JP2000080524A - Production of carbon fiber having high strand tenacity - Google Patents
Production of carbon fiber having high strand tenacityInfo
- Publication number
- JP2000080524A JP2000080524A JP11278372A JP27837299A JP2000080524A JP 2000080524 A JP2000080524 A JP 2000080524A JP 11278372 A JP11278372 A JP 11278372A JP 27837299 A JP27837299 A JP 27837299A JP 2000080524 A JP2000080524 A JP 2000080524A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- fiber
- pitch
- strength
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はピッチ系炭素繊維の製造
方法に関するものであり、より詳しくは、高ストランド
強度を有する炭素繊維の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pitch-based carbon fiber, and more particularly, to a method for producing carbon fiber having high strand strength.
【0002】[0002]
【従来の技術】炭素繊維は、比強度及び比弾性率が高い
材料であり、高性能複合材料のフィラー繊維として注目
されている。現在、炭素繊維はポリアクリロニトリル
(PAN)を原料とするPAN系炭素繊維とピッチ類を
原料とするピッチ系炭素繊維が製造されているが、一般
に開発が先行していた為にPAN系がより広く使用さ
れ、高強度、高弾性の高特性炭素繊維としても主にPA
N系炭素繊維が種々の工夫を加えて使用されている現状
にある。2. Description of the Related Art Carbon fiber is a material having a high specific strength and a high specific elastic modulus, and is attracting attention as a filler fiber of a high-performance composite material. At present, PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitch are manufactured. Mainly used as high-strength, high-elasticity, high-performance carbon fiber
At present, N-based carbon fibers are used with various measures.
【0003】しかしながら、PAN系炭素繊維は、更に
高弾性化することには限界があり、又、その原料である
PANが高価であること、原料当りの炭素繊維の収量が
低いという難点も有している。そこで、近年、より高弾
性な特徴を有し、より広範な用途の期待されるピッチ系
炭素繊維の高特性化が種々検討されている。[0003] However, PAN-based carbon fibers have a limit in further increasing their elasticity, and also have the drawback that the raw material PAN is expensive and the yield of carbon fibers per raw material is low. ing. Therefore, in recent years, various studies have been made to improve the characteristics of pitch-based carbon fibers having higher elasticity characteristics and expected to be used in a wider range of applications.
【0004】ピッチ系炭素繊維の高特性化は、従来紡糸
原料として使用していた等方質ピッチの代りに、原料ピ
ッチを加熱処理して、異方性が発達し、配向しやすい分
子種が形成されたピッチ、所謂、メソフエーズピッチを
使用する方法(特公昭49−8634号公報)が提案さ
れて以来、主に紡糸ピッチの性状を調節することによっ
て行なわれている。[0004] To improve the characteristics of pitch-based carbon fibers, a molecular species which develops anisotropy and is easily oriented by heating the raw material pitch is used instead of the isotropic pitch which has been conventionally used as a spinning raw material. Since a method using a formed pitch, that is, a so-called mesophase pitch (Japanese Patent Publication No. 49-8634) was proposed, it has been mainly performed by adjusting properties of a spinning pitch.
【0005】例えば、特開昭49−19127号公報に
は、原料ピッチを不活性ガス雰囲気下に加熱処理して高
度に配向されたメソフエーズを形成し、該メソフエーズ
を40〜90重量%含有するピッチを紡糸ピッチとする
方法が提案されている。しかし、かかる方法により等方
質の原料ピッチをメソ化するには長時間を要するので、
特開昭54−160427号公報は、予め原料ピッチを
十分量の溶媒で処理しておくことにより、短時間でメソ
化を行なう方法を提案している。即ち、原料ピッチをベ
ンゼン、トルエン等の溶媒で処理してその不溶分を得、
それを230〜400℃の温度で10分以下の短時間加
熱処理して、高度に配向され、光学的異方性部分が7.
5重量%以上で、キノリン不溶分25重量%以下の所謂
ネオメソフエーズを形成し、かかるネオメソフエーズを
紡糸ピッチとする方法を提案している。For example, Japanese Patent Application Laid-Open No. 49-19127 discloses that a raw material pitch is heat-treated in an inert gas atmosphere to form a highly oriented mesophase, and a pitch containing 40 to 90% by weight of the mesophase. Has been proposed as a spinning pitch. However, it takes a long time to mesomorph the isotropic raw material pitch by such a method,
Japanese Patent Application Laid-Open No. 54-160427 proposes a method of performing meso-formation in a short time by treating the raw material pitch with a sufficient amount of a solvent in advance. That is, the raw material pitch is treated with a solvent such as benzene or toluene to obtain an insoluble content thereof,
It is heat-treated at a temperature of 230 to 400 ° C. for a short time of 10 minutes or less to be highly oriented and to have an optically anisotropic portion of 7.
A method has been proposed in which a so-called neomesophase having a quinoline-insoluble content of 5% by weight or more and 25% by weight or less is formed, and the neomesophase is used as a spinning pitch.
【0006】このようにして得られた紡糸ピッチを溶融
紡糸して、ピッチ繊維を得、次いで不融化、炭化あるい
は、更に黒鉛化することにより高強度、高弾性等の高特
性炭素繊維が製造される。ところで、こうして得られる
炭素繊維は、通常エポキシ樹脂、ポリアミド樹脂、フェ
ノール樹脂等のマトリックス樹脂に含浸され、いわゆる
プリプレグとし、これを種々の成形法にて成形し、繊維
強化プラスチックとしてレジャー・スポーツ用や、各種
工業用資材として用いられる。したがって前記炭素繊維
強化プラスチックの機械的特性を発現させるためには、
1本1本の炭素繊維自体の高強度、高弾性等の機械的特
性と同時に、炭素繊維がマトリックス樹脂中で、良好に
分散し炭素繊維自体の機械的特性が充分に発揮されるこ
とが重大な要因となる。[0006] The spinning pitch thus obtained is melt spun to obtain pitch fibers, which are then made infusible, carbonized or further graphitized to produce carbon fibers having high strength, high elasticity, and other high-performance carbon fibers. You. By the way, the carbon fiber thus obtained is usually impregnated in a matrix resin such as an epoxy resin, a polyamide resin, and a phenol resin to form a so-called prepreg, which is molded by various molding methods, and used as a fiber-reinforced plastic for leisure and sports. Used as various industrial materials. Therefore, in order to express the mechanical properties of the carbon fiber reinforced plastic,
It is important that the carbon fibers themselves are well dispersed in the matrix resin and the mechanical properties of the carbon fibers themselves are fully exhibited, at the same time as the mechanical properties such as high strength and high elasticity of each carbon fiber itself. Factors.
【0007】云い換えれば炭素繊維の強度や弾性率がい
かに大きくても該繊維のマトリックス樹脂中での分散が
不良では、炭素繊維強化プラスチックの機械的機能は不
充分なものになってしまうと云うことである。そこでま
ずマトリックス樹脂中での分散性に対しては使用する炭
素繊維の単繊維同士の融着がないこと、即ち該炭素繊維
が充分に解繊されなければならない。In other words, no matter how large the strength or elastic modulus of the carbon fiber is, if the fiber is poorly dispersed in the matrix resin, the mechanical function of the carbon fiber reinforced plastic becomes insufficient. That is. Therefore, first, for the dispersibility in the matrix resin, there is no fusion between the single fibers of the carbon fibers used, that is, the carbon fibers must be sufficiently defibrated.
【0008】すなわち、ピッチ系炭素繊維製造工程にお
いて不融化処理された繊維(以下単に不融化繊維と記
す)、及び炭化又は黒鉛化処理された繊維(以下単に炭
素繊維と記す)は、前の工程で用いられた集束剤、サイ
ジング剤等の油剤や各工程での繊維自体の熱変質などの
ために単繊維同士が融着し、品質むらを呈したり、マト
リックス樹脂中での単繊維分散が不均一となり、複合材
料の均質性を損ったりするので、不融化、炭化又は黒鉛
化の何れかの段階で、しなやかで融着のない状態に解繊
しなければならない。That is, in the pitch-based carbon fiber manufacturing process, the fiber that has been infusibilized (hereinafter simply referred to as infusible fiber) and the fiber that has been carbonized or graphitized (hereinafter simply referred to as carbon fiber) are mixed in the previous step. The single fibers are fused together due to oil agents such as the sizing agent and sizing agent used in the above, and thermal deterioration of the fibers themselves in each step, resulting in uneven quality and dispersion of the single fibers in the matrix resin. It must be pliable and unfused at any stage of infusibilization, carbonization, or graphitization, as it will be uniform and impair the homogeneity of the composite.
【0009】従来、不融化繊維又は炭素繊維の解繊方法
としては、繊維に乱気流処理を施す方法、バー、ワイ
ヤ、回転ピン等のガイドにジクザクに屈曲させながら通
過させる曲げ処理法、凸状の曲面を有するロールの曲面
に接触させる方法(特開昭55−57015号公報)、
2個以上のテーパーローラの傾斜面に当接させる方法
(特開昭61−124645号公報)、及び流体中で解
繊する方法(特開昭57−89638号公報)等が提案
されている。又、この他に炭素繊維又は不融化繊維の表
面を酸素を含有するガス等で処理し、解繊又は炭素繊維
の強度を向上する方法(特開昭61−215716号公
報、特開昭63−665523号公報、特開昭63−1
75122号公報)が知られている。これらはいずれも
酸素を含む不活性ガス中で炭素繊維を処理し、表面を若
干エッチングすることにより目的を達するものである。Conventionally, as a method of defibrating the infusible fiber or carbon fiber, a method of subjecting the fiber to turbulent flow treatment, a method of bending a fiber such as a bar, a wire, a rotating pin or the like while passing the fiber while bending it, a method of forming a convex shape, A method of contacting a curved surface of a roll having a curved surface (JP-A-55-57015);
A method of contacting two or more tapered rollers with inclined surfaces (Japanese Patent Application Laid-Open No. Sho 61-124645) and a method of defibrating in a fluid (Japanese Patent Application Laid-Open No. 57-89638) have been proposed. In addition, a method of treating the surface of carbon fiber or infusibilized fiber with an oxygen-containing gas or the like to defibrate or improve the strength of the carbon fiber (JP-A-61-215716, JP-A-63-215716) 665523, JP-A-63-1
No. 75122). These are all achieved by treating carbon fibers in an inert gas containing oxygen and slightly etching the surface.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、従来の
方法、例えば機械的な解繊方法は設備コストが高い割に
は解繊効果が不充分であり、また表面積向上の方法とし
て、陽極酸化は装置や操作が複雑な上に、表面積向上も
小さく、かつ廃液処理等の課題がある。また不活性雰囲
気下、高温で炭化処理した炭素繊維ないし黒鉛繊維を酸
素含有不活性ガス雰囲気中で加熱処理しても、既に繊維
表面が安定化されて不活性になっているため、その表面
積向上の効果は大きくなく、しかも、実際には酸素ガス
は、炭素繊維と大きな発熱を伴なって反応する為に反応
の制御が難しく、一部のフィラメントで過酸化反応が進
行し、充分に満足するべき高いストランド強度を有する
炭素繊維を得るのが困難であった。However, conventional methods, for example, mechanical defibration methods have insufficient defibration effects in spite of high equipment costs, and as a method for improving the surface area, anodization is carried out using an apparatus. And the operation is complicated, the improvement of the surface area is small, and there are problems such as waste liquid treatment. Even if the carbon fiber or graphite fiber carbonized at a high temperature under an inert atmosphere is heated in an oxygen-containing inert gas atmosphere, the fiber surface is already stabilized and inactive, so the surface area is improved. The effect is not great, and in fact, oxygen gas reacts with carbon fiber with great heat generation, so it is difficult to control the reaction, and the peroxidation reaction progresses in some filaments, which is sufficiently satisfactory. It has been difficult to obtain carbon fibers having a very high strand strength.
【0011】[0011]
【課題を解決するための手段】そこで本発明者等は、ピ
ッチ系炭素繊維の解繊およびストランド強度向上を図る
方法について鋭意検討を重ねた結果、驚くべきことに炭
素繊維を二酸化炭素含有雰囲気下加熱処理することによ
り、解繊性の良好な高ストランド強度の炭素繊維を製造
出来るという画期的な方法を見い出した。The inventors of the present invention have conducted intensive studies on a method for defibrating pitch-based carbon fibers and improving strand strength. The inventors have found an epoch-making method capable of producing a carbon fiber with good fibrillation and high strand strength by performing a heat treatment.
【0012】更にかくして得られた炭素繊維を不活性雰
囲気下、前述の一次炭化温度より高い温度で二次炭化処
理することにより繊維の強度、弾性率をその使用目的に
応じて自由に制御することができることを見出し、本発
明を完成した。すなわち本発明の目的は解繊性が良好で
かつ高ストランド強度の炭素繊維の製造方法を提供する
ことであり、さらに本発明の他の目的は、繊維の強度、
弾性率を自由に制御しうる高ストランド強度の炭素繊維
の製造方法を提供することにあり、また本発明の他の目
的としては、単繊維自体の強度、特にJIS R−76
01−1986,6.6.1により求めた単繊維自体の
強度に匹敵する樹脂含浸ストランド強度を発現する高ス
トランド強度炭素繊維の製造方法の提供にあり、かかる
本発明の目的は、ピッチを原料として少なくとも溶融紡
糸、不融化及び炭化の各工程を経て炭素繊維を製造する
方法において、不融化繊維を炭化したのち二酸化炭素含
有雰囲気中で1,000℃を超え、1,800℃以下の
温度で加熱処理することを特徴とする高ストランド強度
炭素繊維の製造方法により容易に解決される。Further, the carbon fiber thus obtained is subjected to a secondary carbonization treatment in an inert atmosphere at a temperature higher than the above-mentioned primary carbonization temperature, whereby the strength and elastic modulus of the fiber can be freely controlled according to the purpose of use. The present invention was completed. That is, an object of the present invention is to provide a method for producing a carbon fiber having a good fibrillation property and a high strand strength, and another object of the present invention is to provide a fiber strength,
Another object of the present invention is to provide a method for producing a carbon fiber having a high strand strength in which the modulus of elasticity can be freely controlled.
An object of the present invention is to provide a method for producing a high-strand-strength carbon fiber exhibiting a resin-impregnated strand strength comparable to the strength of the single fiber itself determined by the method described in JP-A-1-19886, 6.6.1. In a method of producing a carbon fiber through at least melt spinning, infusibilization and carbonization steps, in a carbon dioxide-containing atmosphere after carbonizing the infusibilized fiber, exceeds 1,000 ℃, at a temperature of 1,800 ℃ or less The problem is easily solved by a method for producing high strand strength carbon fiber, which is characterized by performing a heat treatment.
【0013】以下本発明を詳細に説明する。本発明で用
いる炭素繊維を得るための紡糸ピッチとしては、配向し
やすい分子種が形成されており、光学的に異方性の炭素
繊維を与えるようなものであれば特に制限はなく、前述
の様な従来の種々のものが使用できる。これら紡糸ピッ
チを得るための炭素質原料としては、例えば、石炭系の
コールタール、コールタールピッチ、石炭液化物、石油
系の重質油、タール、ピッチ又はナフタレンやアントラ
センの触媒反応による重合反応生成物等が挙げられる。
これらの炭素質原料にはフリーカーボン、未溶解石炭、
灰分、触媒などの不純物が含まれているがこれらの不純
物は濾過、遠心分離、あるいは溶剤を使用する静置沈降
分離などの周知の方法で予め除去しておくことが望まし
い。Hereinafter, the present invention will be described in detail. The spinning pitch for obtaining the carbon fibers used in the present invention is not particularly limited as long as a molecular species that is easily oriented is formed and can provide an optically anisotropic carbon fiber. Various conventional ones can be used. Examples of the carbonaceous raw material for obtaining these spinning pitches include coal-based coal tar, coal-tar pitch, coal liquefaction, petroleum-based heavy oil, tar, pitch or a polymerization reaction produced by a catalytic reaction of naphthalene or anthracene. Objects and the like.
These carbonaceous materials include free carbon, undissolved coal,
Although impurities such as ash and catalyst are contained, these impurities are desirably removed in advance by a well-known method such as filtration, centrifugal separation, or stationary sedimentation using a solvent.
【0014】また、前記炭素質原料を、例えば、加熱処
理した後特定溶剤で可溶分を抽出するといった方法、あ
るいは水素供与性溶剤、水素ガスの存在下に水添処理す
るといった方法で予備処理を行なっておいても良い。本
発明においては、40%以上、好ましくは、70%以
上、更に好ましくは90%以上の光学的異方性組織を含
む炭素質原料が好適であり、この為に前述の炭素質原料
あるいは予備処理を行なった炭素質原料を必要によって
は通常350〜500℃、好ましくは380〜450℃
で、2分〜50時間、好ましくは5分〜5時間、窒素、
アルゴン、水蒸気等の不活性ガス雰囲気下、或いは、吹
き込み下に加熱処理することがある。Further, the carbonaceous raw material is pre-treated by, for example, a method of subjecting the carbonaceous material to heat treatment and then extracting a soluble component with a specific solvent, or a method of hydrogenating in the presence of a hydrogen-donating solvent and hydrogen gas. May be performed. In the present invention, a carbonaceous raw material containing an optically anisotropic structure of 40% or more, preferably 70% or more, more preferably 90% or more is suitable. If necessary, the carbonaceous raw material is usually 350 to 500 ° C, preferably 380 to 450 ° C.
And 2 minutes to 50 hours, preferably 5 minutes to 5 hours, nitrogen,
The heat treatment may be performed in an atmosphere of an inert gas such as argon or water vapor or under blowing.
【0015】本発明でいうピッチの光学的異方性組織割
合は、常温下偏光顕微鏡でのピッチ試料中の光学的異方
性を示す部分の面積割合として求めた値である。具体的
には、例えばピッチ試料を数mm角に粉砕したものを常
法に従って2cm直径の樹脂の表面のほぼ全面に試料片
を埋込み、表面を研磨後、表面全体をくまなく偏光顕微
鏡(100倍率)下で観察し、試料の全表面積に占める
光学的異方性部分の面積の割合を測定することによって
求める。The optically anisotropic texture ratio of the pitch referred to in the present invention is a value obtained as an area ratio of a portion showing optical anisotropy in a pitch sample with a polarizing microscope at room temperature. Specifically, for example, a pitch sample crushed into a square of several mm is embedded with a sample piece on almost the entire surface of a resin having a diameter of 2 cm according to a conventional method, and after polishing the surface, the entire surface is thoroughly covered with a polarizing microscope (100 magnification). ) Observed under, and determined by measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.
【0016】上記の様な紡糸ピッチを用いて通常の方法
に従って溶融紡糸及び不融化したのち炭化して炭素繊維
を得る。この炭化処理は、窒素、アルゴン等の不活性ガ
ス雰囲気下、400℃以上1,800℃以下、好ましく
は400℃以上1,400℃以下の温度範囲において通
常10秒以上6時間以下、好ましくは1分以上2時間以
下で実施される。Using the above-described spinning pitch, melt spinning and infusibilization are carried out according to a conventional method, and then carbonized to obtain carbon fibers. This carbonization is carried out in an atmosphere of an inert gas such as nitrogen or argon at a temperature of 400 ° C. to 1,800 ° C., preferably 400 ° C. to 1,400 ° C., usually for 10 seconds to 6 hours, preferably 1 hour to 6 hours. This is performed in minutes to 2 hours.
【0017】また、炭素繊維は用途によっては強度の絶
対値が不足することがある。したがって前述の方法で得
る炭素繊維よりも、強度、弾性率など機械的な面でより
一層高性能の炭素繊維を得たい場合には、前述の加熱処
理の後、さらに不活性雰囲気下、前述炭化温度より高い
温度で該繊維を二次炭化処理又は黒鉛化処理することに
より目的を達成することが出来る。Further, the absolute value of the strength of the carbon fiber may be insufficient depending on the use. Therefore, when it is desired to obtain a carbon fiber having higher mechanical properties such as strength and elastic modulus than the carbon fiber obtained by the above-described method, after the above-described heat treatment, the carbonization is further performed under an inert atmosphere. The object can be achieved by subjecting the fiber to a secondary carbonization treatment or a graphitization treatment at a temperature higher than the temperature.
【0018】この二次炭化処理又は黒鉛化処理の温度
は、要求される強度、弾性率など機械的特性によって決
定すればよいが、一次炭化処理より高い温度であること
が重要である。すなわち二次炭化処理又は黒鉛化処理温
度が一次炭化処理温度以下の場合、二次炭化処理又は黒
鉛化処理が炭素繊維の機械的特性の向上に殆ど寄与しな
いからである。The temperature of the secondary carbonization or graphitization may be determined according to required mechanical properties such as strength and elastic modulus, but it is important that the temperature is higher than that of the primary carbonization. That is, when the secondary carbonization treatment or graphitization treatment temperature is equal to or lower than the primary carbonization treatment temperature, the secondary carbonization treatment or graphitization treatment hardly contributes to the improvement of the mechanical properties of the carbon fiber.
【0019】二次炭化処理又は黒鉛化処理温度は、80
0〜3,000℃が好ましい。800℃未満では該繊維
の機械的特性の向上が少なく、また3,000℃を超え
ても、熱源コストの大きい割に、機械的特性の温度によ
る向上効果がかなり緩やかになり、工業的に有利とは云
えないからである。本発明においてはかかる炭素繊維
を、次いで二酸化炭素雰囲気下又は窒素ガス、アルゴン
ガス等の不活性ガスと二酸化炭素の混合ガスの雰囲気下
で、1,000℃を超え1,800℃以下、好ましくは
1,050℃以上1,400℃以下の温度範囲において
通常0.1秒以上24時間以下、好ましくは1秒以上6
時間以下の時間で、加熱処理する。二酸化炭素濃度とし
ては通常1000ppmから100vol%、好ましく
は5,000ppmから100vol%である。The secondary carbonization or graphitization temperature is 80
0-3000 ° C is preferred. If the temperature is less than 800 ° C., the mechanical properties of the fiber are little improved, and if it exceeds 3,000 ° C., the effect of increasing the mechanical properties by the temperature is considerably moderated in spite of the large heat source cost, which is industrially advantageous. This is because it cannot be said. In the present invention, such carbon fiber is then subjected to a temperature of more than 1,000 ° C. and 1,800 ° C. or less, preferably in a carbon dioxide atmosphere or in an atmosphere of a mixed gas of an inert gas such as nitrogen gas and argon gas and carbon dioxide. In a temperature range of 1,050 ° C. or more and 1,400 ° C. or less, it is usually 0.1 second or more and 24 hours or less, preferably 1 second or more and 6 hours or less.
The heat treatment is performed for a time equal to or less than the time. The carbon dioxide concentration is usually from 1000 ppm to 100 vol%, preferably from 5,000 ppm to 100 vol%.
【0020】本発明での二酸化炭素濃度は処理温度、処
理時間により大きく左右され、例えば長時間もしくは高
温で処理する場合は二酸化炭素濃度を低くして実施する
のが好ましく、又、短時間もしくは低温で処理する場合
には、二酸化炭素濃度を高くして実施するのがよい。解
繊性が良好で且つ繊維単独でも樹脂含浸ストランドとし
ても高強度を発現するという本発明の効果を考慮した場
合、工業的に最も好ましい処理条件は、1,050℃以
上1,400℃以下、5秒以上90分以下、濃度500
0ppm以上70vol%以下である。The concentration of carbon dioxide in the present invention greatly depends on the treatment temperature and treatment time. For example, when treating for a long time or at a high temperature, it is preferable to reduce the concentration of carbon dioxide. When the treatment is carried out, the concentration of carbon dioxide is preferably increased. Considering the effect of the present invention that the defibration property is good and the fiber alone or a resin-impregnated strand exhibits high strength, the most industrially preferable treatment conditions are 1,050 ° C or more and 1,400 ° C or less. 5 seconds to 90 minutes, concentration 500
0 ppm or more and 70 vol% or less.
【0021】なお、この二次炭化処理又は黒鉛化処理
は、炭素繊維の機械的特性の向上を目的とし、必要に応
じて実施するものであるが、二次炭化処理又は黒鉛化処
理が、前述の二酸化炭素含有雰囲気の加熱処理によって
得られた炭素繊維の解繊とストランド強度向上の効果を
阻害するものではなく、二酸化炭素含有雰囲気の加熱処
理のあと、前述の二次炭化処理又は黒鉛化処理、表面処
理等を行なうことも可能である。以上の様に、炭素繊維
を二酸化含有雰囲気下で1,000℃を超え1,800
℃以下で加熱処理することにより該繊維の解繊とストラ
ンド強度の大幅な向上が達成される。また本発明による
方法によれば繊維が解繊され、各単繊維のマトリックス
樹脂中での分散性が向上し、ストランド強度が向上する
のみではなく、各単繊維単位でみる単繊維強度も向上し
ておりこれは、単繊維間の融着により発生した表面欠陥
を二酸化炭素がエッチングにより除去したことによる効
果も含まれている。The secondary carbonization or graphitization is carried out as necessary for the purpose of improving the mechanical properties of the carbon fibers. It does not impair the effect of defibration of carbon fibers obtained by heat treatment in a carbon dioxide-containing atmosphere and the effect of improving strand strength. After the heat treatment in a carbon dioxide-containing atmosphere, the above-described secondary carbonization treatment or graphitization treatment , Surface treatment and the like can also be performed. As described above, the carbon fiber exceeds 1,000 ° C. in an atmosphere containing
By performing the heat treatment at a temperature of not more than ° C., the fibrillation of the fiber and a significant improvement in strand strength can be achieved. In addition, according to the method of the present invention, the fibers are defibrated, the dispersibility of each single fiber in the matrix resin is improved, and not only the strand strength is improved, but also the single fiber strength in each single fiber unit is improved. This also includes the effect of removing the surface defects generated by fusion between the single fibers by etching with carbon dioxide.
【0022】従来技術でも表面欠陥等をエッチングによ
り除去しようとした試みは前述の如くなされてきた訳で
あるが、いずれも酸素ガス等の大きな発熱を伴う方法に
よるものであった。本発明で用いる二酸化炭素が、特に
大きな効果を示したのは炭素繊維表面の炭素原子と二酸
化炭素の反応が、1,000℃を超え1,800℃以下
では吸熱反応か又は微少な発熱反応である為に、特に過
酸化等による強度劣化を起こさず処理可能なためである
と考えられる。In the prior art, attempts to remove surface defects and the like by etching have been made as described above, but all of them have been based on a method involving large heat generation such as oxygen gas. The carbon dioxide used in the present invention showed a particularly large effect because the reaction between carbon atoms on the carbon fiber surface and carbon dioxide is an endothermic reaction or a slightly exothermic reaction at a temperature exceeding 1,000 ° C. and 1,800 ° C. or less. This is considered to be due to the fact that the treatment can be performed without causing the strength deterioration particularly due to peroxidation or the like.
【0023】[0023]
【実施例】以下実施例により本発明を具体的に説明する
が、本発明の要旨を超えない限り、本発明は実施例に限
定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the present invention.
【0024】実施例1 コールタールピッチより、軟化点300℃かつ偏光顕微
鏡下で観察した光学的異方性割合が95%の紡糸ピッチ
を調製した。これをノズル径0.1mm、孔数4,00
0の紡糸口金を用い、口金温度330℃で溶融紡糸し、
得られた糸径12μmのピッチ繊維にシリコン系の油剤
を付着させ集束した。このピッチ繊維を310℃で30
分間空気中で加熱処理することにより、不融化繊維を得
た。更にこの不融化繊維を窒素ガス中545℃で炭化
し、炭素繊維を得た。この炭素繊維を二酸化炭素を2v
ol%含む窒素ガス雰囲気中に保たれた連続式の加熱炉
中で1,200℃滞留時間20分の条件で加熱処理し
た。Example 1 A spinning pitch having a softening point of 300 ° C. and an optical anisotropy ratio of 95% as observed under a polarizing microscope was prepared from a coal tar pitch. This is 0.1 mm in nozzle diameter and 4,000 holes.
Using a spinneret of 0, melt spinning at a die temperature of 330 ° C.
A silicone-based oil agent was adhered to the obtained pitch fibers having a yarn diameter of 12 μm and bundled. This pitch fiber is treated at 310 ° C. for 30 minutes.
Heat treatment was performed in the air for 1 minute to obtain infusible fibers. Further, the infusibilized fiber was carbonized at 545 ° C. in nitrogen gas to obtain a carbon fiber. This carbon fiber is converted to 2v of carbon dioxide
In a continuous heating furnace maintained in a nitrogen gas atmosphere containing 1% by weight, heat treatment was performed at 1,200 ° C. for a residence time of 20 minutes.
【0025】かくして得られた炭素繊維は、繊維同士の
融着がなく、マトリックスのエポキシ樹脂中に含浸し、
130℃、30分で乾燥、硬化させ該炭素繊維の長手方
向に対する横断面を顕微鏡により観察すると、図1に示
すように単繊維1が、エポキシ樹脂マトリックス2中に
均一に分散し優れた均質性を示した。The carbon fiber thus obtained has no fusion between fibers, and is impregnated in the matrix epoxy resin.
After drying and curing at 130 ° C. for 30 minutes and observing the cross section of the carbon fiber with respect to the longitudinal direction by a microscope, as shown in FIG. 1, the single fiber 1 is uniformly dispersed in the epoxy resin matrix 2 and has excellent homogeneity. showed that.
【0026】また、得られた繊維の単繊維物性及び樹脂
含浸ストランド物性をJIS R−7601の方法によ
り測定したところ下記の通りであった。 単繊維物性 引張り強さ 320 kgf/mm2 引張り弾性率 20tonf/mm2 樹脂含浸ストランド物性 引張り強さ 300 kgf/mm2 引張り弾性率 21tonf/mm2 The physical properties of the single fiber and the resin-impregnated strand of the obtained fiber were measured according to JIS R-7601, and the results were as follows. Monofilament physical properties Tensile strength 320 kgf / mm 2 Tensile elastic modulus 20 tonf / mm 2 Resin impregnated strand physical properties Tensile strength 300 kgf / mm 2 Tensile elastic modulus 21 tonf / mm 2
【0027】実施例2 二酸化炭素を25vol%含む窒素ガス雰囲気中で1,
200℃滞留時間を30分とした以外、実施例1と同様
に実施した。得られた繊維の各種の特性を実施例1と同
様に測定した結果を第1表に示した。Example 2 In a nitrogen gas atmosphere containing 25 vol% of carbon dioxide, 1,
The operation was performed in the same manner as in Example 1 except that the residence time at 200 ° C. was 30 minutes. Various properties of the obtained fiber were measured in the same manner as in Example 1, and the results are shown in Table 1.
【0028】実施例3 実施例2で得られた炭素繊維に対してさらにアルゴンガ
ス中2,150℃、滞留時間0.5分の条件で黒鉛化処
理した。得られた繊維の各種の特性を実施例1と同様に
測定した結果を第1表に示した。Example 3 The carbon fiber obtained in Example 2 was further graphitized in an argon gas at 2,150 ° C. for a residence time of 0.5 minute. Various properties of the obtained fiber were measured in the same manner as in Example 1, and the results are shown in Table 1.
【0029】比較例1 窒素中の二酸化炭素濃度を50vol%、加熱処理温度
を850℃、滞留時間を20分とした以外、実施例1と
同様に実施した。得られた繊維の各種の特性を実施例1
と同様に測定した結果を表1及び図2に示した。Comparative Example 1 The same procedure as in Example 1 was carried out except that the concentration of carbon dioxide in nitrogen was 50 vol%, the heat treatment temperature was 850 ° C., and the residence time was 20 minutes. Various properties of the obtained fiber were measured in Example 1.
Table 1 and FIG. 2 show the results of the measurement in the same manner as in FIG.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【発明の効果】本発明により、解繊性が良好でかつ高ス
トランド強度であり、単繊維自体の強度に匹敵する樹脂
含浸ストランド強度を発現する高ストランド強度炭素繊
維の製造方法を提供できる。According to the present invention, it is possible to provide a method for producing a high-strand-strength carbon fiber which has a good fibrillation property, a high strand strength, and a resin-impregnated strand strength comparable to the strength of the single fiber itself.
【図1】炭素繊維横断面を光学顕微鏡にて観察した視野
の模式図である。FIG. 1 is a schematic view of a visual field obtained by observing a cross section of a carbon fiber with an optical microscope.
【図2】炭素繊維横断面を光学顕微鏡にて観察した視野
の模式図である。FIG. 2 is a schematic view of a visual field obtained by observing a cross section of a carbon fiber with an optical microscope.
1 炭素単繊維 2 マトリックス樹脂 1 carbon single fiber 2 matrix resin
Claims (4)
糸、不融化及び炭化の各工程を経て炭素繊維を製造する
方法において、不融化繊維を炭化したのち二酸化炭素含
有雰囲気中で1,000℃を超え1,800℃以下の温
度で加熱処理することを特徴とする高ストランド強度炭
素繊維の製造方法。1. A method for producing carbon fiber using pitch as a raw material through at least each of melt spinning, infusibilization and carbonization steps, wherein the infusibilized fiber is carbonized and then exceeds 1,000 ° C. in a carbon dioxide-containing atmosphere. A method for producing high-strand-strength carbon fiber, comprising performing heat treatment at a temperature of 1,800 ° C. or less.
を、1,050℃〜1,400℃で行うことを特徴とす
る請求項1記載の高ストランド強度炭素繊維の製造方
法。2. The method for producing high strand strength carbon fiber according to claim 1, wherein the heat treatment in an atmosphere containing carbon dioxide is performed at 1,050 ° C. to 1,400 ° C.
を、1,050℃〜1,400℃、5秒〜90分、及び
二酸化炭素濃度5,000ppm〜70vol%の条件
下で行うことを特徴とする請求項1記載の高ストランド
強度炭素繊維の製造方法。3. The heat treatment in a carbon dioxide-containing atmosphere is performed under the conditions of 1,050 ° C. to 1,400 ° C., 5 seconds to 90 minutes, and carbon dioxide concentration of 5,000 ppm to 70 vol%. The method for producing a high-strand-strength carbon fiber according to claim 1.
あるピッチを原料として用いることを特徴とする請求項
1ないし3のいずれかに記載の高ストランド強度炭素繊
維の製造方法。4. The method for producing high strand strength carbon fiber according to claim 1, wherein a pitch having an optically anisotropic structure ratio of 70% or more is used as a raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11278372A JP2000080524A (en) | 1990-11-21 | 1999-09-30 | Production of carbon fiber having high strand tenacity |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31742690 | 1990-11-21 | ||
JP2-317426 | 1990-11-21 | ||
JP11278372A JP2000080524A (en) | 1990-11-21 | 1999-09-30 | Production of carbon fiber having high strand tenacity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03306400A Division JP3024320B2 (en) | 1990-11-21 | 1991-11-21 | Method for producing high strand strength carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000080524A true JP2000080524A (en) | 2000-03-21 |
Family
ID=26552844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11278372A Pending JP2000080524A (en) | 1990-11-21 | 1999-09-30 | Production of carbon fiber having high strand tenacity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000080524A (en) |
-
1999
- 1999-09-30 JP JP11278372A patent/JP2000080524A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348719A (en) | Process for producing carbon fibers having high strand strength | |
JPH0314624A (en) | Production of carbon yarn | |
US4356158A (en) | Process for producing carbon fibers | |
JP3024319B2 (en) | Method for producing high strand strength carbon fiber | |
JP3024320B2 (en) | Method for producing high strand strength carbon fiber | |
JP2000080524A (en) | Production of carbon fiber having high strand tenacity | |
JP2000080525A (en) | Production of carbon fiber having high strand tenacity | |
JPS60194120A (en) | Production of pitch fiber | |
JP2849156B2 (en) | Method for producing hollow carbon fiber | |
JP3406696B2 (en) | Method for producing high thermal conductivity carbon fiber | |
JP3321913B2 (en) | Method for producing pitch-based carbon fiber | |
JP2817232B2 (en) | Method for producing high-performance carbon fiber | |
JP2678384B2 (en) | Pitch for carbon fiber and method of manufacturing carbon fiber using the same | |
JPS6278220A (en) | Production of ribbon-like carbon fiber | |
JP3291847B2 (en) | Method for producing pitch-based carbon fiber | |
JPS63175122A (en) | Production of carbon fiber tow | |
JPH06146120A (en) | Pitch-based carbon fiber having high strength and high elastic modulus and its production | |
JPS5976925A (en) | Manufacture of pitch-based carbon fiber | |
JP2766530B2 (en) | Method for producing pitch-based carbon fiber | |
JP2766521B2 (en) | Method for producing pitch-based carbon fiber | |
JP3055295B2 (en) | Pitch-based carbon fiber and method for producing the same | |
JP3239490B2 (en) | Optically anisotropic pitch for high compressive strength carbon fiber and method for producing carbon fiber | |
JPH0832974B2 (en) | Method for producing pitch carbon fiber | |
JPS59168125A (en) | Production of carbon fiber | |
JPS60259631A (en) | Production of pitch carbon fiber |