38 , 3
9, 40, 41, 42, 43, 44, 45, 46... Connected piping lines 50, 51, 52, 53, 54, 55, 56, 57, 5
8, 59, 60, 61 ... control signal 70 ... water level gauge 71 ... water level signal 72 ... arbitrary water level setting signal 73 ... control signal 74 ... control system 81 ... core cooling pump 82 ... heat exchanger 83 ... cooling water pool 84 ... Steam supply pipe 85 ... exhaust pipe 86 ... condensed water return pipe 87 ... isolation valve 88 ... isolation valve

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器内で発生する蒸気を、熱
交換器を介して冷却・凝縮し、原子炉圧力容器に戻すこ
とで崩壊熱を除去する原子炉除熱系において、 前記原子炉圧力容器内の蒸気相部から前記熱交換器の一
次側の上部に至る隔離弁付きライン及び前記熱交換器の
一次側の下部から注入弁を介して前記原子炉圧力容器に
至るラインで形成した循環ループと、該循環ループに配
設した前記原子炉圧力容器の前記蒸気相部から抽出した
蒸気を駆動源とするタービン駆動ポンプと、前記熱交換
器の二次側から大気へ開放した隔離弁付き大気放出ライ
ンと、前記熱交換器の二次側に至る補給水ラインと、前
記原子炉圧力容器を収納する原子炉格納容器内に前記原
子炉圧力容器より高い位置に設置したプールと、前記タ
ービン駆動ポンプの出口から前記プールに至る隔離弁付
きラインと、前記プールから前記原子炉圧力容器に至る
隔離弁付きラインと、を備えたことを特徴とする原子炉
除熱系。
1. A reactor heat removal system for cooling and condensing steam generated in a reactor pressure vessel via a heat exchanger and removing the decay heat by returning the steam to the reactor pressure vessel, A line with an isolation valve extending from the vapor phase portion in the pressure vessel to the upper part on the primary side of the heat exchanger and a line from the lower part on the primary side of the heat exchanger to the reactor pressure vessel via an injection valve were formed. A circulation loop, a turbine drive pump driven by steam extracted from the vapor phase portion of the reactor pressure vessel disposed in the circulation loop, and an isolation valve opened to the atmosphere from a secondary side of the heat exchanger With an atmospheric release line, a makeup water line leading to the secondary side of the heat exchanger, and a pool installed at a higher position than the reactor pressure vessel in a reactor containment vessel containing the reactor pressure vessel; Outlet of turbine driven pump And with line isolation valve leading to the pool, the reactor heat removal system characterized by comprising, an isolation valve with lines leading to the reactor pressure vessel from the pool.
【請求項2】 前記熱交換器をサプレッションプールの
水面より高い位置に設置すると共に、前記原子炉格納容
器内上部から前記熱交換器の一次側の上部に至る隔離弁
付きラインあるいは前記サプレッションプール気相部か
ら前記熱交換器の一次側の上部に至る隔離弁付きライン
と、前記熱交換器の一次側の下部から注入弁を介してサ
プレッションプール液相部に至るラインと、で形成した
循環ループを備えたことを特徴とする請求項1記載の原
子炉除熱系。
2. The heat exchanger is installed at a position higher than the water level of a suppression pool, and a line with an isolation valve extending from an upper part of the containment vessel to an upper part on a primary side of the heat exchanger or the suppression pool air. A circulation loop formed by a line with an isolation valve from the phase portion to the upper portion on the primary side of the heat exchanger, and a line from the lower portion on the primary side of the heat exchanger to the suppression pool liquid phase portion via the injection valve. The reactor heat removal system according to claim 1, further comprising:
【請求項3】 前記補給水ラインに配設した補給水タン
クを前記熱交換器より高い位置に設置し、前記熱交換器
