Nothing Special   »   [go: up one dir, main page]

JP2000070933A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JP2000070933A
JP2000070933A JP10241875A JP24187598A JP2000070933A JP 2000070933 A JP2000070933 A JP 2000070933A JP 10241875 A JP10241875 A JP 10241875A JP 24187598 A JP24187598 A JP 24187598A JP 2000070933 A JP2000070933 A JP 2000070933A
Authority
JP
Japan
Prior art keywords
water
cation exchange
exchange resin
pure water
softener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10241875A
Other languages
Japanese (ja)
Other versions
JP3894398B2 (en
Inventor
Makoto Nomura
誠 埜村
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24187598A priority Critical patent/JP3894398B2/en
Publication of JP2000070933A publication Critical patent/JP2000070933A/en
Application granted granted Critical
Publication of JP3894398B2 publication Critical patent/JP3894398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of pure water capable of efficiently producing the pure water having a high-purity water quality such as industrial water for power station, medicines, liquid crystal or semiconductor production plant reducing a chemical amount. SOLUTION: In the method for producing the pure water by decarboxylating raw water after removing polyvalent cation by passing the raw water through a water softening vessel 2 in which a cation exchange resin is filled, moreover separating the resulted water into permeated water and concentrated water by adjusting the water to >= pH 9.5 and passing the water through a reverse osmosis membrane separation device 4 and passing the permeated water through a mixed bed ion exchange device or a cation exchange column and an anion exchange column, the regenerated waste water of the mixed bed ion exchange device or a cation exchange resin of the cation exchange column is made to pass through the water softening vessel 2. And/or the concentrated water of the reverse osmosis membrane separation device 4 is mixed with a regenerated water to the mixed bed ion exchange device or the cation exchange resin of the cation exchange column and neutralized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、純水製造方法に関
する。さらに詳しくは、本発明は、発電所用水、医薬品
用水、液晶や半導体の製造工場の用水などの高純度の水
質を有する純水を、使用薬剤量を節減して効率的に製造
することができる純水製造方法に関する。
[0001] The present invention relates to a method for producing pure water. More specifically, the present invention can efficiently produce pure water having high-purity water quality, such as water for power plants, water for pharmaceuticals, and water for manufacturing liquid crystal and semiconductor factories, by reducing the amount of chemicals used. It relates to a method for producing pure water.

【0002】[0002]

【従来の技術】逆浸透膜を使用して、純水を得る方法は
よく知られている。最近になって、逆浸透膜の給水に酸
又はアルカリを添加してpHを調整し、特にシリカやホウ
素の濃度を低減した純水を得る方法が発明されている。
ところが、給水のpHを高めた場合、給水中にカルシウム
などの硬度成分が多く含まれ、かつ炭酸の濃度が高い場
合には、膜面にスケールの付着などが生じて、透過水量
を減少させるのみならず、イオン除去性能を低下させる
などの問題が生ずる。このために、逆浸透膜装置の前段
に脱気塔を設けて炭酸成分を低減させたり、カチオン交
換樹脂を充填した軟化器を設けて硬度成分を低減させる
ことが行われる。軟化器に充填したカチオン交換樹脂を
H型として用いる場合には、処理水のpHは低くなるの
で、後段の脱気塔での炭酸除去効率を向上することがで
きる。カチオン交換樹脂をH型とする場合には、再生薬
剤として塩酸や硫酸などの強酸を使用する必要があるた
めに、酸廃液が発生する。したがって、カチオン交換樹
脂を充填した軟化器を、硬度成分の除去のみに使用する
場合には、カチオン樹脂をNa型とすることが多い。硬
度成分の除去を目的としてカチオン交換樹脂を充填した
軟化器を設ける場合には、充填するカチオン交換樹脂は
H型とすることも、Na型とすることもできるが、後段
の脱気塔における脱気効率や、逆浸透膜装置へのイオン
負荷を考慮すると、なるべくH型として使用することが
好ましい。しかし、カチオン交換樹脂をH型とすると、
再生排液として発生する酸が問題となる。このために、
イオン交換樹脂の再生に使用する薬剤量を減少し、経済
的かつ効率的に高純度の純水を製造することができる純
水製造方法が求められている。
2. Description of the Related Art A method for obtaining pure water using a reverse osmosis membrane is well known. Recently, a method has been invented in which an acid or an alkali is added to the water supplied to the reverse osmosis membrane to adjust the pH, and in particular, to obtain pure water in which the concentration of silica or boron is reduced.
However, when the pH of the feedwater is increased, if the feedwater contains a lot of hardness components such as calcium and the concentration of carbonic acid is high, scale adheres to the membrane surface, and only the amount of permeated water is reduced. However, there arises a problem that the ion removal performance is lowered. For this purpose, a degassing tower is provided at the preceding stage of the reverse osmosis membrane device to reduce a carbonic acid component, or a softener filled with a cation exchange resin is provided to reduce a hardness component. When the cation exchange resin filled in the softener is used as the H type, the pH of the treated water becomes low, so that the efficiency of removing carbon dioxide in the subsequent degassing tower can be improved. When the cation exchange resin is H-type, an acid waste liquid is generated because it is necessary to use a strong acid such as hydrochloric acid or sulfuric acid as a regenerating agent. Therefore, when the softener filled with the cation exchange resin is used only for removing the hardness component, the cation resin is often of the Na type. When a softener filled with a cation exchange resin is provided for the purpose of removing the hardness component, the cation exchange resin to be charged may be H-type or Na-type. In consideration of the air efficiency and the ion load on the reverse osmosis membrane device, it is preferable to use the H type as much as possible. However, if the cation exchange resin is H-type,
The acid generated as reclaimed effluent is problematic. For this,
There is a need for a pure water production method capable of economically and efficiently producing high-purity pure water by reducing the amount of a drug used for regenerating an ion exchange resin.

【0003】[0003]

【発明が解決しようとする課題】本発明は、発電所用
水、医薬品用水、液晶や半導体の製造工場の用水などの
高純度の水質を有する純水を、使用薬剤量を節減して効
率的に製造することができる純水製造方法を提供するこ
とを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention is intended to efficiently use pure water having high purity water quality such as water for power plants, water for pharmaceuticals, and water for manufacturing liquid crystal and semiconductor factories by reducing the amount of chemicals used. The purpose of the present invention is to provide a method for producing pure water that can be produced.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、原水をカチオン
交換樹脂を充填した軟化器に通して多価カチオンを除去
したのち脱炭酸し、さらにpH9.5以上に調整して逆浸
透膜分離装置に通水して透過水と濃縮水とに分離し、透
過水を混床式イオン交換装置又はカチオン交換塔とアニ
オン交換塔に通水して純水を製造する方法において、混
床式イオン交換装置又はカチオン交換塔のカチオン交換
樹脂の再生排液を軟化器に通液して充填されたカチオン
交換樹脂を再生し、さらに、逆浸透膜分離装置の濃縮水
を混床式イオン交換装置又はカチオン交換塔のカチオン
交換樹脂の再生排液と混合して中和することにより、使
用する薬剤量を大幅に減少し得ることを見いだし、この
知見に基づいて本発明を完成するに至った。すなわち、
本発明は、(1)原水を、カチオン交換樹脂を充填した
軟化器に通して多価カチオンを除去したのち脱炭酸し、
さらにpH9.5以上に調整して逆浸透膜分離装置に通水
して透過水と濃縮水とに分離し、透過水を混床式イオン
交換装置又はカチオン交換塔とアニオン交換塔に通水し
て純水を製造する方法において、混床式イオン交換装置
又はカチオン交換塔のカチオン交換樹脂の再生排液を軟
化器に通液することを特徴とする純水製造方法、及び、
(2)原水を、カチオン交換樹脂を充填した軟化器に通
して多価カチオンを除去したのち脱炭酸し、さらにpH
9.5以上に調整して逆浸透膜分離装置に通水して透過
水と濃縮水とに分離し、透過水を混床式イオン交換装置
又はカチオン交換塔とアニオン交換塔に通水して純水を
製造する方法において、逆浸透膜分離装置の濃縮水を混
床式イオン交換装置又はカチオン交換塔のカチオン交換
樹脂の再生排液と混合して中和することを特徴とする純
水製造方法、を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, raw water was passed through a softener filled with a cation exchange resin to remove polyvalent cations, and then desorbed. Carbonate, further adjust the pH to 9.5 or more, pass through a reverse osmosis membrane separator to separate permeate and concentrated water, and pass the permeate to a mixed bed ion exchanger or cation exchange tower and anion exchange tower. In the method of producing pure water by passing water, the regenerated wastewater of the cation exchange resin of the mixed bed type ion exchange device or cation exchange tower is passed through a softener to regenerate the filled cation exchange resin, and further, It has been found that the amount of drug used can be significantly reduced by mixing and neutralizing the concentrated water of the reverse osmosis membrane separation device with the regenerated effluent of the cation exchange resin in the mixed bed type ion exchange device or cation exchange column. Based on this knowledge The has been completed. That is,
In the present invention, (1) raw water is passed through a softener filled with a cation exchange resin to remove polyvalent cations and then decarbonated,
Further, the pH is adjusted to 9.5 or more, and the water is passed through a reverse osmosis membrane separation device to be separated into permeated water and concentrated water. The permeated water is passed through a mixed-bed ion exchange device or a cation exchange column and an anion exchange column. In the method for producing pure water, a pure water production method characterized by passing a regenerated wastewater of a cation exchange resin of a mixed-bed ion exchange apparatus or a cation exchange tower through a softener, and
(2) Raw water is passed through a softener filled with a cation exchange resin to remove polyvalent cations, and then decarbonated.
Adjusted to 9.5 or more and passed through a reverse osmosis membrane separation device to separate into permeated water and concentrated water, and then pass the permeated water through a mixed bed type ion exchange device or cation exchange column and anion exchange column. A method for producing pure water, wherein concentrated water from a reverse osmosis membrane separation device is mixed with a mixed-bed ion exchange device or a regenerated effluent of a cation exchange resin in a cation exchange column to neutralize the pure water. Method.

【0005】[0005]

【発明の実施の形態】図1(a)は、本発明の純水製造方
法の実施に用いる装置の一態様の構成図であり、図1
(b)は、本発明の純水製造方法におけるイオン交換樹脂
の再生方法の一態様を示す工程系統図である。本態様の
純水製造装置は、前処理装置1、カチオン交換樹脂を充
填した軟化器2、脱気装置3、逆浸透膜分離装置4及び
イオン交換装置5を直列に連結したものである。本発明
方法においては、前処理装置を設け、必要に応じて原水
を前処理することができる。前処理方法に特に制限はな
く、例えば、限外ろ過、精密ろ過などを行うことができ
る。本発明方法においては、原水をカチオン交換樹脂を
充填した軟化器2に通すことにより、カルシウム、マグ
ネシウムなどの多価カチオンを除去する。軟化器に充填
したカチオン交換樹脂は、H型、Na型のいずれともす
ることができるが、イオンリークを抑えて逆浸透膜分離
装置へのイオン負荷を軽減するためには、H型として使
用することが好ましい。軟化器に通水して多価イオンを
除去した処理水は、次いで脱気装置3において脱炭酸を
行う。脱気装置に特に制限はなく、例えば、脱気膜を用
いた脱炭酸装置、減圧脱気塔などを用いることができ
る。多価イオンを除去した処理水には、必要に応じて酸
を添加し、pHを調整する。処理水を酸性にすることによ
り、水中の炭酸イオンを遊離の炭酸とし、 H2CO3 → CO2 + H2O にしたがって脱炭酸することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a configuration diagram of one embodiment of an apparatus used for carrying out the pure water production method of the present invention.
(b) is a process flow chart showing one embodiment of a method for regenerating an ion exchange resin in the pure water production method of the present invention. The pure water production apparatus of the present embodiment has a pretreatment apparatus 1, a softener 2 filled with a cation exchange resin, a deaerator 3, a reverse osmosis membrane separation apparatus 4, and an ion exchange apparatus 5 connected in series. In the method of the present invention, a pretreatment device is provided, and raw water can be pretreated as necessary. The pretreatment method is not particularly limited, and for example, ultrafiltration, microfiltration, or the like can be performed. In the method of the present invention, multivalent cations such as calcium and magnesium are removed by passing raw water through a softener 2 filled with a cation exchange resin. The cation exchange resin filled in the softener can be either H-type or Na-type, but it is used as H-type in order to suppress ion leak and reduce ion load on the reverse osmosis membrane separation device. Is preferred. The treated water from which the polyvalent ions have been removed by passing through the softener is then decarbonated in the deaerator 3. There is no particular limitation on the degassing device, and for example, a decarbonation device using a degassing membrane, a vacuum degassing tower, or the like can be used. Acid is added to the treated water from which polyvalent ions have been removed, if necessary, to adjust the pH. By making the treated water acidic, the carbonate ions in the water can be converted into free carbonic acid, and decarbonated according to H 2 CO 3 → CO 2 + H 2 O.

【0006】脱気塔において脱炭酸された処理水は、pH
を9.5以上に調整し、逆浸透膜分離装置4に供給す
る。pHの調整方法に特に制限はなく、例えば、水酸化ナ
トリウム、水酸化カリウムなどのアルカリ剤を添加する
ことができ、あるいは、強塩基性アニオン交換樹脂と接
触させることもできる。逆浸透膜分離装置に用いる逆浸
透膜は、耐アルカリ性であって、長期的にpH10以上と
なっても劣化を受けないものであることが好ましい。こ
の場合、供給されるアルカリ性の水のpHよりも、濃縮水
の方がpHが高くなるので、濃縮水のpHを考慮して耐アル
カリ性逆浸透膜を選択する必要がある。このような耐ア
ルカリ性逆浸透膜としては、例えば、pH11まで長期耐
久性のあるものとして市販されている Film Tec
社製の FILMTEC type FT30などや、pH
10まで長期耐久性のあるものとして市販されている日
東電工(株)製のES20、ES10、NTR759、東
レ(株)製のSU700などを挙げることができる。逆浸
透膜分離装置は、1段又は多段に設けることができる。
逆浸透膜分離装置の透過水中に含まれるイオンは、過剰
量の水酸化ナトリウムなどのアルカリと、微量のシリカ
とホウ素がほとんどである。逆浸透膜分離装置で除去さ
れずに漏洩したこれらのイオンは、逆浸透膜分離装置の
透過水を後段のイオン交換装置に通水することにより除
去する。イオン交換装置に特に制限はなく、例えば、カ
チオン交換樹脂とアニオン交換樹脂を混合状態で充填し
た混床式イオン交換装置とすることができ、あるいは、
カチオン交換塔とアニオン交換塔を別個に連続して設置
することもできる。カチオン交換塔とアニオン交換塔の
設置順序に特に制限はなく、カチオン交換塔−アニオン
交換塔の順とすることも、アニオン交換塔−カチオン交
換塔の順とすることもできる。
[0006] The treated water decarbonated in the degassing tower has a pH of
Is adjusted to 9.5 or more and supplied to the reverse osmosis membrane separation device 4. There is no particular limitation on the method for adjusting the pH. For example, an alkali agent such as sodium hydroxide or potassium hydroxide can be added, or it can be brought into contact with a strongly basic anion exchange resin. It is preferable that the reverse osmosis membrane used in the reverse osmosis membrane separation device has alkali resistance and does not undergo deterioration even when the pH becomes 10 or more for a long time. In this case, since the concentrated water has a higher pH than the supplied alkaline water, it is necessary to select an alkali-resistant reverse osmosis membrane in consideration of the pH of the concentrated water. As such an alkali-resistant reverse osmosis membrane, for example, Film Tec which is commercially available as having a long-term durability up to pH 11
Company FILMTEC type FT30 and pH
Nitto Denko Corporation's ES20, ES10, NTR759, SURAY's SU700, etc., which are commercially available with a long-term durability of up to 10. The reverse osmosis membrane separation device can be provided in one stage or in multiple stages.
Most of the ions contained in the permeated water of the reverse osmosis membrane separation device are an alkali such as an excessive amount of sodium hydroxide and trace amounts of silica and boron. These ions leaked without being removed by the reverse osmosis membrane separation device are removed by passing the permeated water of the reverse osmosis membrane separation device to a subsequent ion exchange device. There is no particular limitation on the ion exchange device, for example, a mixed bed type ion exchange device in which a cation exchange resin and an anion exchange resin are filled in a mixed state, or
The cation exchange tower and the anion exchange tower may be separately and continuously provided. There is no particular limitation on the order in which the cation exchange tower and the anion exchange tower are installed, and the order may be the cation exchange tower-anion exchange tower or the anion exchange tower-the cation exchange tower.

【0007】イオン交換樹脂は、一定量の採水を経たの
ち、カチオン交換樹脂には酸を、アニオン交換樹脂には
アルカリの薬剤を通水することにより再生を行う。一般
的なイオン交換装置では、この再生排液中には様々なイ
オンが含まれており、塩の形態となっている場合もあ
る。しかし、本発明方法においては、逆浸透膜分離装置
でほとんどのイオンが除去されるので、水酸化ナトリウ
ムの添加によりpH調整を行った場合には、カチオン交換
樹脂への負荷のほとんどはナトリウムイオンであり、ア
ニオン交換樹脂への負荷のほとんどはシリカ及びホウ素
である。したがって、混床式イオン交換装置又はカチオ
ン交換塔のカチオン交換樹脂を塩酸を用いて再生を行う
と、再生排液中に含まれるイオンは、ナトリウムイオン
(Na+)と、塩化物イオン(Cl-)がほとんどであ
る。すなわち、再生排液は、HClとNaClの混合溶
液である。本発明方法においては、混床式イオン交換装
置又はカチオン交換塔のカチオン交換樹脂の再生排液
を、カチオン交換樹脂を充填した軟化器に通液する。軟
化器に充填されたカチオン交換樹脂は、採水時には次式
に示すイオン交換反応により水中のカルシウムなどの多
価イオンを除去する。 {R−H + R−Na}+ Ca2+ → R2−Ca + H
+ + Na+ 混床式イオン交換装置又はカチオン交換塔のカチオン交
換樹脂の再生排液は、上述のごとくHClとNaClの
混合溶液であるので、この再生排液を軟化器に通液する
ことにより、次式に示すイオン交換反応により、軟化器
に充填したカチオン交換樹脂を再生することができる。 R2−Ca + HCl + NaCl → {R−H + R
−Na}+ CaCl2
After a certain amount of water is collected, the ion exchange resin is regenerated by passing an acid through the cation exchange resin and an alkali through the anion exchange resin. In a general ion exchange apparatus, various ions are contained in the regenerated effluent, and may be in the form of a salt. However, in the method of the present invention, since most ions are removed by the reverse osmosis membrane separation device, when the pH is adjusted by adding sodium hydroxide, most of the load on the cation exchange resin is sodium ions. Yes, most of the loading on the anion exchange resin is silica and boron. Therefore, when the cation exchange resin of the mixed bed type ion exchange device or the cation exchange column is regenerated using hydrochloric acid, the ions contained in the regenerated effluent are sodium ion (Na + ) and chloride ion (Cl −). ) Is mostly. That is, the regenerated effluent is a mixed solution of HCl and NaCl. In the method of the present invention, the regenerated effluent of the cation exchange resin in the mixed bed type ion exchange apparatus or cation exchange tower is passed through a softener filled with the cation exchange resin. The cation exchange resin filled in the softener removes polyvalent ions such as calcium in water by the ion exchange reaction shown in the following formula at the time of water sampling. {R-H + R-Na } + Ca 2+ → R 2 -Ca + H
Since the regenerated effluent of the cation exchange resin in the + + Na + mixed-bed ion exchange apparatus or the cation exchange column is a mixed solution of HCl and NaCl as described above, the regenerated effluent is passed through a softener. The cation exchange resin filled in the softener can be regenerated by the ion exchange reaction represented by the following formula. R 2 -Ca + HCl + NaCl → {RH + R
−Na} + CaCl 2

【0008】すなわち、本発明方法によれば、混床式イ
オン交換装置又はカチオン交換塔のカチオン交換樹脂の
再生排液を、カチオン交換樹脂を充填した軟化器の再生
液として利用し、軟化器中のカチオン交換樹脂の大部分
をH型に、また一部は少なくともNa型に効率よく転換
することができる。したがって、従来のごとく軟化器専
用の再生薬剤を使用する必要がなく、再生薬剤の使用量
を節減することが可能となる。また、本発明方法におけ
る逆浸透膜分離装置の濃縮水は、アルカリ排液となって
排出される。本発明方法においては、この濃縮水の一部
を原水として再利用し、残余の濃縮水を混床式イオン交
換装置又はカチオン交換塔のカチオン交換樹脂の再生排
液と混合して中和する。逆浸透膜分離装置の濃縮水は、
混床式イオン交換装置又はカチオン交換塔のカチオン交
換樹脂の再生排液と直接混合して中和することができ、
あるいは、混床式イオン交換装置又はカチオン交換塔の
カチオン交換樹脂の再生排液を軟化器に通液したのち排
出される排液と混合して中和することもできる。本発明
方法によれば、逆浸透膜分離装置の濃縮水と混床式イオ
ン交換装置又はカチオン交換塔のカチオン交換樹脂の再
生排液と混合して中和するので、新たな中和剤を使用す
る必要がなく、薬剤の使用量を節減することが可能とな
る。
That is, according to the method of the present invention, the regenerated effluent of the cation exchange resin of the mixed bed type ion exchange apparatus or the cation exchange column is used as the regenerant of the softener filled with the cation exchange resin. Most of the cation exchange resins can be efficiently converted to H-form and some can be efficiently converted to at least Na-form. Therefore, it is not necessary to use a regenerative medicine dedicated to the softener as in the related art, and it is possible to reduce the amount of the regenerant used. Further, the concentrated water of the reverse osmosis membrane separation device in the method of the present invention is discharged as an alkaline waste liquid. In the method of the present invention, a part of this concentrated water is reused as raw water, and the remaining concentrated water is mixed and neutralized with a mixed-bed ion exchange apparatus or a regenerated effluent of a cation exchange resin in a cation exchange tower. The concentrated water of the reverse osmosis membrane separation device is
It can be directly mixed with the regenerated effluent of the cation exchange resin in the mixed bed type ion exchange device or cation exchange column for neutralization,
Alternatively, the regenerated effluent of the cation exchange resin in the mixed-bed ion exchange apparatus or the cation exchange column can be neutralized by mixing with the effluent discharged after passing through a softener. According to the method of the present invention, the concentrated water of the reverse osmosis membrane separation device is mixed with the regenerated effluent of the cation exchange resin of the mixed bed type ion exchange device or the cation exchange column for neutralization, so that a new neutralizing agent is used. It is not necessary to reduce the amount of medicine used.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 図1(a)に示す構成の純水製造装置を用い、図2に示す
再生方法により純水の製造を行った。使用した装置は、
限外ろ過による前処理装置1、陽イオン交換樹脂[三菱
化学(株)製、DIAION SK1B、200リット
ル]を充填した軟化器2、減圧式の脱気装置3、耐アル
カリ性逆浸透膜[Film Tec社製、FILMTE
C type FT30]を備えた逆浸透膜分離装置4及
びカチオン交換樹脂[バイエル(株)製、Lewatit
SP112、100リットル]とアニオン交換樹脂
[バイエル(株)製、Lewatit M500、100
リットル]を充填した混床式イオン交換装置5をこの順
に直列に連結したものである。この装置に、pH6.8〜
7.3、電気伝導率150μS/cm、カルシウム濃度1
5mg/リットルの原水を、5.6m3/hrで通水した。軟
化器を通過した水の水質は、pH3〜4、電気伝導率15
0〜200μS/cm、カルシウム濃度100〜200μ
g/リットルであった。脱気装置において脱炭酸した水
に、水酸化ナトリウム水溶液を添加してpHを10.3に
調整し、逆浸透膜分離装置に供給した。逆浸透膜分離装
置の透過水の量は5.0m3/hrであり、水質は、pH9.
7〜10.0、電気伝導率20〜30μS/cm、カルシ
ウム濃度10μg/リットル以下であった。混床式イオ
ン交換装置を通過して得られた純水の水質は、pH7、比
抵抗17MΩ・cm以上、カルシウム濃度1μg/リット
ル以下であった。純水830m3を製造したのち、混床
式イオン交換装置及び軟化器の再生を行った。混床式イ
オン交換装置に充填したカチオン交換樹脂とアニオン交
換樹脂を水力分級し、カチオン交換樹脂は下部より5重
量%塩酸を樹脂1リットル当たりHCl100gとなる
よう通液し、アニオン交換樹脂は上部より4重量%水酸
化ナトリウム水溶液を樹脂1リットル当たりNaOH1
00gとなるように通液して再生した。カチオン交換樹
脂の再生排液は、全量を軟化器に通液して、充填したカ
チオン交換樹脂を再生した。軟化器より排出される排液
は、逆浸透膜分離装置の濃縮水と混合して中和した。次
いで、混床式イオン交換装置及び軟化器の洗浄を行っ
た。混床式イオン交換装置は流出する水の比抵抗が15
MΩ・cm以上になるまで純水を通水し、軟化器は流出す
る水の電気伝導率が10μS/cm以下になるまで混床式
イオン交換装置の洗浄水を通水した。洗浄に用いた純水
の量は、1.1m3であった。洗浄終了後、同じ原水を
5.6m3/hrで通水して、純水の製造を再開した。各工
程における水質は初回と同じであり、得られた純水の水
質も、pH7、比抵抗17MΩ・cm以上、カルシウム濃度
1μg/リットル以下で、同様に初回と同じであった。
この状態で、次回の再生まで、純水830m3を製造す
ることができた。 比較例1 実施例1に用いた図1(a)に示す構成の純水製造装置
は、操業当初は図3に示す再生方法、すなわち塩化ナト
リウム水溶液を用いて軟化器の再生を行い、純水を製造
していた。原水の水質は、実施例1と同じ、pH6.8〜
7.3、電気伝導率150μS/cm、カルシウム濃度1
5mg/リットルであり、通水速度も実施例1と同じ5.
6m3/hrであった。この再生方式では、純水700m3
を製造したのちに、混床式イオン交換装置と軟化器の再
生を行った。混床式イオン交換装置に充填したカチオン
交換樹脂とアニオン交換樹脂を水力分級し、カチオン交
換樹脂は下部より5重量%塩酸を樹脂1リットル当たり
HCl100gとなるよう通液し、アニオン交換樹脂は
上部より4重量%水酸化ナトリウム水溶液を樹脂1リッ
トル当たりNaOH100gとなるように通液して再生
した。軟化器には、10重量%塩化ナトリウム水溶液を
樹脂1リットル当たりNaCl150gとなるよう通液
して、充填したカチオン交換樹脂をNa型に再生した。
さらに、混床式イオン交換装置は流出する水の比抵抗が
15MΩ・cm以上になるまで純水を通水し、軟化器は流
出する水の電気伝導率が10μS/cm以下になるまで純
水を通水して洗浄した。洗浄に用いた純水の量は、1.
6m3であった。純水の製造において、軟化器を通過し
た水の水質は、pH7.0〜7.5、電気伝導率120〜1
50μS/cm、カルシウム濃度300〜500μg/リ
ットルであった。脱気装置を通した水に、水酸化ナトリ
ウム水溶液を添加してpHを10.3に調整し、逆浸透膜
分離装置に供給した。逆浸透膜分離装置の透過水の量は
5.0m3/hrであり、水質は、pH9.7〜10.0、電気
伝導率20〜25μS/cm、カルシウム濃度10μg/
リットル以下であった。混床式イオン交換装置を通過し
て得られた純水の水質は、pH7、比抵抗17MΩ・cm以
上、カルシウム濃度1μg/リットル以下であった。 比較例2 その後、実施例1に用いた図1(a)に示す構成の純水製
造装置の再生方法を図4に示す方式、すなわち塩酸を用
いて軟化器の再生を行う方法に変更して純水を製造し
た。原水の水質は、実施例1と同じ、pH6.8〜7.3、
電気伝導率150μS/cm、カルシウム濃度15mg/リ
ットルであり、通水速度も実施例1と同じ5.6m3/hr
であった。この再生方式では、純水850m3を製造し
たのちに、混床式イオン交換装置と軟化器の再生を行っ
た。混床式イオン交換装置に充填したカチオン交換樹脂
とアニオン交換樹脂を水力分級し、カチオン交換樹脂は
下部より5重量%塩酸を樹脂1リットル当たりHCl1
00gとなるよう通液し、アニオン交換樹脂は上部より
4重量%水酸化ナトリウム水溶液を樹脂1リットル当た
りNaOH100gとなるように通液して再生した。軟
化器には、5重量%塩酸を樹脂1リットル当たりHCl
50gとなるよう通液して、充填したカチオン交換樹脂
をH型に再生した。さらに、混床式イオン交換装置は流
出する水の比抵抗が15MΩ・cm以上になるまで純水を
通水し、軟化器は流出する水の電気伝導率が10μS/
cm以下になるまで純水を通水して洗浄した。洗浄に用い
た純水の量は、2.0m3であった。純水の製造におい
て、軟化器を通過した水の水質は、pH2.8〜3.3、電
気伝導率170〜200μS/cm、カルシウム濃度50
〜100μg/リットルであった。脱気装置を通して脱
炭酸した水に、水酸化ナトリウム水溶液を添加してpHを
10.3に調整し、逆浸透膜分離装置に供給した。逆浸
透膜分離装置の透過水の量は5.0m3/hrであり、水質
は、pH9.7〜10.0、電気伝導率25〜35μS/c
m、カルシウム濃度10μg/リットル以下であった。
混床式イオン交換装置を通過して得られた純水の水質
は、pH7、比抵抗17MΩ・cm以上、カルシウム濃度1
μg/リットル以下であった。実施例1及び比較例1〜
2の薬剤と洗浄水の使用量及び樹脂再生1回当たりの純
水製造量を第1表に、各工程ごとの水量及び水質を第2
表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Using a pure water production apparatus having the configuration shown in FIG. 1A, pure water was produced by the regeneration method shown in FIG. The equipment used was
Pretreatment device 1 by ultrafiltration, softener 2 filled with cation exchange resin [DIAION SK1B, 200 liters, manufactured by Mitsubishi Chemical Corporation], depressurization type deaerator 3, alkali-resistant reverse osmosis membrane [Film Tec] Manufactured by FILMTE
C type FT30] and a reverse osmosis membrane separator 4 and a cation exchange resin [Lewatit, manufactured by Bayer Corp.]
SP112, 100 liters] and an anion exchange resin [Lewatit M500, 100 manufactured by Bayer K.K.]
Liter] are connected in series in this order. PH 6.8 ~
7.3, electric conductivity 150 μS / cm, calcium concentration 1
Raw water of 5 mg / liter was passed at 5.6 m 3 / hr. The quality of the water passed through the softener is pH 3-4, electric conductivity 15
0-200 μS / cm, calcium concentration 100-200 μ
g / liter. An aqueous solution of sodium hydroxide was added to the water decarbonated in the deaerator to adjust the pH to 10.3, and then supplied to a reverse osmosis membrane separator. The amount of permeated water of the reverse osmosis membrane separation device is 5.0 m 3 / hr, and the water quality is pH 9.5.
7 to 10.0, the electric conductivity was 20 to 30 μS / cm, and the calcium concentration was 10 μg / liter or less. The quality of pure water obtained by passing through the mixed bed type ion exchange device was pH 7, specific resistance of 17 MΩ · cm or more, and calcium concentration of 1 μg / liter or less. After producing 830 m 3 of pure water, the mixed-bed ion exchanger and the softener were regenerated. The cation-exchange resin and the anion-exchange resin charged in the mixed-bed type ion-exchange apparatus are subjected to hydrostatic classification. A 4% by weight aqueous solution of sodium hydroxide is added to NaOH
The mixture was regenerated by passing the liquid to a volume of 00 g. The entire drainage of the cation exchange resin was passed through a softener to regenerate the filled cation exchange resin. The effluent discharged from the softener was mixed with the concentrated water of the reverse osmosis membrane separator to neutralize it. Next, the mixed bed type ion exchange device and the softener were washed. The mixed bed ion exchanger has a specific resistance of the outflowing water of 15
Pure water was allowed to flow until the pressure became MΩ · cm or more, and the softener passed through the washing water of the mixed bed type ion exchange device until the electric conductivity of the outflowing water became 10 μS / cm or less. The amount of pure water used for washing was 1.1 m 3 . After the washing, the same raw water was passed at 5.6 m 3 / hr, and the production of pure water was restarted. The water quality in each step was the same as the first time, and the water quality of the obtained pure water was the same as the first time at pH 7, specific resistance of 17 MΩ · cm or more, and calcium concentration of 1 μg / liter or less.
In this state, 830 m 3 of pure water could be produced until the next regeneration. Comparative Example 1 The pure water producing apparatus having the configuration shown in FIG. 1A used in Example 1 initially regenerated the softener using the sodium chloride aqueous solution shown in FIG. Had been manufactured. Raw water quality is the same as in Example 1, pH 6.8 ~
7.3, electric conductivity 150 μS / cm, calcium concentration 1
5 mg / liter, and the water flow rate was the same as in Example 1.
It was 6 m 3 / hr. In this regeneration method, 700 m 3 of pure water is used.
After the production of, the regeneration of the mixed bed ion exchanger and the softener was performed. The cation-exchange resin and the anion-exchange resin charged in the mixed-bed type ion-exchange apparatus are subjected to hydrostatic classification. A 4% by weight aqueous solution of sodium hydroxide was passed through so that 100 g of NaOH per 1 liter of the resin was passed through to regenerate. A 10% by weight aqueous solution of sodium chloride was passed through the softener at a rate of 150 g of NaCl per liter of the resin to regenerate the filled cation exchange resin into a Na type.
Further, the mixed bed type ion exchange device allows pure water to flow until the specific resistance of the outflowing water becomes 15 MΩ · cm or more, and the softener supplies pure water until the electric conductivity of the outflowing water becomes 10 μS / cm or less. Water was passed through to wash. The amount of pure water used for cleaning was 1.
It was 6 m 3 . In the production of pure water, the quality of the water that passed through the softener was pH 7.0 to 7.5, and the electrical conductivity was 120 to 1.
The concentration was 50 μS / cm and the calcium concentration was 300 to 500 μg / liter. An aqueous sodium hydroxide solution was added to the water passed through the deaerator to adjust the pH to 10.3, and then supplied to a reverse osmosis membrane separator. The amount of permeated water in the reverse osmosis membrane separator is 5.0 m 3 / hr, and the water quality is pH 9.7 to 10.0, electric conductivity 20 to 25 μS / cm, and calcium concentration 10 μg / hr.
Liters or less. The quality of pure water obtained by passing through the mixed bed type ion exchange device was pH 7, specific resistance of 17 MΩ · cm or more, and calcium concentration of 1 μg / liter or less. Comparative Example 2 After that, the regeneration method of the pure water production apparatus having the configuration shown in FIG. 1A used in Example 1 was changed to a method shown in FIG. 4, that is, a method of regenerating a softener using hydrochloric acid. Pure water was produced. Raw water quality was the same as in Example 1, pH 6.8-7.3,
The electric conductivity is 150 μS / cm, the calcium concentration is 15 mg / liter, and the water flow rate is 5.6 m 3 / hr, the same as in Example 1.
Met. In this regeneration method, after producing 850 m 3 of pure water, regeneration of the mixed-bed ion exchanger and the softener was performed. The cation-exchange resin and the anion-exchange resin charged in the mixed-bed type ion-exchange apparatus are subjected to hydrostatic classification.
The anion exchange resin was regenerated by passing a 4% by weight aqueous solution of sodium hydroxide from the top so that the amount of NaOH was 100 g per liter of the resin. In the softener, 5% by weight hydrochloric acid is added to HCl per liter of resin.
The cation exchange resin was refilled into H-form by passing the solution to 50 g. Further, the mixed bed type ion exchange device allows pure water to flow until the specific resistance of the outflowing water becomes 15 MΩ · cm or more, and the softener has an electric conductivity of 10 μS /
The substrate was washed by passing pure water until the size became not more than cm. The amount of pure water used for washing was 2.0 m 3 . In the production of pure water, the quality of the water passed through the softener is pH 2.8-3.3, electric conductivity 170-200 μS / cm, calcium concentration 50
100100 μg / liter. An aqueous sodium hydroxide solution was added to the decarbonated water through a degasser to adjust the pH to 10.3, and then supplied to a reverse osmosis membrane separator. The amount of permeated water of the reverse osmosis membrane separation device is 5.0 m 3 / hr, and the water quality is pH 9.7 to 10.0, electric conductivity 25 to 35 μS / c.
m, calcium concentration was 10 μg / liter or less.
The quality of pure water obtained by passing through the mixed bed type ion exchanger is pH 7, specific resistance 17 MΩ · cm or more, and calcium concentration 1
μg / liter or less. Example 1 and Comparative Examples 1 to
Table 1 shows the amount of chemicals and washing water used and the amount of pure water produced per resin regeneration, and Table 2 shows the amount of water and water quality for each process.
It is shown in the table.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】第1表に見られるように、混床式イオン交
換装置のカチオン交換樹脂の再生排液を軟化器に通液
し、充填したカチオン交換樹脂を再生した実施例1で
は、塩化ナトリウム水溶液又は塩酸を用いて軟化器を再
生した比較例1及び比較例2に比べて、再生用薬剤の使
用量が少ないので、使用薬剤量の節減を図るとともに、
薬剤の廃棄量も減少することができる。また、実施例1
では、軟化器に充填したカチオン交換樹脂のH型比率が
高くなるために、塩化ナトリウム水溶液を用いて再生し
た比較例1に比べて採水量が大きく、採水時間を長くし
て樹脂再生1回当たりについての純水製造量を増加する
ことができる。また、軟化器の再生に使用した酸性の再
生排液を、逆浸透膜分離装置の濃縮水の中和に用いるこ
とにより、薬剤の使用量をさらに減少することができ
る。第2表に見られるように、実施例1において、軟化
器通過水のカルシウム濃度は、塩酸を用いて再生した比
較例2の軟化器通過水のカルシウム濃度より高いが、塩
化ナトリウム水溶液を用いて再生した比較例1の軟化器
通過水のカルシウム濃度より低く、逆浸透膜分離装置及
び混床式イオン交換装置で処理することにより、純度が
十分に高い純水を得ることができる。
As can be seen from Table 1, in Example 1, in which the regenerated effluent of the cation exchange resin of the mixed bed type ion exchange apparatus was passed through a softener to regenerate the filled cation exchange resin, an aqueous sodium chloride solution was used. Or, compared with Comparative Example 1 and Comparative Example 2 in which the softener was regenerated using hydrochloric acid, the amount of the regenerating agent used was small, so that the amount of the used agent was reduced,
Drug waste can also be reduced. Example 1
Since the H-type ratio of the cation exchange resin filled in the softener was increased, the amount of water taken was larger than that of Comparative Example 1 which was regenerated using an aqueous solution of sodium chloride. The per-pure pure water production can be increased. Further, by using the acidic regenerated effluent used for regenerating the softener for neutralization of the concentrated water in the reverse osmosis membrane separation device, the amount of drug used can be further reduced. As can be seen from Table 2, in Example 1, the calcium concentration in the water passed through the softener was higher than the calcium concentration in the water passed through the softener in Comparative Example 2 regenerated using hydrochloric acid. Pure water having a sufficiently high purity can be obtained by treating with a reverse osmosis membrane separation device and a mixed-bed ion exchange device that is lower than the calcium concentration of the regenerated softener passing water of Comparative Example 1.

【0013】[0013]

【発明の効果】本発明方法によれば、混床式イオン交換
装置又はカチオン交換塔のカチオン交換樹脂の再生排液
を軟化器に通液し、充填したカチオン交換樹脂を再生す
ることにより、再生用薬剤の使用量を節減することがで
きる。また、軟化器に充填したカチオン交換樹脂のH型
比率が高くなるために、採水量を大きくとることができ
る。この結果、軟化器の採水時間を長くしたり、充填す
るカチオン交換樹脂の量を減らして軟化器を小型化する
ことが可能となる。また、軟化器に充填したカチオン交
換樹脂の再生に使用した再生排液を、逆浸透膜分離装置
の濃縮水の中和に用いることにより、さらに使用する薬
剤量を低減することができる。
According to the method of the present invention, the regeneration effluent of the cation exchange resin in the mixed bed type ion exchange apparatus or cation exchange tower is passed through a softener to regenerate the filled cation exchange resin, thereby regenerating the cation exchange resin. The amount of medicine used can be reduced. Further, since the H-type ratio of the cation exchange resin filled in the softener increases, the amount of water taken can be increased. As a result, it is possible to lengthen the water sampling time of the softener and to reduce the amount of the cation exchange resin to be filled, thereby reducing the size of the softener. Further, by using the regenerated effluent used for regenerating the cation exchange resin filled in the softener for neutralization of the concentrated water in the reverse osmosis membrane separation device, the amount of the drug used can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の純水製造方法の実施に用いる
装置の一態様の構成図及びイオン交換樹脂の再生方法の
一態様を示す工程系統図である。
FIG. 1 is a structural diagram of one embodiment of an apparatus used for carrying out the pure water production method of the present invention and a process flow diagram showing one embodiment of a method of regenerating an ion exchange resin.

【図2】図2は、実施例1における再生方法を示す系統
図である。
FIG. 2 is a system diagram illustrating a reproducing method according to the first embodiment.

【図3】図3は、比較例1における再生方法を示す系統
図である。
FIG. 3 is a system diagram showing a reproducing method in Comparative Example 1.

【図4】図4は、比較例2における再生方法を示す系統
図である。
FIG. 4 is a system diagram showing a reproducing method in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 前処理装置 2 軟化器 3 脱気装置 4 逆浸透膜分離装置 5 イオン交換装置 DESCRIPTION OF SYMBOLS 1 Pre-processing apparatus 2 Softener 3 Deaerator 4 Reverse osmosis membrane separation apparatus 5 Ion exchange apparatus

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/20 C02F 1/20 A 1/44 1/44 J Fターム(参考) 4D006 GA03 HA95 KA64 KB11 KB17 PA01 PB27 PC01 PC02 PC42 4D025 AA02 AA04 AB18 AB19 BA08 BA13 BB04 BB09 CA03 CA04 CA05 CA10 DA01 DA05 4D037 AA03 AB11 BA23 BB07 CA03 CA15 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) C02F 1/20 C02F 1/20 A 1/44 1/44 J F Term (Reference) 4D006 GA03 HA95 KA64 KB11 KB17 PA01 PB27 PC01 PC02 PC42 4D025 AA02 AA04 AB18 AB19 BA08 BA13 BB04 BB09 CA03 CA04 CA05 CA10 DA01 DA05 4D037 AA03 AB11 BA23 BB07 CA03 CA15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原水を、カチオン交換樹脂を充填した軟化
器に通して多価カチオンを除去したのち脱炭酸し、さら
にpH9.5以上に調整して逆浸透膜分離装置に通水して
透過水と濃縮水とに分離し、透過水を混床式イオン交換
装置又はカチオン交換塔とアニオン交換塔に通水して純
水を製造する方法において、混床式イオン交換装置又は
カチオン交換塔のカチオン交換樹脂の再生排液を軟化器
に通液することを特徴とする純水製造方法。
(1) Raw water is passed through a softener filled with a cation exchange resin to remove polyvalent cations, then decarbonated, adjusted to pH 9.5 or more, and passed through a reverse osmosis membrane separator to be permeated. Water and concentrated water are separated, and in a method of producing pure water by passing permeated water through a mixed-bed ion exchange apparatus or a cation exchange tower and an anion exchange tower, a mixed-bed ion exchange apparatus or a cation exchange tower is used. A method for producing pure water, comprising passing a regenerated effluent of a cation exchange resin through a softener.
【請求項2】原水を、カチオン交換樹脂を充填した軟化
器に通して多価カチオンを除去したのち脱炭酸し、さら
にpH9.5以上に調整して逆浸透膜分離装置に通水して
透過水と濃縮水とに分離し、透過水を混床式イオン交換
装置又はカチオン交換塔とアニオン交換塔に通水して純
水を製造する方法において、逆浸透膜分離装置の濃縮水
を混床式イオン交換装置又はカチオン交換塔のカチオン
交換樹脂の再生排液と混合して中和することを特徴とす
る純水製造方法。
2. Raw water is passed through a softener filled with a cation exchange resin to remove polyvalent cations, decarbonated, adjusted to pH 9.5 or more, and passed through a reverse osmosis membrane separation apparatus to be permeated. Water and concentrated water are separated, and the permeated water is passed through a mixed-bed ion exchange device or a cation exchange column and an anion exchange column to produce pure water. A method for producing pure water, comprising mixing with a regenerated effluent of a cation exchange resin in a cation exchange tower or a cation exchange column for neutralization.
JP24187598A 1998-08-27 1998-08-27 Pure water production method Expired - Fee Related JP3894398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24187598A JP3894398B2 (en) 1998-08-27 1998-08-27 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24187598A JP3894398B2 (en) 1998-08-27 1998-08-27 Pure water production method

Publications (2)

Publication Number Publication Date
JP2000070933A true JP2000070933A (en) 2000-03-07
JP3894398B2 JP3894398B2 (en) 2007-03-22

Family

ID=17080842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24187598A Expired - Fee Related JP3894398B2 (en) 1998-08-27 1998-08-27 Pure water production method

Country Status (1)

Country Link
JP (1) JP3894398B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424311A1 (en) * 2001-09-06 2004-06-02 Nitto Denko Corporation Method of multi-stage reverse osmosis treatment
US6870303B2 (en) * 2002-05-08 2005-03-22 Pohang University Of Science And Technology Foundation Multi-mode vibration damping device and method using negative capacitance shunt circuits
KR100758461B1 (en) * 2001-12-19 2007-09-14 주식회사 포스코 Method for reuse of wastewater in continuous electroplating lines
JP2008058314A (en) * 2006-08-30 2008-03-13 Wacker Chemie Ag Nondefective polysilicon molding and method for testing polysilicon molding without contamination nor destruction
JP2012183487A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment method and water treatment system
JP2012245439A (en) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2013158251A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culturing method
WO2018203548A1 (en) * 2017-05-01 2018-11-08 日産化学株式会社 Method for preparing anionic macromolecular compound exhibiting improved water solubility
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method
JP2020182899A (en) * 2019-05-07 2020-11-12 株式会社東芝 Water treatment apparatus
JP2021016806A (en) * 2019-07-17 2021-02-15 オルガノ株式会社 Ion exchange resin regenerant production method and device, ion exchange resin regeneration process, and ion exchange resin regeneration system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424311A1 (en) * 2001-09-06 2004-06-02 Nitto Denko Corporation Method of multi-stage reverse osmosis treatment
EP1424311A4 (en) * 2001-09-06 2005-09-14 Nitto Denko Corp Method of multi-stage reverse osmosis treatment
KR100758461B1 (en) * 2001-12-19 2007-09-14 주식회사 포스코 Method for reuse of wastewater in continuous electroplating lines
US6870303B2 (en) * 2002-05-08 2005-03-22 Pohang University Of Science And Technology Foundation Multi-mode vibration damping device and method using negative capacitance shunt circuits
JP2008058314A (en) * 2006-08-30 2008-03-13 Wacker Chemie Ag Nondefective polysilicon molding and method for testing polysilicon molding without contamination nor destruction
JP2011095268A (en) * 2006-08-30 2011-05-12 Wacker Chemie Ag Method for testing shaped polysilicon body without contamination nor destruction, and nondefective shaped polysilicon body
JP2012183487A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment method and water treatment system
JP2012245439A (en) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2013158251A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culturing method
JPWO2018203548A1 (en) * 2017-05-01 2020-03-12 日産化学株式会社 Preparation method of anionic polymer compound having improved water solubility
WO2018203548A1 (en) * 2017-05-01 2018-11-08 日産化学株式会社 Method for preparing anionic macromolecular compound exhibiting improved water solubility
JP7124820B2 (en) 2017-05-01 2022-08-24 日産化学株式会社 Method for preparing anionic polymer compound with improved water solubility
US11555080B2 (en) 2017-05-01 2023-01-17 Nissan Chemical Corporation Method for preparing anionic macromolecular compound exhibiting improved water solubility
JP2020124668A (en) * 2019-02-04 2020-08-20 株式会社東芝 Water treatment system and water treatment method
JP7106465B2 (en) 2019-02-04 2022-07-26 株式会社東芝 Water treatment system and water treatment method
JP2020182899A (en) * 2019-05-07 2020-11-12 株式会社東芝 Water treatment apparatus
WO2020226039A1 (en) * 2019-05-07 2020-11-12 株式会社 東芝 Water treatment apparatus
JP7237714B2 (en) 2019-05-07 2023-03-13 株式会社東芝 water treatment equipment
JP2021016806A (en) * 2019-07-17 2021-02-15 オルガノ株式会社 Ion exchange resin regenerant production method and device, ion exchange resin regeneration process, and ion exchange resin regeneration system
JP7272884B2 (en) 2019-07-17 2023-05-12 オルガノ株式会社 METHOD AND APPARATUS FOR PRODUCTION OF REGENERATED LIQUID FOR ION EXCHANGE RESIN, METHOD FOR REGENERATING ION EXCHANGE RESIN, AND SYSTEM FOR RECOVERING ION EXCHANGE RESIN

Also Published As

Publication number Publication date
JP3894398B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US3589999A (en) Deionization process
JP2017205703A (en) Water treatment method and equipment, and method for regenerating ion exchange resin
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP2000070933A (en) Production of pure water
JPH02227185A (en) Removal of dissolved silica
JP2002192152A (en) Method and apparatus for water treatment
KR101258730B1 (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
JPH07299454A (en) Membrane treating device
JP5673225B2 (en) Water treatment method and water treatment system
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
CN112079491A (en) Recycling system for regenerated wastewater of multiple beds
JP2008081791A (en) Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water
JPH09122643A (en) Method for treating waste water from ion exchange resin regeneration and its apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP4110604B2 (en) Fluorine-containing water treatment method
JP3885319B2 (en) Pure water production equipment
JP3951200B2 (en) Pure water production equipment
JP3536294B2 (en) Pure water production method
JP2000301146A (en) Deionizer
JP5640825B2 (en) Water treatment method and water treatment system
JP6061446B2 (en) Water treatment method and water treatment system
JP2001219161A (en) Water cleaning apparatus
JP5023809B2 (en) Electrolysis method of aqueous sodium chloride solution
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees