JP2000003714A - Solid high molecular fuel cell and manufacture thereof - Google Patents
Solid high molecular fuel cell and manufacture thereofInfo
- Publication number
- JP2000003714A JP2000003714A JP10168174A JP16817498A JP2000003714A JP 2000003714 A JP2000003714 A JP 2000003714A JP 10168174 A JP10168174 A JP 10168174A JP 16817498 A JP16817498 A JP 16817498A JP 2000003714 A JP2000003714 A JP 2000003714A
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- carbon
- electrolyte membrane
- catalyst
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポータブル電源、
電気自動車用電源、家庭内コージェネシステム等に使用
される固体高分子電解質を用いた燃料電池、およびその
製造法、特に電極電解質膜接合体の製造法に関する。The present invention relates to a portable power supply,
The present invention relates to a fuel cell using a solid polymer electrolyte used for a power source for an electric vehicle, a home cogeneration system, and the like, and a method for manufacturing the same, particularly a method for manufacturing an electrode-electrolyte membrane assembly.
【0002】[0002]
【従来の技術】固体高分子電解質を用いた燃料電池は、
水素を含有する燃料ガスと、空気など酸素を含有する燃
料ガスとを、電気化学的に反応させることにより、電力
と熱とを同時に発生させる電気化学装置である。その構
造は、まず、水素イオンを選択的に輸送する高分子電解
質膜の両面に、白金系の金属触媒を担持したカーボン粉
末を主成分とする触媒反応層を形成する。次に、この触
媒反応層の外面に、燃料ガスの通気性と、電子伝導性を
併せ持つ拡散層を形成し、この拡散層と触媒反応層とを
合わせて電極とする。こうして電極と高分子電解質膜と
をあらかじめ一体に組み立てる。これを、電極電解質膜
接合体(以下MEAで表す。)と呼ぶ。実用的には、供
給する燃料ガスや酸化剤ガスが外にリークしたり、二種
類のガスが互いに混合したりしないように、電極の周囲
には、高分子電解質膜を挟んでガスシール材やガスケッ
トを配置し、導電性のセパレータ板を介して多数のME
Aを積層したいわいる積層電池として構成する。2. Description of the Related Art A fuel cell using a solid polymer electrolyte is
This is an electrochemical device that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and a fuel gas containing oxygen such as air. First, a catalyst reaction layer mainly composed of a carbon powder carrying a platinum-based metal catalyst is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a diffusion layer having both gas permeability and electron conductivity is formed on the outer surface of the catalyst reaction layer, and the diffusion layer and the catalyst reaction layer are combined to form an electrode. Thus, the electrode and the polymer electrolyte membrane are assembled in advance integrally. This is called an electrode electrolyte membrane assembly (hereinafter, referred to as MEA). Practically, to prevent the supplied fuel gas or oxidizing gas from leaking out or to mix the two types of gas with each other, a gas sealing material or A gasket is arranged, and a large number of MEs are placed through a conductive separator plate.
A is configured as a laminated battery in which A is laminated.
【0003】金属触媒を担持したカーボン粉末は、数百
オングストロームから数ミクロンの粒状であり、高分子
電解質膜の溶液と混練された状態で、印刷などの塗工法
によって、電極と固体電解質膜との間に、厚さ30〜1
00ミクロンの触媒反応層を形成する。この触媒反応層
において、燃料ガスや酸化剤ガスの電気化学反応が進行
する。例えば、水素が反応するアノードでは、セパレー
タ板に刻まれた燃料ガス流路を通じて水素ガスが電極表
面に供給される。電極は通常、カーボンペーパーやカー
ボンクロスなどの通気性を有する導電性材料でできてお
り、水素ガスはこの電極を透過して触媒反応層に到達す
ることができる。触媒を担持したカーボン粉末の表面に
は、高分子電解質の溶液が乾燥・固化して形成された高
分子電解質が付着している。そして、水素ガスを含む気
相、触媒を担持したカーボンの固相、および高分子電解
質相が近接する、いわいる三相帯において、水素ガスは
酸化され水素イオンとなって高分子電解質中に放出され
る。水素ガスの酸化によって生成した電子は、電子伝導
性のカーボン粉末を経て外部の電気回路に移動する。こ
の電気化学反応は、水素ガスが高分子電解質中へ溶解す
ることによって、より広い領域において進行する。触媒
反応層の厚みは、その作製法によっても異なるが、良好
な電池性能を得るためには、30〜100ミクロンの厚
みで設計されている。[0003] The carbon powder supporting the metal catalyst is in the form of granules of several hundred angstroms to several microns, and is kneaded with a solution of a polymer electrolyte membrane, and is coated between the electrode and the solid electrolyte membrane by a coating method such as printing. Between 30 and 1 thickness
A 00 micron catalytic reaction layer is formed. In this catalytic reaction layer, an electrochemical reaction of the fuel gas and the oxidizing gas proceeds. For example, in an anode where hydrogen reacts, hydrogen gas is supplied to the electrode surface through a fuel gas channel cut in a separator plate. The electrode is usually made of a conductive material having air permeability such as carbon paper or carbon cloth, and hydrogen gas can pass through this electrode and reach the catalytic reaction layer. A polymer electrolyte formed by drying and solidifying a solution of the polymer electrolyte adheres to the surface of the carbon powder supporting the catalyst. In a so-called three-phase zone in which the gas phase containing hydrogen gas, the solid phase of carbon carrying the catalyst, and the polymer electrolyte phase are in close proximity, the hydrogen gas is oxidized and released as hydrogen ions into the polymer electrolyte. Is done. The electrons generated by the oxidation of the hydrogen gas move to an external electric circuit via the electron conductive carbon powder. This electrochemical reaction proceeds in a wider area by dissolving hydrogen gas into the polymer electrolyte. Although the thickness of the catalyst reaction layer varies depending on the method of manufacturing the same, it is designed to have a thickness of 30 to 100 microns in order to obtain good battery performance.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、触媒反
応層のうち実際の電極反応に寄与する領域は、高分子電
解質膜に接した厚さ20ミクロンの部分と考えられてい
る。生成した水素イオンが高分子電解質膜に到達するの
が困難となるからである。また、触媒を担持したカーボ
ンが、他のカーボン粉や導電性の電極と電気的に接触し
ていない状態では、水素イオンは容易に移動できても、
電子の外部回路への移動が障害となる。その結果、塗布
によって構成された触媒反応層は、その多くの部分が電
極反応に寄与しない状態となり、性能が低下するか、ま
たはより多くの白金が必要となっていた。本発明は、触
媒反応層を改良して、白金触媒が電極反応に有効に寄与
するようにし、白金触媒の利用効率を向上することを目
的とする。However, the region of the catalytic reaction layer that contributes to the actual electrode reaction is considered to be a portion having a thickness of 20 microns in contact with the polymer electrolyte membrane. This is because it becomes difficult for the generated hydrogen ions to reach the polymer electrolyte membrane. In addition, in a state where the carbon carrying the catalyst is not in electrical contact with other carbon powders or conductive electrodes, hydrogen ions can easily move,
The transfer of electrons to external circuits is an obstacle. As a result, many parts of the catalytic reaction layer formed by coating do not contribute to the electrode reaction, and the performance is reduced or more platinum is required. An object of the present invention is to improve the catalytic reaction layer so that the platinum catalyst effectively contributes to the electrode reaction, and improve the utilization efficiency of the platinum catalyst.
【0005】[0005]
【課題を解決するための手段】以上の課題を解決するた
め本発明の固体高分子型燃料電池は、固体高分子電解質
膜を挟む一対の電極の複数個が導電性セパレータを介し
て積層された積層体、および前記電極の一方に燃料ガス
を他方に酸化剤ガスをそれぞれ供給・排出するガス供給
・排出手段を具備し、電極反応触媒を担持したカーボン
粒子の一部分が前記固体高分子電解質膜の内部に侵入し
ていることを特徴とする。ここに用いる触媒を担持した
カーボン粒子は、針状繊維であることが有効である。In order to solve the above problems, a polymer electrolyte fuel cell according to the present invention comprises a plurality of pairs of electrodes sandwiching a solid polymer electrolyte membrane, which are laminated via a conductive separator. The laminate, and a gas supply / discharge means for supplying / discharging a fuel gas to one of the electrodes and an oxidant gas to the other, respectively, wherein a part of the carbon particles carrying an electrode reaction catalyst is a solid polymer electrolyte membrane. It is characterized by invading the inside. It is effective that the catalyst-supporting carbon particles used here are acicular fibers.
【0006】本発明は、触媒を担持したカーボン粒子を
キャリアガスに混入して固体高分子電解質膜に衝突させ
ることにより、前記カーボン粒子の一部分を前記固体高
分子電解質膜の内部に侵入させる工程を有する固体高分
子型燃料電池の製造法を提供する。また、本発明は、触
媒を担持したカーボン粒子を、静電気を帯電するととも
に電場により加速して固体高分子電解質膜に衝突させる
ことにより、前記カーボン粒子の一部分を前記固体高分
子電解質膜の内部に侵入させる工程を有する固体高分子
型燃料電池の製造法を提供する。According to the present invention, there is provided a step of mixing carbon particles carrying a catalyst into a carrier gas and causing the carbon particles to collide with a solid polymer electrolyte membrane, thereby causing a portion of the carbon particles to enter the inside of the solid polymer electrolyte membrane. To provide a method for producing a polymer electrolyte fuel cell. In addition, the present invention provides a method for charging a carbon particle carrying a catalyst with static electricity, accelerating the carbon particle by an electric field, and causing the carbon particle to collide with the solid polymer electrolyte membrane, so that a part of the carbon particle is placed inside the solid polymer electrolyte membrane. Provided is a method for manufacturing a polymer electrolyte fuel cell having a step of invading.
【0007】[0007]
【発明の実施の形態】本発明は、上記のように、触媒を
担持したカーボン粒子を固体高分子電解質膜の内部に侵
入ないし挿入させた構成をとるから、電極反応で生成し
た水素イオンは容易に高分子電解質膜中に移動すること
ができる。また、同時にカーボン粒子の一方の端にカー
ボンペーパーなどの電極を圧接することによって、電子
の移動を容易にすることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention adopts a structure in which carbon particles carrying a catalyst enter or are inserted into a solid polymer electrolyte membrane. Can move into the polymer electrolyte membrane. At the same time, by pressing an electrode such as carbon paper against one end of the carbon particles, the movement of electrons can be facilitated.
【0008】[0008]
【実施例】以下、本発明の実施例を図面を参照しながら
説明する。 《実施例1》グラッシーカーボン粉末や造粒したアセチ
レンブラック粉末に、平均粒径約30オングストローム
の白金粒子を25重量%担持させた。これを触媒担持カ
ーボン粒子とする。グラッシーカーボン粒子や造粒した
アセチレンブラック粉末の平均粒径は2〜10ミクロン
であった。ポリテトラフルオロエチレンを主鎖とし、ス
ルホン基を末端に有する側鎖からなる厚み50ミクロン
の固体高分子電解質膜11に、前記触媒担持カーボン粉
をふりかけ、10cm径のローラープレスにより、20
00kgf/10cmの圧力でゆっくりと加圧し、カー
ボン粒子が固体高分子膜中に埋没・侵入するようにし
た。このとき、温度や加湿条件をいろいろ変えて加圧し
た結果、湿度が高いほど、また温度が高いほど、カーボ
ン粒子の膜への侵入度合いが高かった。膜に侵入させた
触媒担持カーボン粉の量は、いずれのカーボン粉でも白
金量に換算して片方の触媒反応層当たり約0.01〜
0.5mg/cm2とした。次に、両面からパン系のカ
ーボン繊維よりなるカソード12とアノード13で挟み
込み、110℃において10kgf/cm2の圧力で5
分間ホットプレスして、固体高分子電解質膜11とアノ
ード12およびカソード13を一体に接合した。この電
極電解質膜接合体を図1に示す。Embodiments of the present invention will be described below with reference to the drawings. Example 1 25% by weight of platinum particles having an average particle diameter of about 30 angstroms were supported on glassy carbon powder or granulated acetylene black powder. This is referred to as catalyst-carrying carbon particles. The average particle size of the glassy carbon particles and the granulated acetylene black powder was 2 to 10 microns. The catalyst-supporting carbon powder is sprinkled on a 50-μm-thick solid polymer electrolyte membrane 11 composed of side chains having polytetrafluoroethylene as a main chain and having a sulfone group at the end, and is pressed by a roller press having a diameter of 10 cm.
Pressure was slowly applied at a pressure of 00 kgf / 10 cm so that the carbon particles were buried and penetrated into the solid polymer film. At this time, as a result of pressurization while changing the temperature and the humidification conditions, the degree of penetration of the carbon particles into the film was higher as the humidity was higher and the temperature was higher. The amount of the catalyst-carrying carbon powder permeated into the membrane is about 0.01 to about 0.001 per one catalytic reaction layer in terms of the amount of platinum in any carbon powder.
0.5 mg / cm 2 . Next, it is sandwiched between the cathode 12 and the anode 13 made of a pan-based carbon fiber from both sides, and at 110 ° C., a pressure of 10 kgf / cm 2 and a pressure of 5 kg.
By hot pressing for one minute, the solid polymer electrolyte membrane 11 and the anode 12 and the cathode 13 were integrally joined. This electrode electrolyte membrane assembly is shown in FIG.
【0009】フッ素樹脂製のシール材とカーボン製のセ
パレータ板を用いて大きさ5cm×5cmの電極を10
セル積層して積層電池を組み立てた。アノードに純水
素、カソードに空気をそれぞれ供給する放電試験をした
ところ、カーボン粉末にアセチレンブラックの造粒品を
用いた例では、白金使用量が0.3mg/cm2と少な
かったにもかかわらず、燃料利用率70%、空気利用率
30%において、0.6V−0.5A/cm2の出力が
得られた。これは、白金使用量0.5mg/cm
2の従来の電池とほぼ同等の性能である。カーボン粉末
にグラッシーカーボン粉末を用いたものは、アセチレン
ブラックを用いたものより性能が低かった。また、白金
使用量が0.2mg/cm 2より少ないと性能が急激に
低下した。An electrode having a size of 5 cm × 5 cm is formed using a fluororesin sealing material and a carbon separator plate.
The cells were stacked to assemble a stacked battery. A discharge test was performed in which pure hydrogen was supplied to the anode and air was supplied to the cathode. In the case of using acetylene black granulated carbon powder, the amount of platinum used was as low as 0.3 mg / cm 2. At a fuel utilization of 70% and an air utilization of 30%, an output of 0.6 V-0.5 A / cm 2 was obtained. This is because the amount of platinum used is 0.5 mg / cm
The performance is almost the same as the conventional battery of No. 2. Carbon powder
Acetylene with glassy carbon powder
The performance was lower than that using black. Also, platinum
If the amount used is less than 0.2 mg / cm 2 , the performance sharply decreases.
【0010】《実施例2》次に、カーボン粒子をより効
率的に高分子電解質膜中に挿入するため種々の方法を検
討した。触媒を担持したカーボン粉末を、キャリアーガ
スとして窒素を用い、高速で高分子電解質膜に衝突させ
た。窒素ガスのガス流速は1〜200m/秒で変化さ
せ、電解質膜の急激な乾燥を防ぐため、窒素ガスは加湿
した。カーボン粉末の平均粒径は0.1〜20ミクロン
とした。また、この実施例では、実施例1で行ったよう
なローラープレスによる粒子の押し込みは用いなくて
も、固体高分子電解質膜中にカーボン粒子を侵入させる
ことができた。実施例1と同様な放電試験を行った結
果、全般的に実施例1より良好な性能が得られた。グラ
ッシーカーボンの粒径1ミクロン以下の極微細粉を用い
たもので、白金使用量が0.2mg/cm2と少なかっ
たにもかかわらず、0.62V−0.5A/cm2(燃
料利用率70%、空気利用率30%)と高い性能が得ら
れた。アセチレンブラックを用いた場合も実施例1に比
べてより高い性能が確認された。Example 2 Next, various methods were examined for more efficiently inserting carbon particles into a polymer electrolyte membrane. The carbon powder carrying the catalyst was made to collide with the polymer electrolyte membrane at high speed using nitrogen as a carrier gas. The gas flow rate of the nitrogen gas was varied from 1 to 200 m / sec, and the nitrogen gas was humidified to prevent rapid drying of the electrolyte membrane. The average particle size of the carbon powder was 0.1 to 20 microns. In this example, the carbon particles could penetrate into the solid polymer electrolyte membrane without using the pressing of the particles by the roller press as performed in Example 1. As a result of performing the same discharge test as in Example 1, overall better performance was obtained than in Example 1. It is an ultra-fine powder of glassy carbon having a particle size of 1 micron or less. Although the amount of platinum used is as small as 0.2 mg / cm 2 , it is 0.62 V−0.5 A / cm 2 (fuel utilization rate). (70%, air utilization rate 30%). Even when acetylene black was used, higher performance was confirmed than in Example 1.
【0011】《実施例3》本実施例では、実施例2の球
状のカーボン粉末の代わりに、針状カーボンを用いた。
針状カーボンとしては、パン系のカーボン繊維の中から
できるだけ比表面積の大きいもの(10m2/g以上)
に白金を担持させた(0.01〜0.3mg/cm2)
を用いた。針状カーボンの平均長は15ミクロンであっ
た。放電試験の結果、白金使用量が0.1mg/cm2
のとき、0.64V−0.5A/cm2(燃料利用率7
0%、空気利用率30%)と非常に高い性能が得られ
た。高分子電解質膜の断面の顕微鏡写真によると、図2
にその模式図を示すように、電極反応部となる多数の針
状カーボン14が固体高分子電解質膜11中に侵入して
いることが観察された。図2の針状カーボン14の露出
部はアノードまたはカソード中に埋まっている。カーボ
ン繊維のような針状粒子は、高分子電解質膜のより深い
部位、例えば10ミクロン程度の深さまで到達し、かつ
表面に繊維が露出しているので、電極との電気的接合性
も良好となる。Example 3 In this example, needle-like carbon was used in place of the spherical carbon powder of Example 2.
As the needle-like carbon, those having a specific surface area as large as possible among bread-based carbon fibers (10 m 2 / g or more)
Supported platinum (0.01 to 0.3 mg / cm 2 )
Was used. The average length of the acicular carbon was 15 microns. As a result of the discharge test, the amount of platinum used was 0.1 mg / cm 2
0.64 V-0.5 A / cm 2 (fuel utilization rate 7
(0%, air utilization rate 30%). According to the micrograph of the cross section of the polymer electrolyte membrane, FIG.
As shown in the schematic diagram, it was observed that a large number of needle-like carbons 14 serving as electrode reaction parts had penetrated into the solid polymer electrolyte membrane 11. The exposed portion of the acicular carbon 14 in FIG. 2 is buried in the anode or the cathode. Needle-like particles such as carbon fibers reach a deeper portion of the polymer electrolyte membrane, for example, a depth of about 10 microns, and the fibers are exposed on the surface, so that the electrical connection with the electrodes is good. Become.
【0012】《実施例4》さらに、カーボン粒子をより
効率的に高分子電解質膜中に侵入させるため種々の方法
として、電気的加速法を検討した。触媒白金を担持した
種々のカーボン粉末をノズルから吹き出すと同時にコロ
ナ放電により静電気を帯電させた。そして、カーボンを
噴射する噴射器と、固体高分子電解質膜を固定した金属
製の固定器との間に、加速用の電圧を印加した。加速用
の電圧はDC100V〜5000Vまで検討した。カー
ボン粉末の打ち込み量は時間で制御した。あまり長時
間、高い加速電圧で打ち込むと、高分子電解質膜の湾曲
が大きくなったり、破損したりした。アセチレンブラッ
ク、グラッシーカーボン、針状カーボンに触媒を担持
し、種々の条件で実験を行ったところ、針状カーボンを
DC1000Vの加速電圧で1分間打ち込んだものの性
能が著しく高く、白金使用量が0.07mg/cm2の
とき、0.66V−0.5A/cm2(燃料利用率70
%、空気利用率30%)を記録した。減圧した真空チャ
ンバー内でカーボン粉末の打ち込み行ったり、カーボン
粒子にあらかじめ固体高分子電解質を少し塗布しておい
た方が効果的であることが確認された。Example 4 Further, an electric acceleration method was examined as various methods for more efficiently infiltrating carbon particles into a polymer electrolyte membrane. Various carbon powders carrying platinum catalyst were blown out from the nozzles, and at the same time, static electricity was charged by corona discharge. Then, an accelerating voltage was applied between the injector for injecting carbon and the metallic fixture to which the solid polymer electrolyte membrane was fixed. The voltage for acceleration was considered from DC100V to 5000V. The amount of carbon powder injected was controlled by time. When driven at a high acceleration voltage for an excessively long time, the curvature of the polymer electrolyte membrane became large or the polymer electrolyte membrane was broken. When a catalyst was supported on acetylene black, glassy carbon, and needle-like carbon, and experiments were performed under various conditions, the performance was extremely high when needle-like carbon was driven at an acceleration voltage of DC 1000 V for 1 minute, and the amount of platinum used was 0. At the time of 07 mg / cm 2 , 0.66 V−0.5 A / cm 2 (fuel utilization rate 70
%, Air utilization 30%). It was confirmed that it was more effective to drive carbon powder in a vacuum chamber with reduced pressure or to apply a small amount of solid polymer electrolyte to carbon particles in advance.
【0013】一連の実験で、カーボン粒子をローラープ
レスなどを用いて押し込むより、キャリアーガス、ある
いはさらに電気的に加速して打ち込む方法によるものの
方が性能が高いのは、より高速で打ち込むときカーボン
表面と高分子電解質との接合性が良くなるためと推察さ
れる。また、集電体となる電極には、本実施例で用いた
カーボンペーパーの他にも、カーボンクロス、あるいは
樹脂中にカーボン粉を混入した導電性シートなどを用い
ることもできる。また、打ち込んだカーボン粒子やカー
ボン針との電気的接合性を改善するために、カーボンペ
ーパーの高分子電解質膜と接合する面に、あらかじめ導
電性のカーボンペーストを塗工する方式も良い結果が得
られた。In a series of experiments, a carrier gas or a method of driving by electrically accelerating the carbon particles has a higher performance than a method of driving the carbon particles by using a roller press or the like, because the carbon surface is driven at a higher speed. It is presumed that the bonding property between the polymer and the polymer electrolyte is improved. In addition to the carbon paper used in this embodiment, a carbon cloth, a conductive sheet in which carbon powder is mixed in a resin, or the like can be used for the electrode serving as the current collector. Also, in order to improve the electrical bondability with the carbon particles and carbon needles that have been implanted, a method of applying a conductive carbon paste in advance to the surface of the carbon paper to be bonded to the polymer electrolyte membrane has also obtained good results. Was done.
【0014】[0014]
【発明の効果】以上のように本発明によれば、同じ白金
量でもより高い電池性能が得られ、また同等の電池性能
を得ようとしたときには使用する白金量を大幅に低減す
ることができる。As described above, according to the present invention, higher battery performance can be obtained even with the same amount of platinum, and the amount of platinum used can be greatly reduced when trying to obtain equivalent battery performance. .
【図1】本発明の実施例における電極電解質膜接合体を
示す縦断面略図である。FIG. 1 is a schematic longitudinal sectional view showing an electrode electrolyte membrane assembly according to an embodiment of the present invention.
【図2】その電解質膜の表面部を模式的に示す断面図で
ある。FIG. 2 is a cross-sectional view schematically showing a surface portion of the electrolyte membrane.
11 固体高分子電解質膜 12 カソード 13 アノード 14 針状カーボン 11 solid polymer electrolyte membrane 12 cathode 13 anode 14 needle-like carbon
───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 一仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 BB00 BB03 BB08 EE05 EE17 5H026 AA06 BB00 BB02 BB04 CX02 CX05 EE05 EE18 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhito Hato 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Makoto Uchida 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co. (72) Inventor Yasushi Sugawara 1006 Kadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhito Kanbara 1006 Odakadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. AS02 AS03 BB00 BB03 BB08 EE05 EE17 5H026 AA06 BB00 BB02 BB04 CX02 CX05 EE05 EE18
Claims (4)
複数個が導電性セパレータを介して積層された積層体、
および前記電極の一方に燃料ガスを他方に酸化剤ガスを
それぞれ供給・排出するガス供給・排出手段を具備し、
電極反応触媒を担持したカーボン粒子の一部分が前記固
体高分子電解質膜の内部に侵入していることを特徴とす
る固体高分子型燃料電池。1. A laminate in which a plurality of a pair of electrodes sandwiching a solid polymer electrolyte membrane are laminated with a conductive separator interposed therebetween.
And gas supply / discharge means for supplying / discharging a fuel gas to one of the electrodes and an oxidizing gas to the other,
A polymer electrolyte fuel cell, wherein a portion of carbon particles carrying an electrode reaction catalyst has penetrated into the polymer electrolyte membrane.
である請求項1記載の固体高分子型燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein the carbon particles carrying the catalyst are needle fibers.
ガスに混入して固体高分子電解質膜に衝突させることに
より、前記カーボン粒子の一部分を前記固体高分子電解
質膜の内部に侵入させる工程を有することを特徴とする
固体高分子型燃料電池の製造法。3. A process of mixing a carbon particle carrying a catalyst into a carrier gas and causing the carbon particle to collide with a solid polymer electrolyte membrane to cause a portion of the carbon particle to enter the inside of the solid polymer electrolyte membrane. A method for producing a polymer electrolyte fuel cell, comprising:
を帯電するとともに電場により加速して固体高分子電解
質膜に衝突させることにより、前記カーボン粒子の一部
分を前記固体高分子電解質膜の内部に侵入させる工程を
有することを特徴とする固体高分子型燃料電池の製造
法。4. A part of the carbon particles, which are charged with a static electricity, are accelerated by an electric field and collide with the solid polymer electrolyte membrane, thereby causing a part of the carbon particles to enter the solid polymer electrolyte membrane. A method for producing a polymer electrolyte fuel cell, comprising:
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168174A JP2000003714A (en) | 1998-06-16 | 1998-06-16 | Solid high molecular fuel cell and manufacture thereof |
PCT/JP1999/003123 WO1999066578A1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
KR10-2000-7014308A KR100413645B1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
CNA2003101239308A CN1516311A (en) | 1998-06-16 | 1999-06-10 | High-molecular electrolyte fuel battery |
CNB998074764A CN1159788C (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
EP99925304A EP1096587A4 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
US09/719,664 US6746793B1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
CNA2003101239312A CN1516312A (en) | 1998-06-16 | 1999-06-10 | High-molecular electrolyte fuel battery |
US10/797,676 US20040170885A1 (en) | 1998-06-16 | 2004-03-10 | Polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168174A JP2000003714A (en) | 1998-06-16 | 1998-06-16 | Solid high molecular fuel cell and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000003714A true JP2000003714A (en) | 2000-01-07 |
Family
ID=15863175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10168174A Withdrawn JP2000003714A (en) | 1998-06-16 | 1998-06-16 | Solid high molecular fuel cell and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000003714A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027844A1 (en) * | 2000-09-29 | 2002-04-04 | Sony Corporation | Fuel cell and production method therefor |
WO2002027829A1 (en) * | 2000-09-29 | 2002-04-04 | Sony Corporation | Method of producing fuel cell |
WO2002056404A1 (en) * | 2001-01-16 | 2002-07-18 | Showa Denko K. K. | Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same |
JP2005174565A (en) * | 2003-12-08 | 2005-06-30 | Hitachi Ltd | Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it |
WO2005088749A1 (en) * | 2004-03-12 | 2005-09-22 | Nagaoka University Of Technology | Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell |
JP2005302305A (en) * | 2004-04-06 | 2005-10-27 | Toyota Motor Corp | Membrane-electrode junction and fuel cell |
JP2007257886A (en) * | 2006-03-20 | 2007-10-04 | Toyota Motor Corp | Fuel cell, and method for fabrication same |
US7820316B2 (en) | 2006-10-23 | 2010-10-26 | Toyota Jidosha Kabushiki Kaisha | Membrane electrode assembly and fuel cell |
-
1998
- 1998-06-16 JP JP10168174A patent/JP2000003714A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7037619B2 (en) | 2000-09-29 | 2006-05-02 | Sony Corporation | Gas diffusion electrode and fuel cell including same |
KR100811869B1 (en) * | 2000-09-29 | 2008-03-10 | 소니 가부시끼 가이샤 | Fuel cell and production method therefor |
JPWO2002027829A1 (en) * | 2000-09-29 | 2004-02-05 | ソニー株式会社 | Fuel cell manufacturing method |
JPWO2002027844A1 (en) * | 2000-09-29 | 2004-02-12 | ソニー株式会社 | Fuel cell and method of manufacturing the same |
US6726963B2 (en) | 2000-09-29 | 2004-04-27 | Sony Corporation | Method of preparation of fuel cell |
WO2002027829A1 (en) * | 2000-09-29 | 2002-04-04 | Sony Corporation | Method of producing fuel cell |
WO2002027844A1 (en) * | 2000-09-29 | 2002-04-04 | Sony Corporation | Fuel cell and production method therefor |
WO2002056404A1 (en) * | 2001-01-16 | 2002-07-18 | Showa Denko K. K. | Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same |
JP2005174565A (en) * | 2003-12-08 | 2005-06-30 | Hitachi Ltd | Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it |
WO2005088749A1 (en) * | 2004-03-12 | 2005-09-22 | Nagaoka University Of Technology | Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell |
US7972743B2 (en) | 2004-03-12 | 2011-07-05 | Nagaoka University Of Technology | Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell |
JP2005302305A (en) * | 2004-04-06 | 2005-10-27 | Toyota Motor Corp | Membrane-electrode junction and fuel cell |
JP4539145B2 (en) * | 2004-04-06 | 2010-09-08 | トヨタ自動車株式会社 | Membrane electrode assembly and fuel cell |
JP2007257886A (en) * | 2006-03-20 | 2007-10-04 | Toyota Motor Corp | Fuel cell, and method for fabrication same |
US7820316B2 (en) | 2006-10-23 | 2010-10-26 | Toyota Jidosha Kabushiki Kaisha | Membrane electrode assembly and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050142397A1 (en) | Membrane electrode assembly and fuel cell | |
EP0819320A1 (en) | Fuel cell with solid polymer electrolytes | |
JP3711545B2 (en) | Polymer electrolyte fuel cell | |
JPH09265992A (en) | Electrode structure for fuel cell | |
JP2002289230A (en) | Polymer electrolyte fuel cell | |
EP2519989B1 (en) | Performance enhancing layers for fuel cells | |
JP3113499B2 (en) | Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode | |
JP2000003714A (en) | Solid high molecular fuel cell and manufacture thereof | |
JP2000294257A (en) | Solid high polymer electrolyte fuel cell | |
JP2005032681A (en) | Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method | |
JP2005108770A (en) | Manufacturing method of electrolyte membrane electrode joint body | |
JP2001110428A (en) | High molecular electrolysis type fuel cell | |
JP3711546B2 (en) | Fuel cell electrode structure and manufacturing method thereof | |
JPH11224679A (en) | Solid high polymer fuel cell and its manufacture | |
JP2002343377A (en) | Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same | |
JP2001057217A (en) | Polymer electrolyte type fuel cell | |
JP3398013B2 (en) | Method for manufacturing cell for polymer electrolyte fuel cell | |
JP2002170581A (en) | Polymer electrolyte type fuel battery | |
US20240055621A1 (en) | Fuel cell stack and production method | |
JP2004185900A (en) | Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them | |
JP4529345B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP4240285B2 (en) | Method for producing gas diffusion layer of polymer electrolyte fuel cell | |
JP4787474B2 (en) | Method for producing laminated film for membrane-electrode assembly | |
JP2000228205A (en) | High polymer electrolyte fuel cell | |
KR20070112978A (en) | A fuel cell's electrode and its a durability improving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090410 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090916 |