の二次側への補給を重力により行うことを特徴とする請
求項1あるいは請求項2記載の原子炉除熱系。
3. A replenishing water tank provided in the replenishing water line is installed at a position higher than the heat exchanger, and replenishment to the secondary side of the heat exchanger is performed by gravity. The reactor heat removal system according to claim 1 or 2.
【請求項4】 前記補給水ラインに配設した前記補給水
タンクと、前記補給水ラインに配設した前記原子炉圧力
容器の蒸気相部から抽出した蒸気を駆動源とするタービ
ン駆動ポンプと、を備えたことを特徴とする請求項1あ
るいは請求項2記載の原子炉除熱系。
4. A make-up water tank provided in the make-up water line, a turbine drive pump using steam extracted from a steam phase portion of the reactor pressure vessel provided in the make-up water line as a drive source, The reactor heat removal system according to claim 1 or 2, further comprising:
【請求項5】 前記熱交換器の一次側の下部から注入弁
を介して前記原子炉圧力容器に至るラインに配設した前
記タービン駆動ポンプと注入弁との間に、前記熱交換器
の二次側へ分岐する隔離弁付きラインを備えたことを特
徴とする請求項1ないし請求項3のいずれかに記載の原
子炉除熱系。
5. The heat exchanger according to claim 1, wherein said heat exchanger is provided between said turbine drive pump and an injection valve disposed in a line extending from a lower portion on the primary side of said heat exchanger to said reactor pressure vessel via an injection valve. The reactor heat removal system according to any one of claims 1 to 3, further comprising a line with an isolation valve branched to the next side.
【請求項6】 前記原子炉圧力容器内の前記蒸気相部か
ら前記熱交換器の一次側の上部に至る隔離弁付きライン
及び前記熱交換器の一次側の下部から注入弁を介して前
記原子炉圧力容器に至るラインで形成した第一の循環ル
ープと、前記原子炉格納容器内上部から前記熱交換器の
一次側の上部に至る隔離弁付きライン及び前記熱交換器
の一次側の下部から注入弁を介して前記サプレッション
プール液相部に至るラインで形成した第二の循環ループ
と、前記サプレッションプール気相部から前記熱交換器
の一次側の上部に至る隔離弁付きライン及び前記熱交換
器の一次側の下部から注入弁を介して前記サプレッショ
ンプール液相部に至るラインで形成した第三の循環ルー
プと、の三つの循環ループを備えた原子炉除熱系におい
て、 第一の循環ループを使用する場合は第二の循環ループ及
び第三の循環ループの使用が阻止され、第二の循環ルー
プを使用する場合は第一の循環ループ及び第三の循環ル
ープの使用が阻止され、第三の循環ループを使用する場
合は第一の循環ループ及び第二の循環ループの使用が阻
止されるようにインターロックを備えたことを特徴とす
る請求項2ないし請求項5のいずれかに記載の原子炉除
熱系。
6. A line with an isolation valve extending from the vapor phase portion in the reactor pressure vessel to an upper portion on the primary side of the heat exchanger, and the atom from the lower portion on the primary side of the heat exchanger via an injection valve. A first circulation loop formed by a line leading to a reactor pressure vessel, a line with an isolation valve extending from the upper part of the containment vessel to the upper part of the primary side of the heat exchanger, and a lower part of the primary side of the heat exchanger. A second circulation loop formed by a line leading to the suppression pool liquid phase through an injection valve; a line with an isolation valve from the suppression pool gas phase to an upper portion of the primary side of the heat exchanger; and the heat exchange. A third circulation loop formed by a line extending from the lower portion of the primary side of the reactor to the suppression pool liquid phase through an injection valve, and a third heat removal system having three circulation loops, Le The use of the second circulation loop and the third circulation loop is prevented when using the loop, and the use of the first circulation loop and the third circulation loop is prevented when the second circulation loop is used, 6. The method according to claim 2, wherein an interlock is provided so as to prevent use of the first circulation loop and the second circulation loop when the third circulation loop is used. Reactor heat removal system as described.
【請求項7】 原子炉水位と所定の設定値及び前記原子
炉格納容器内上部圧力と前記サプレッションプール気相
部圧力を比較し、前記三つの循環ループの内一つを使用
可能にする制御系を備えたことを特徴とする請求項2な
いし請求項6のいずれかに記載の原子炉除熱系。
7. A control system that compares a reactor water level and a predetermined set value, an upper pressure in the reactor containment vessel and a pressure in the suppression pool gas phase, and enables one of the three circulation loops. The reactor heat removal system according to any one of claims 2 to 6, further comprising:
【請求項8】 前記熱交換器の二次側水位と所定の設定
値とを比較し、前記補給水ラインに配設した注入弁の開
度を調整することで前記熱交換器の二次側の水位を一定
に保持する制御系を備えたことを特徴とする請求項1な
いし請求項7のいずれかに記載の原子炉除熱系。
8. The secondary side of the heat exchanger by comparing the water level on the secondary side of the heat exchanger with a predetermined set value and adjusting the opening of an injection valve disposed in the makeup water line. The reactor heat removal system according to any one of claims 1 to 7, further comprising a control system for keeping the water level constant.
【請求項9】 前記熱交換器の二次側の水位変化範囲
を、上限が前記熱交換器の管束上端から前記熱交換器の
上端までの間で、下限が前記熱交換器の管束下端から前
記熱交換器の下端までの間に制限することを特徴とする
請求項8に記載の原子炉除熱系。
9. A water level change range on the secondary side of the heat exchanger, wherein the upper limit is between the upper end of the tube bundle of the heat exchanger and the upper end of the heat exchanger, and the lower limit is from the lower end of the tube bundle of the heat exchanger. The reactor heat removal system according to claim 8, wherein the restriction is made up to a lower end of the heat exchanger.
【請求項10】 前記第一の循環ループを使用する場合
は、前記タービン駆動ポンプの出口から前記プールに至
る隔離弁付きラインによる前記プールへの注水が阻止さ
れるようにインターロックを備えたことを特徴とする請
求項1ないし請求項9のいずれかに記載の原子炉除熱
系。
10. When the first circulation loop is used, an interlock is provided so that injection of water into the pool by a line with an isolation valve from the outlet of the turbine drive pump to the pool is prevented. The reactor heat removal system according to any one of claims 1 to 9, characterized in that:
【請求項11】 前記補給水ラインから前記熱交換器二
次側へ給水する場合は、前記タービン駆動ポンプの出口
から前記プールに至る隔離弁付きラインによる前記プー
ルへの注水が阻止されるようにインターロックを備えた
ことを特徴とする請求項4あるいは請求項6ないし請求
項10のいずれかに記載の原子炉除熱系。
11. When water is supplied from the makeup water line to the heat exchanger secondary side, injection of water into the pool by a line with an isolation valve from an outlet of the turbine drive pump to the pool is prevented. The reactor heat removal system according to any one of Claims 4 to 6, further comprising an interlock.
JP19002098A 1998-07-06 1998-07-06 Reactor heat removal system Expired - Fee Related JP3581021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19002098A JP3581021B2 (en) 1998-07-06 1998-07-06 Reactor heat removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19002098A JP3581021B2 (en) 1998-07-06 1998-07-06 Reactor heat removal system

Publications (2)

Publication Number Publication Date
JP2000019285A true JP2000019285A (en) 2000-01-21
JP3581021B2 JP3581021B2 (en) 2004-10-27

Family

ID=16251045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19002098A Expired - Fee Related JP3581021B2 (en) 1998-07-06 1998-07-06 Reactor heat removal system

Country Status (1)

Country Link
JP (1) JP3581021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214731A (en) * 2007-03-07 2008-09-18 Honda Motor Co Ltd Plating method for barrel of engine and mask fixture for plating
JP2014029303A (en) * 2012-07-31 2014-02-13 Toshiba Corp Water injection facility and nuclear reactor system
JP2014190968A (en) * 2013-03-28 2014-10-06 Toshiba Corp Nuclear reactor water injection system and nuclear facility
WO2016182615A1 (en) * 2015-05-13 2016-11-17 Westinghouse Electric Company Llc Remote heat removal system
CN107293338A (en) * 2016-04-12 2017-10-24 国家电投集团科学技术研究院有限公司 Nuclear reactor safety system
WO2024009716A1 (en) * 2022-07-04 2024-01-11 崇 佐藤 Nuclear power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110093A (en) * 1980-02-04 1981-09-01 Hitachi Ltd Atmosphere control device for nuclear reactor container
JPS56140292A (en) * 1980-04-04 1981-11-02 Hitachi Ltd Control system of residual heat removal system in nuclear reactor
JPS6291896A (en) * 1985-10-17 1987-04-27 株式会社東芝 Device for removing residual heat of nuclear reactor
JPS63212892A (en) * 1987-02-28 1988-09-05 株式会社日立製作所 Portable type quencher type filter bend system
JPH06308277A (en) * 1993-04-27 1994-11-04 Toshiba Corp Auxiliary water feed device for boiling water nuclear reactor
JPH08248166A (en) * 1995-03-13 1996-09-27 Toshiba Corp Reactor container cooling facility
JPH10142379A (en) * 1996-11-07 1998-05-29 Hitachi Ltd Residual heat removal system in reactor facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110093A (en) * 1980-02-04 1981-09-01 Hitachi Ltd Atmosphere control device for nuclear reactor container
JPS56140292A (en) * 1980-04-04 1981-11-02 Hitachi Ltd Control system of residual heat removal system in nuclear reactor
JPS6291896A (en) * 1985-10-17 1987-04-27 株式会社東芝 Device for removing residual heat of nuclear reactor
JPS63212892A (en) * 1987-02-28 1988-09-05 株式会社日立製作所 Portable type quencher type filter bend system
JPH06308277A (en) * 1993-04-27 1994-11-04 Toshiba Corp Auxiliary water feed device for boiling water nuclear reactor
JPH08248166A (en) * 1995-03-13 1996-09-27 Toshiba Corp Reactor container cooling facility
JPH10142379A (en) * 1996-11-07 1998-05-29 Hitachi Ltd Residual heat removal system in reactor facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214731A (en) * 2007-03-07 2008-09-18 Honda Motor Co Ltd Plating method for barrel of engine and mask fixture for plating
JP2014029303A (en) * 2012-07-31 2014-02-13 Toshiba Corp Water injection facility and nuclear reactor system
JP2014190968A (en) * 2013-03-28 2014-10-06 Toshiba Corp Nuclear reactor water injection system and nuclear facility
WO2016182615A1 (en) * 2015-05-13 2016-11-17 Westinghouse Electric Company Llc Remote heat removal system
US10032530B2 (en) 2015-05-13 2018-07-24 Westinghouse Electric Company Llc Remote heat removal system
CN107293338A (en) * 2016-04-12 2017-10-24 国家电投集团科学技术研究院有限公司 Nuclear reactor safety system
CN107293338B (en) * 2016-04-12 2023-06-23 国家电投集团科学技术研究院有限公司 Nuclear reactor safety system
WO2024009716A1 (en) * 2022-07-04 2024-01-11 崇 佐藤 Nuclear power plant

Also Published As

Publication number Publication date
JP3581021B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US8559583B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
KR101389276B1 (en) Passive Safety System of Integral Reactor
US6718001B2 (en) Nuclear reactor
EP0232186B1 (en) Passive safety system for a pressurized water nuclear reactor
WO2010038358A1 (en) Pressurized water nuclear power plant
KR101447029B1 (en) Multi-stage safety injection device and passive safety injection system having the same
CA2830874C (en) Passive residual heat removal system and nuclear power plant equipment
TW201324534A (en) Pressurized water reactor with compact passive safety systems
CN104299655A (en) A method of cooling a nuclear reactor
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
CN108461163A (en) Emergence core stacking cool system and the boiling water reactor device for using the emergence core stacking cool system
JPH0341395A (en) Passive heat removal system for nuclear reactor vessel
KR20140133087A (en) Passive containment spray system
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
KR101505475B1 (en) Passive containment cooling system and nuclear power plant having the same
JP6084389B2 (en) Water injection equipment and reactor system
JP2000019285A (en) Reactor heat removal system
KR101473378B1 (en) Passive safety system and nuclear reactor having the same
GB1579524A (en) Heat transfer system
JP2018132399A (en) Nuclear Power Plant
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
KR102381886B1 (en) Nuclear reactor long-term cooling system
KR102431077B1 (en) Systems and methods for making nuclear power plants safe after extreme exposure
JPH05323084A (en) Reactor containment
JPH04157396A (en) Natural cooling type container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees