Nothing Special   »   [go: up one dir, main page]

JP2000016872A - Porous silicon carbide sintered body and its production - Google Patents

Porous silicon carbide sintered body and its production

Info

Publication number
JP2000016872A
JP2000016872A JP10201252A JP20125298A JP2000016872A JP 2000016872 A JP2000016872 A JP 2000016872A JP 10201252 A JP10201252 A JP 10201252A JP 20125298 A JP20125298 A JP 20125298A JP 2000016872 A JP2000016872 A JP 2000016872A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
type silicon
average particle
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10201252A
Other languages
Japanese (ja)
Inventor
Mitsuru Fujisawa
充 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP10201252A priority Critical patent/JP2000016872A/en
Publication of JP2000016872A publication Critical patent/JP2000016872A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate control of the pore diameter and produce sintered body of high mechanical strength by admixing a powder of α-type or β-type silicon carbide to an α-type silicon carbide powder of which the average particle size is specified to a certain value larger than that of the α- or β-type silicon carbide to be admixed. SOLUTION: To 100 pts.wt. of an α-type silicon carbide with an average particle size of 5-100 μm, are homogeneously admixed 10-70 pts.wt. of an α- or β-type silicon carbide powder with an average particle size of 0.1-1 μm. This mixture is molded, fired at 1,700-2,300 deg.C to give a porous silicon carbide sintered body. The sintered body has an average crystalline grain size of 5-100 μm, a pore diameter of 1-30 μm and a porosity of 20-60%. Through such process, the sintering temperature can be linearly and gently correlated to the pore diameter of the sintered body to facilitate the control of firing temperature for giving desired pore diameter. In addition, the bonding force between crystals is increased with increase of the contacting area between crystals and the mechanical strength is increased as a whole of the porous body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多孔質炭化珪素焼結体
および多孔質炭化珪素の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous silicon carbide sintered body and a method for producing porous silicon carbide.

【0002】[0002]

【従来の技術】従来、炭化珪素は高い硬度、優れた耐摩
耗性、優れた耐酸化性、優れた耐食性、良好な熱伝導
率、低い熱膨張率、高い耐熱耐衝撃性並びに高温での高
い強度の化学的および物理的に優れた特性を有し、メカ
ニカルシールや軸受などの耐摩耗材料、高温炉用の耐火
材、熱交換器、燃焼管等の耐熱構造材料、酸およびアル
カリなどの強い腐食性を有する溶液のポンプ部品等の耐
腐食材料として広く使用することができる材料である。
2. Description of the Prior Art Conventionally, silicon carbide has high hardness, excellent wear resistance, excellent oxidation resistance, excellent corrosion resistance, good thermal conductivity, low thermal expansion coefficient, high thermal shock resistance and high heat resistance at high temperatures. Has excellent chemical and physical properties of strength, wear-resistant materials such as mechanical seals and bearings, refractory materials for high-temperature furnaces, heat-resistant structural materials such as heat exchangers and combustion tubes, and strong materials such as acids and alkalis. It is a material that can be widely used as a corrosion-resistant material for pump parts of corrosive solutions.

【0003】従って、これらの優れた性質を有する炭化
珪素焼結体であって、開放気孔すなわち外部に対して通
気性を有する気孔(以下単に気孔と称す)を有する多孔
質炭化珪素焼結体は、前記炭化珪素の特徴を生かして、
高温雰囲気、酸化性雰囲気および/または腐食性雰囲気
で使用される濾過フィルター、酸化発熱反応あるいは高
温下における化学反応用の触媒あるいは触媒担体として
利用可能な材料であり、例えばメッキ液中に混入してい
るスラッジあるいは硫酸、塩酸等の腐食性液体中に混入
している異物粒子の除去のために使用されるフィルター
として使用し得ることが考えられる。
Accordingly, a silicon carbide sintered body having these excellent properties, that is, a porous silicon carbide sintered body having open pores, that is, pores having air permeability to the outside (hereinafter simply referred to as pores), Taking advantage of the characteristics of the silicon carbide,
Filter filter used in high temperature atmosphere, oxidizing atmosphere and / or corrosive atmosphere, material that can be used as catalyst or catalyst carrier for oxidative exothermic reaction or chemical reaction under high temperature. It is conceivable that the filter can be used as a filter used for removing foreign particles mixed in corrosive liquid such as sludge or sulfuric acid or hydrochloric acid.

【0004】上述のようなフィルターの用途に対して
は、単に耐熱性、耐食性が必要であるばかりでなく、流
体の通過時の抵抗が小さく、しかも高効率で異物粒子を
取り除くことができ耐用期間が長い等の特性が必要とさ
れる。一方、触媒、触媒担体あるいは熱交換器等の用途
に対しては化学反応、熱移動あるいは物質移動の生成を
有効に行わせるための表面積が多いこと等が必要とされ
る。
[0004] For the use of the filter as described above, not only heat resistance and corrosion resistance are required, but also resistance at the time of passage of a fluid is small, and foreign matter particles can be removed with high efficiency. Are required. On the other hand, for applications such as catalysts, catalyst carriers, heat exchangers, etc., it is necessary that the surface area for effective generation of chemical reaction, heat transfer or mass transfer be large.

【0005】ところで従来、炭化珪素焼結体は、β型炭
化珪素粉末に有機樹脂バインダーおよび可塑材等を配合
してなる原料を成形し、この成形体を焼成することによ
り、炭化珪素微粒子を粒成長させて板状結晶を生成させ
ると共に、これらを互いに焼結させることにより製造さ
れていた。このような板状の結晶組織を有する焼結体
は、気孔率が大きく、しかも気孔径が比較的均一で、排
ガスフィルターとして使用した場合の圧力損失(又は排
気抵抗)が低いという特性を有していた。
[0005] Conventionally, a silicon carbide sintered body is formed by molding a raw material obtained by mixing an organic resin binder, a plasticizer, and the like with β-type silicon carbide powder, and firing the formed body to reduce silicon carbide fine particles. It has been produced by growing plate crystals and sintering them together. A sintered body having such a plate-like crystal structure has characteristics of a large porosity, a relatively uniform pore diameter, and a low pressure loss (or exhaust resistance) when used as an exhaust gas filter. I was

【0006】しかしながら、β型炭化珪素粉末は、焼結
時に異常粒成長し易く、所望の気孔径を有する焼結体を
得るためには、極めて狭い温度領域に温度制御をするこ
とが必要であり、また、同様の理由から気孔径を均一に
することも困難であった。更に、この方法では多孔質炭
化珪素焼結体は主として板状結晶から構成されるため、
結晶間の結合点が少なく、多孔質体の機械的強度が低い
という問題点があった。
However, β-type silicon carbide powder tends to grow abnormal grains during sintering, and it is necessary to control the temperature in an extremely narrow temperature range in order to obtain a sintered body having a desired pore diameter. Also, for the same reason, it was difficult to make the pore diameter uniform. Furthermore, in this method, the porous silicon carbide sintered body is mainly composed of a plate crystal,
There is a problem that the number of bonding points between crystals is small and the mechanical strength of the porous body is low.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述のごと
き問題点を解決するためになされたものであり、その目
的は、焼結体製造時の気孔径制御を容易にできて、所望
の気孔径の焼結体を確実に製造することができると共
に、気孔の大きさが比較的均一で、機械的強度に優れた
焼結体を得ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to make it possible to easily control the pore diameter at the time of manufacturing a sintered body and to obtain a desired structure. An object of the present invention is to obtain a sintered body having a relatively uniform pore size and excellent mechanical strength, as well as reliably producing a sintered body having a pore diameter.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に発明者は鋭意研究を行った結果、以下の発明に到っ
た。すなわち、請求項1の発明は結晶粒径の平均値が5
〜100μm、気孔径が1〜30μm、気孔率が20〜
60%であることを特徴とする多孔質炭化珪素焼結体で
ある。また、請求項2の発明は、下記の第1工程〜第3
工程のシ−ケンスからなる、結晶粒径の平均値が5〜1
00μm、気孔径が1〜30μm、気孔率が20〜60
%である多孔質炭化珪素焼結体の製造方法である。 第1工程 平均粒径が5〜100μmのα型の炭化珪
素粉末100重量部に対し、平均粒径が0.1〜1μm
のα型またはβ型の炭化珪素粉末を10〜70重量部を
均一に混合する工程; 第2工程 前記第1工程により得られた混合物を成形
する工程;および 第3工程 前記第2工程により得られた成形体を17
00〜2300℃の温度範囲内で焼成する工程。
Means for Solving the Problems The inventor of the present invention has conducted intensive studies to solve the above problems, and as a result, has reached the following invention. That is, the invention of claim 1 has an average crystal grain size of 5
100100 μm, pore size 1-30 μm, porosity 20-
It is a porous silicon carbide sintered body characterized by being 60%. Further, the invention of claim 2 includes the following first to third steps.
The average value of the crystal grain size consisting of the process sequence is 5 to 1
00 μm, pore size 1-30 μm, porosity 20-60
% Of the porous silicon carbide sintered body. First Step The average particle diameter is 0.1 to 1 μm with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 5 to 100 μm.
A step of uniformly mixing 10 to 70 parts by weight of α-type or β-type silicon carbide powder of the above; a second step of forming a mixture obtained in the first step; and a third step obtained by the second step. 17
Baking in a temperature range of 00 to 2300 ° C;

【0009】こうすることにより、焼成温度と焼成によ
って得られる焼結体の気孔径との相関関係をリニアでか
つ緩やかな関係にでき、気孔径を所望の大きさにするた
めの焼成温度の制御が容易になる。また、粒状の結晶が
焼結に関与することで結晶間の接触面積が増加して、結
晶間の結合力が増強され、多孔質体全体としての機械的
強度が向上する。
By doing so, the correlation between the sintering temperature and the pore diameter of the sintered body obtained by sintering can be made linear and gradual, and the sintering temperature can be controlled to a desired size. Becomes easier. In addition, since the granular crystals participate in sintering, the contact area between the crystals increases, the bonding force between the crystals increases, and the mechanical strength of the entire porous body improves.

【0010】これに対し、従来のようなβ型炭化珪素粉
末を出発原料とした場合の粒界においては、ある温度領
域において急激な異常粒成長が生じやすいため、比較的
粗大な板状結晶が生成される。それ故、この多孔質焼結
体の結晶組織は、粗大な板状結晶が焼結体の主骨格を形
成して、それらの間隙に比較的大きな気孔が形成され
る。従って、結晶間の結合力が小さくなって多孔質全体
としての機械的強度が低くなる。
On the other hand, at the grain boundary when β-type silicon carbide powder is used as a starting material as in the related art, a relatively abnormal platelet crystal tends to be generated in a certain temperature range, so that a relatively coarse plate-like crystal is formed. Generated. Therefore, in the crystal structure of the porous sintered body, coarse plate-like crystals form the main skeleton of the sintered body, and relatively large pores are formed in the gaps between them. Therefore, the bonding strength between the crystals is reduced, and the mechanical strength of the entire porous body is reduced.

【0011】前記原料炭化珪素粉末としては、平均粒径
が5〜100μmのα型炭化珪素粉末100重量部に対
し、平均粒径が0.1〜1μmのα型またはβ型の炭化
珪素を10〜70重量部配合することが好ましい。α型
またはβ型の炭化珪素の平均粒径が0.1μm未満で
は、粒成長を制御し難いばかりでなく、得難く高価であ
るため実用的でない。また、1μmより大きいと粉末の
活性が低いため、好適に多孔質体を得ることが困難にな
る。
The raw material silicon carbide powder contains 10 parts by weight of α-type or β-type silicon carbide having an average particle size of 0.1 to 1 μm per 100 parts by weight of α-type silicon carbide powder having an average particle size of 5 to 100 μm. It is preferable to mix it in an amount of 70 parts by weight. When the average particle size of the α-type or β-type silicon carbide is less than 0.1 μm, not only is it difficult to control the grain growth, but also it is difficult to obtain and expensive, and it is not practical. On the other hand, if it is larger than 1 μm, the activity of the powder is low, so that it is difficult to suitably obtain a porous body.

【0012】α型炭化珪素粉末の平均粒径が5μm未満
の場合、α型またはβ型炭化珪素の異常粒成長を抑制す
る効果が低い。また、100μmより大きいと成形性が
劣悪になるばかりでなく、得られる多孔質体の強度が劣
化する。
When the average particle size of the α-type silicon carbide powder is less than 5 μm, the effect of suppressing abnormal grain growth of α-type or β-type silicon carbide is low. On the other hand, if it is larger than 100 μm, not only the moldability becomes poor, but also the strength of the obtained porous body deteriorates.

【0013】配合するα型またはβ型の炭化珪素粉末が
70重量部を超えると、急激な異常粒成長が効果的に緩
和されず、比較的粗大な炭化珪素の結晶が生成されるた
め、強度に優れた焼結体が得られない。また、10重量
部未満では、所望の気孔径を得るには焼結温度を極めて
高くする必要が生じ、コスト面で不利である。
When the amount of the α-type or β-type silicon carbide powder exceeds 70 parts by weight, rapid abnormal grain growth is not effectively reduced, and relatively coarse silicon carbide crystals are formed. An excellent sintered body cannot be obtained. If the amount is less than 10 parts by weight, the sintering temperature must be extremely high to obtain a desired pore diameter, which is disadvantageous in cost.

【0014】上記の条件に従い、α型炭化珪素粉末に、
α型またはβ型炭化珪素粉末を配合する割合を適宜設定
すれば、焼結体の気孔径の大きさを1〜数10μmの範
囲で容易かつ確実に制御することができる。
According to the above conditions, α-type silicon carbide powder is
By appropriately setting the proportion of the α-type or β-type silicon carbide powder, the size of the pore diameter of the sintered body can be easily and reliably controlled in the range of 1 to several tens μm.

【0015】本発明の原料粉末には成形用バインダー及
び必要に応じて分散溶媒が配合されてスラリー状の成形
材料が得られ、これを所望形状の成形体に成形した後、
焼成することにより多孔質炭化珪素焼結体が製造される
ものである。
The raw material powder of the present invention is mixed with a molding binder and, if necessary, a dispersing solvent to obtain a slurry-like molding material, which is formed into a desired shape.
By firing, a porous silicon carbide sintered body is manufactured.

【0016】前記成形用バインダーとしては、ポリビニ
ルアルコール、メチルセルロース、カルボキシメチルセ
ルロース、ヒドロキシエチルセルロース、ポリエチレン
グリコール、フェノール樹脂、エポキシ樹脂、アクリル
樹脂等があげられる。この成形用バインダーの配合割合
は一般に、炭化珪素粉末の合計100重量部に対し、1
〜10重量部の範囲が好適である。この配合割合が1重
量部未満では、成形体の強度が不十分となり、10重量
部を超えると、バインダーを除去する際に成形体にクラ
ックが発生しやすくなる。
Examples of the molding binder include polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin, acrylic resin and the like. The mixing ratio of the molding binder is generally 1 to 100 parts by weight of the total of the silicon carbide powder.
A range of from 10 to 10 parts by weight is preferred. If the blending ratio is less than 1 part by weight, the strength of the molded body becomes insufficient, and if it exceeds 10 parts by weight, cracks tend to occur in the molded body when the binder is removed.

【0017】前記原料粉末に配合される分散溶媒として
は、ベンゼン等の有機溶剤、メタノール等のアルコー
ル、水等が使用でき、その配合量は原料スラリーの粘度
に応じて調整される。前記原料スラリーは、アトライタ
ー等で混合された後、ニーダー等で充分に混練して調製
され、所望形状の成形体に成形される。
As the dispersing solvent to be mixed with the raw material powder, an organic solvent such as benzene, alcohol such as methanol, water and the like can be used, and the compounding amount is adjusted according to the viscosity of the raw material slurry. The raw material slurry is mixed by an attritor or the like, and then sufficiently kneaded by a kneader or the like to be prepared and formed into a desired shape.

【0018】乾燥を完了した成形体を焼成する場合、焼
成温度は1700〜2300℃であることが好ましい。
また、この場合、非酸化性雰囲気下にて焼成するのが望
ましい。それは、焼成時の熱によって炭素質物質が燃焼
し消失するのを防止するためである。この燃焼温度が1
700℃未満では、炭化珪素微粒子の成長速度が極めて
遅く、粒子間の接触部位における焼結が不十分となって
強度に優れた焼結体が得られない。一方、焼成温度が2
300℃を超える場合、燃料消費量が増大して、コスト
面で不利になるばかりでなく、炭化珪素の昇華が著しく
なり、焼結体の機械的強度が低くなる。
When firing the dried compact, the firing temperature is preferably from 1700 to 2300 ° C.
In this case, it is desirable to perform firing in a non-oxidizing atmosphere. This is to prevent the carbonaceous material from burning and disappearing due to heat during firing. This combustion temperature is 1
If the temperature is lower than 700 ° C., the growth rate of the silicon carbide fine particles is extremely low, and the sintering at the contact portion between the particles becomes insufficient, so that a sintered body having excellent strength cannot be obtained. On the other hand, if the firing temperature is 2
When the temperature exceeds 300 ° C., the fuel consumption increases, which is not only disadvantageous in terms of cost, but also the sublimation of silicon carbide becomes remarkable, and the mechanical strength of the sintered body decreases.

【0019】[0019]

【発明の実施の形態】次に本発明を実施例および比較例
について説明する。
Next, the present invention will be described with reference to examples and comparative examples.

【0020】実施例1 出発原料として平均粒径10μmのα型炭化珪素粉末1
00重量部に対し、平均粒径0.7μmのα型炭化珪素
粉末45重量部を混合した。
Example 1 α-type silicon carbide powder 1 having an average particle size of 10 μm as a starting material
45 parts by weight of α-type silicon carbide powder having an average particle size of 0.7 μm were mixed with 00 parts by weight.

【0021】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、顆粒化した後金属製押し型を用
いて600kg/cm2 の圧力で成形した。この生成形
体の密度は2.0g/cm3 であった。前記生成形体を
外気を遮断することのできる黒鉛製ルツボに装入し、タ
ンマン型焼成炉を使用して1気圧のアルゴンガス雰囲気
中で焼成した。なお、焼成は10℃/分で2200℃ま
で昇温し、最高温度2200℃で2時間保持した。得ら
れた焼結体の結晶構造は、結晶粒径の平均値が10μ
m、、水銀ポロシメータにより測定した平均気孔径が7
μm、気孔率が38%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was collected, granulated, and then molded at a pressure of 600 kg / cm 2 using a metal stamping die. The density of this green compact was 2.0 g / cm 3 . The green compact was placed in a graphite crucible capable of shutting off outside air, and fired in a 1-atmosphere argon gas atmosphere using a Tamman-type firing furnace. In the firing, the temperature was raised to 2200 ° C. at a rate of 10 ° C./min and kept at a maximum temperature of 2200 ° C. for 2 hours. The crystal structure of the obtained sintered body has an average crystal grain size of 10 μm.
m, average pore diameter measured by mercury porosimeter is 7
μm and porosity was 38%.

【0022】実施例2 出発原料として平均粒径30μmのα型炭化珪素粉末1
00重量部に対し、平均粒径0.3μmのβ型炭化珪素
粉末30重量部を混合した。
Example 2 α-type silicon carbide powder 1 having an average particle size of 30 μm as a starting material
30 parts by weight of β-type silicon carbide powder having an average particle diameter of 0.3 μm were mixed with 00 parts by weight.

【0023】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、顆粒化した後金属製押し型を用
いて600kg/cm2 の圧力で成形した。この生成形
体の密度は2.0g/cm3 であった。前記生成形体を
外気を遮断することのできる黒鉛製ルツボに装入し、タ
ンマン型焼成炉を使用して1気圧のアルゴンガス雰囲気
中で焼成した。なお、焼成は10℃/分で2150℃ま
で昇温し、最高温度2150℃で2時間保持した。得ら
れた焼結体の結晶構造は、結晶粒径の平均値が30μ
m、水銀ポロシメータにより測定した平均気孔径が12
μm、気孔率が38%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was collected, granulated, and then molded at a pressure of 600 kg / cm 2 using a metal stamping die. The density of this green compact was 2.0 g / cm 3 . The green compact was placed in a graphite crucible capable of shutting off outside air, and fired in a 1-atmosphere argon gas atmosphere using a Tamman-type firing furnace. In the firing, the temperature was raised to 2150 ° C. at a rate of 10 ° C./min and kept at a maximum temperature of 2150 ° C. for 2 hours. The crystal structure of the obtained sintered body has an average crystal grain size of 30 μm.
m, average pore size measured by mercury porosimeter is 12
μm and porosity was 38%.

【0024】比較例1 出発原料として平均粒径3μmのα型炭化珪素粉末10
0重量部に対し、平均粒径0.7μmのα型炭化珪素粉
末45重量部を混合した。
Comparative Example 1 α-type silicon carbide powder 10 having an average particle size of 3 μm as a starting material
45 parts by weight of α-type silicon carbide powder having an average particle diameter of 0.7 μm was mixed with 0 parts by weight.

【0025】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、顆粒化した後金属製押し型を用
いて600kg/cm2 の圧力で成形した。この生成形
体の密度は1.6g/cm3 であった。前記生成形体を
外気を遮断することのできる黒鉛製ルツボに装入し、タ
ンマン型焼成炉を使用して1気圧のアルゴンガス雰囲気
中で焼成した。なお、焼成は10℃/分で1650℃ま
で昇温し、最高温度1650℃で2時間保持した。得ら
れた焼結体の結晶構造は、結晶粒径の平均値が2.0μ
m、水銀ポロシメータにより測定した平均気孔径が2μ
m、気孔率が50%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was collected, granulated, and then molded at a pressure of 600 kg / cm 2 using a metal stamping die. The density of this green compact was 1.6 g / cm 3 . The green compact was placed in a graphite crucible capable of shutting off outside air, and fired in a 1-atmosphere argon gas atmosphere using a Tamman-type firing furnace. In the firing, the temperature was raised to 1650 ° C. at a rate of 10 ° C./min and kept at a maximum temperature of 1650 ° C. for 2 hours. The crystal structure of the obtained sintered body has an average crystal grain size of 2.0 μm.
m, average pore diameter measured by mercury porosimeter is 2μ
m, the porosity was 50%.

【0026】[0026]

【発明の効果】以上説明したように本発明の多孔質炭化
珪素焼結体および多孔質炭化珪素焼結体の製造方法によ
れば、結晶体製造時の気孔径制御を容易かつ確実に行う
ことができると共に、気孔の大きさが比較的均一で、機
械的強度に優れた焼結体を製造することができ、結晶粒
径の平均値が5〜100μm、気孔径が1〜30μm、
気孔率が20〜60%の多孔質炭化珪素焼結体を得るこ
とができる。
As described above, according to the porous silicon carbide sintered body and the method for manufacturing a porous silicon carbide sintered body of the present invention, it is possible to easily and surely control the pore diameter at the time of producing a crystal. Can be produced, the pore size is relatively uniform, it is possible to produce a sintered body having excellent mechanical strength, the average value of the crystal grain size is 5 to 100 μm, the pore size is 1 to 30 μm,
A porous silicon carbide sintered body having a porosity of 20 to 60% can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶粒径の平均値が5〜100μm、気
孔径が1〜30μm、気孔率が20〜60%であること
を特徴とする多孔質炭化珪素焼結体。
1. A porous silicon carbide sintered body having an average crystal grain size of 5 to 100 μm, a pore size of 1 to 30 μm, and a porosity of 20 to 60%.
【請求項2】 下記の第1工程〜第3工程のシ−ケンス
からなる、結晶粒径の平均値が5〜100μm、気孔径
が1〜30μm、気孔率が20〜60%である多孔質炭
化珪素焼結体の製造方法。 第1工程 平均粒径が5〜100μmのα型の炭化珪
素粉末100重量部に対し、平均粒径が0.1〜1μm
のα型またはβ型の炭化珪素粉末を10〜70重量部を
均一に混合する工程; 第2工程 前記第1工程により得られた混合物を成形
する工程;および 第3工程 前記第2工程により得られた成形体を17
00〜2300℃の温度範囲内で焼成する工程。
2. A porous material comprising a sequence of the following first to third steps, having an average crystal grain size of 5 to 100 μm, a pore size of 1 to 30 μm, and a porosity of 20 to 60%. A method for producing a silicon carbide sintered body. First Step The average particle diameter is 0.1 to 1 μm with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 5 to 100 μm.
A step of uniformly mixing 10 to 70 parts by weight of α-type or β-type silicon carbide powder of the above; a second step of forming a mixture obtained in the first step; and a third step obtained by the second step. 17
Baking in a temperature range of 00 to 2300 ° C;
JP10201252A 1998-06-30 1998-06-30 Porous silicon carbide sintered body and its production Pending JP2000016872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201252A JP2000016872A (en) 1998-06-30 1998-06-30 Porous silicon carbide sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201252A JP2000016872A (en) 1998-06-30 1998-06-30 Porous silicon carbide sintered body and its production

Publications (1)

Publication Number Publication Date
JP2000016872A true JP2000016872A (en) 2000-01-18

Family

ID=16437870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201252A Pending JP2000016872A (en) 1998-06-30 1998-06-30 Porous silicon carbide sintered body and its production

Country Status (1)

Country Link
JP (1) JP2000016872A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274947A (en) * 2001-03-16 2002-09-25 Ibiden Co Ltd Sintered porous silicon carbide, method for manufacturing the same and filter for diesel particulate
JP2002338367A (en) * 2001-05-23 2002-11-27 Eagle Ind Co Ltd Silicon carbide sintered component, mechanical seal obtained by using the same and method of producing the same
JP2006001799A (en) * 2004-06-18 2006-01-05 National Institute For Materials Science Method for manufacturing silicon carbide porous body
JP2006150234A (en) * 2004-11-29 2006-06-15 Kyocera Corp Filter medium and liquid bottle using the same
EP1707544A1 (en) 2005-03-30 2006-10-04 Ibiden Co., Ltd. Silicon carbide-containing particle, method of manufacturing a silicon carbide-based sintered object, silicon carbide-based sintered object, and filter
JPWO2005026074A1 (en) * 2003-09-12 2006-11-16 イビデン株式会社 Ceramic sintered body and ceramic filter
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus
US7851396B2 (en) * 2006-03-31 2010-12-14 Ibiden Co., Ltd. Porous sintered body, method of manufacturing porous sintered body, and method of manufacturing exhaust gas purifying apparatus
WO2016052469A1 (en) * 2014-09-29 2016-04-07 イビデン株式会社 Honeycomb filter and method for manufacturing same
WO2016147488A1 (en) * 2015-03-16 2016-09-22 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274947A (en) * 2001-03-16 2002-09-25 Ibiden Co Ltd Sintered porous silicon carbide, method for manufacturing the same and filter for diesel particulate
JP2002338367A (en) * 2001-05-23 2002-11-27 Eagle Ind Co Ltd Silicon carbide sintered component, mechanical seal obtained by using the same and method of producing the same
JPWO2005026074A1 (en) * 2003-09-12 2006-11-16 イビデン株式会社 Ceramic sintered body and ceramic filter
JP4932256B2 (en) * 2003-09-12 2012-05-16 イビデン株式会社 Ceramic sintered body and ceramic filter
JP2006001799A (en) * 2004-06-18 2006-01-05 National Institute For Materials Science Method for manufacturing silicon carbide porous body
JP2006150234A (en) * 2004-11-29 2006-06-15 Kyocera Corp Filter medium and liquid bottle using the same
JP4610314B2 (en) * 2004-11-29 2011-01-12 京セラ株式会社 Filter member and liquid bottle using the same
EP1707544A1 (en) 2005-03-30 2006-10-04 Ibiden Co., Ltd. Silicon carbide-containing particle, method of manufacturing a silicon carbide-based sintered object, silicon carbide-based sintered object, and filter
US7851396B2 (en) * 2006-03-31 2010-12-14 Ibiden Co., Ltd. Porous sintered body, method of manufacturing porous sintered body, and method of manufacturing exhaust gas purifying apparatus
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus
WO2016052469A1 (en) * 2014-09-29 2016-04-07 イビデン株式会社 Honeycomb filter and method for manufacturing same
JP2016067995A (en) * 2014-09-29 2016-05-09 イビデン株式会社 Honeycomb filter and manufacturing method for the same
WO2016147488A1 (en) * 2015-03-16 2016-09-22 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body
JPWO2016147488A1 (en) * 2015-03-16 2017-04-27 三井金属鉱業株式会社 POROUS BODY, POROUS JOINT, FILTER FILTER FILTER FILTER, BIG JIG, AND POROUS BODY
JP2017105707A (en) * 2015-03-16 2017-06-15 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body

Similar Documents

Publication Publication Date Title
CN103819219B (en) Acid and alkali corrosion-resistant silicon carbide porous support
EP1364928B1 (en) Honeycomb structure
EP1493724B1 (en) Porous material and method for production thereof
CN101323524B (en) Preparation of oriented hole silicon carbide porous ceramic
CN101146742B (en) Silicon carbide-containing particle, method of manufacturing a silicon carbide-based sintered object, silicon carbide-based sintered object, and filter
JP3548914B2 (en) Method for producing catalyst carrier
EP2105424B1 (en) Method for manufacturing a honeycomb structured body
EP1483221A1 (en) Strontium feldspar aluminum titanate for high temperature applications
US20030021948A1 (en) Honeycomb structure and method for manufacture thereof
CN108261928A (en) Pure silicon carbide ceramics membrane component and preparation method thereof
JP2000016872A (en) Porous silicon carbide sintered body and its production
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JPH0246545B2 (en)
JPH0624636B2 (en) Catalyst carrier and method for producing the same
JP2011084451A (en) Method for producing electroconductive silicon carbide porous body
JP4041879B2 (en) Ceramic porous body and method for producing the same
JP2007254237A (en) METHOD FOR PRODUCING Si-CONTAINING NON-OXIDE CERAMIC BODY
JPH0463028B2 (en)
CN110698215A (en) High-temperature-resistant corrosion-resistant reaction-sintered silicon carbide film support and preparation method thereof
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
KR101157044B1 (en) Fabrication Method dof Porous Silicon Carbide Ceramics
CN109206138A (en) A kind of preparation method of the silicon-carbide particle of high sphericity
JP4468541B2 (en) Method for producing recrystallized SiC
JPH09268085A (en) Production of silicon carbide porous body
JP2003181301A (en) Method for manufacturing catalyst carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507