JP2000054023A - Production of cast member made of shape memory alloy and cast member - Google Patents
Production of cast member made of shape memory alloy and cast memberInfo
- Publication number
- JP2000054023A JP2000054023A JP10220362A JP22036298A JP2000054023A JP 2000054023 A JP2000054023 A JP 2000054023A JP 10220362 A JP10220362 A JP 10220362A JP 22036298 A JP22036298 A JP 22036298A JP 2000054023 A JP2000054023 A JP 2000054023A
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- memory alloy
- casting
- cast
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、パイプ継手などの
締結部材として実用される形状記憶合金製鋳造部材の製
造方法と、この方法によって得られる鋳造部材に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a cast member made of a shape memory alloy which is used as a fastening member such as a pipe joint, and a cast member obtained by the method.
【0002】[0002]
【従来の技術】形状記憶合金としては、Ti−Ni合
金、Cu−Zn−Al、Cu−Al−Ni等の銅系合
金、Fe−Mn−Si−Cr等の鉄系合金が知られてい
る(例えば、「金属」1983年3月号38頁)。これ
らの形状記憶合金を利用する部材の製造に当たっては、
従来一般に溶製・造塊した素材を主として熱間で鍛造、
圧延、押し出し、引き抜きなどの工程を経て板または棒
(線)状の中間加工品とするか、或いは更にこれに冷間
での圧延、引き抜きなどの加工を加えて中間加工品とし
た上で、これに更に切断、曲げ、切削、溶接などの仕上
げ加工を通して製品に加工されているのが普通であっ
た。元来、加工性があまり良好とはいえない一般の形状
記憶合金素材に対して特に中間加工品を得るまでに行う
種々の加工工程は、これらの合金による製品価格を大幅
に押し上げる要因となっており、高価であることはこれ
ら合金の用途に対しても大きな制限を与える原因を成し
ていた。2. Description of the Related Art As a shape memory alloy, a copper alloy such as Ti-Ni alloy, Cu-Zn-Al or Cu-Al-Ni, and an iron alloy such as Fe-Mn-Si-Cr are known. (For example, "Metal", March 1983, p. 38). In producing members utilizing these shape memory alloys,
Conventionally, forged and ingot materials are generally hot forged,
Rolling, extruding, drawing, etc. to make an intermediate processed product in the form of a plate or a rod (line), or by further processing such as cold rolling, drawing, etc. into an intermediate processed product, In addition, products are usually processed into products through finishing processes such as cutting, bending, cutting, and welding. Originally, the various processing steps performed before obtaining an intermediate processed product, especially for general shape memory alloy materials with poor workability, are factors that greatly increase the product price of these alloys. In addition, the high cost has caused a great limitation on the use of these alloys.
【0003】最近になって、この中間加工品に至る加工
工程を大幅に簡略化する方法として、溶解した形状記憶
合金を最終製品に近い形状の鋳型に直接鋳込んでしまう
画期的な製造方法が見いだされている(特願平9−08
3655号)。この方法によれば、例えば内径50mm以
下のパイプを製造する場合には、1300℃以上の温度
で溶解した形状記憶合金を仕上がり形状に近い所定の形
状を持つ鋳型に流し込み、冷却後、600〜1000℃
の熱処理を施した後、冷間で変形を加えれば目的のもの
が作製できる。また、内径100mm以上の比較的大きい
円筒形状のパイプ継手を製造する場合には、1300℃
以上の温度で溶解した形状記憶合金を高速回転している
鋼鉄製のドラムの中に流し込み、固めた後に600〜1
000℃程度の熱処理を施し、冷間で変形を加えれば目
的のものが作製できる。Recently, as a method of greatly simplifying the processing steps leading to the intermediate processed product, an epoch-making manufacturing method in which a molten shape memory alloy is directly cast into a mold having a shape close to the final product. Have been found (Japanese Patent Application No. 9-08
No. 3655). According to this method, for example, when manufacturing a pipe having an inner diameter of 50 mm or less, a shape memory alloy melted at a temperature of 1300 ° C. or more is poured into a mold having a predetermined shape close to a finished shape, and after cooling, 600 to 1000 ° C
After performing the heat treatment described above, the desired product can be produced by applying a cold deformation. Further, when manufacturing a relatively large cylindrical pipe joint having an inner diameter of 100 mm or more, 1300 ° C.
The shape memory alloy melted at the above temperature is poured into a steel drum rotating at a high speed and solidified.
A target product can be produced by performing a heat treatment at about 000 ° C. and deforming it cold.
【0004】このような方法によれば、鍛造、圧延、押
し出し、引き抜きなどの熱間、冷間工程はもとより、曲
げ、溶接などの仕上げ加工工程の一部さえも省略するこ
とができ、製造コストを著しく低減することが可能とな
り、形状記憶合金の利用範囲を大幅に拡げる可能性のあ
ることが期待されている。According to such a method, not only hot and cold steps such as forging, rolling, extrusion and drawing, but also a part of finishing steps such as bending and welding can be omitted, and the manufacturing cost can be reduced. Is expected to be significantly reduced, and the range of use of the shape memory alloy is expected to be greatly expanded.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
鋳造法によって形状記憶合金製鋳造部材を製造する場
合、形状回復性能を付与するために実施する冷間での変
形の際、ある頻度で部材に割れが発生することが明らか
になってきた。すなわち、一般に冷却速度の場所的相違
などによって凝固時に形成される「引け巣」と呼ばれる
鋳造欠陥がある場合は勿論であるが、そのような鋳造欠
陥のない、鋳造品としては健全と思われる部材において
もある頻度での部材の割れ発生が避けられないことが明
らかになってきた。そこで発明者らは、鋳造品としては
健全な部材において発生する冷間変形時の割れについて
調査した結果、これらの割れの生じる部材の微細組織に
は、数百μmの正常な結晶粒の中に数十μm程度の金属
間化合物相が存在していることを確認した。この相は正
常な相よりも硬くて延性を持たないため、冷間での変形
の際に割れを生じる起点として働いていることが分かっ
た。However, when a shape memory alloy cast member is manufactured by the above-mentioned casting method, the member is frequently applied to the member at a certain frequency during cold deformation performed to impart shape recovery performance. It has become clear that cracking occurs. That is, of course, there are casting defects called "shrinkage cavities" which are generally formed during solidification due to differences in the cooling rate, etc., but there are no such casting defects, and members considered to be sound as cast products. It has become clear that cracking of the member at a certain frequency cannot be avoided. Therefore, the present inventors have investigated cracks during cold deformation that occur in a sound member as a cast product, and found that the microstructure of the member in which these cracks occur is within a few hundred μm of normal crystal grains. It was confirmed that an intermetallic compound phase of about several tens μm was present. Since this phase was harder and less ductile than the normal phase, it was found that it worked as a starting point for cracking during cold deformation.
【0006】冷間で与える変形量が4%程度であれば割
れの発生しない場合もあり得るが、7%以上の変形を与
えるとほとんどの部材がこのような小さな硬い相を起点
とする割れを発生していた。また、上記鋳造法で製造さ
れた締結部材は、降伏強度及び引張強度が低く、形状記
憶効果による収縮を利用して一旦締結したものが、その
後の使用環境における振動等により外れやすくなるとい
う問題も生じていた。[0006] If the amount of deformation given in the cold is about 4%, cracking may not occur, but if deformation of 7% or more is given, most members will crack starting from such a small hard phase. Had occurred. Further, there is also a problem that the fastening member manufactured by the above casting method has a low yield strength and a low tensile strength, and the one that is once fastened by utilizing shrinkage due to the shape memory effect is easily released due to vibration in a subsequent use environment. Had occurred.
【0007】そこで、本発明は鋳造により製造する形状
記憶合金鋳造部材とその製造方法に関して、下記2点の
解決を実現させることを目的とした。 (1)鋳造後の冷間加工で割れの生じない形状記憶合金
製鋳造部材とその製造方法を提供すること。 (2)降伏強度と引張強度の高い、鋳造による形状記憶
合金製鋳造部材とその製造方法を提供すること。Therefore, an object of the present invention is to achieve the following two solutions with respect to a shape memory alloy cast member manufactured by casting and a method of manufacturing the same. (1) To provide a cast member made of a shape memory alloy which does not crack by cold working after casting and a method of manufacturing the same. (2) To provide a cast member made of a shape memory alloy by casting and having a high yield strength and a high tensile strength and a method of manufacturing the same.
【0008】[0008]
【課題を解決するための手段および発明の実施の形態】
上記の2つの課題を解決するため本発明が採用した形状
記憶合金鋳造部材の製造工程は、基本的には次の4つの
実施形態をとる。 溶融→鋳造→冷却→1060℃〜1200℃熱処理→
冷却→冷間変形(冷間拡径) 溶融→鋳造→1060℃〜1200℃熱処理→冷却→
冷間変形(冷間拡径) 溶融→円筒形状に鋳造→1060〜1200℃加熱後
600℃までの間で熱間加工→冷却→冷間変形(冷間拡
径) 溶融→円筒形状に鋳造→熱間加工→600〜1050
℃熱処理→冷却→冷間変形(冷間拡径)Means for Solving the Problems and Embodiments of the Invention
The manufacturing process of the shape memory alloy cast member adopted by the present invention to solve the above two problems basically takes the following four embodiments. Melting → Casting → Cooling → Heat treatment from 1060 ° C to 1200 ° C →
Cooling → Cold deformation (cold expansion) Melting → Casting → Heat treatment from 1060 ° C to 1200 ° C → Cooling →
Cold deformation (cold expansion) Melting → Casting into cylindrical shape → Hot working up to 600 ° C after heating at 1060 to 1200 ° C → Cooling → Cold deformation (cold expanding) Melting → Casting into cylindrical shape → Hot working → 600 to 1050
℃ heat treatment → cooling → cold deformation (cold expansion)
【0009】まず、第1の発明から詳しく説明する。所
望の成分からなる形状記憶合金を溶融した後、これを仕
上がり形状に近い形の締結部材に鋳造する。鋳造方式
は、砂型鋳造、ロストワックス、シェルモールド、遠心
鋳造等の方法のいずれでも良い。本発明では鋳造後の冷
却速度は特に問題にしない。徐冷、急冷にかかわらず鋳
造後の冷却過程では量の多少はあるが金属間化合物が存
在することを避けるのは困難だからである。さらに、こ
の金属間化合物は主としてMnとSiから成り、溶融状
態から凝固する過程の比較的初期の段階で形成されると
考えられ、一旦生成した金属間化合物は、冷却過程の一
定温度以下ではマトリクス中に再び溶解して消失する傾
向にあるものの、一般の冷却過程では完全に消失には至
らずに残存してしまうものである。First, the first invention will be described in detail. After melting the shape memory alloy comprising the desired component, it is cast into a fastening member having a shape close to the finished shape. The casting method may be any of sand casting, lost wax, shell molding, centrifugal casting and the like. In the present invention, the cooling rate after casting does not particularly matter. This is because it is difficult to avoid the presence of intermetallic compounds in the cooling process after casting regardless of slow cooling or rapid cooling, although the amount is small. Furthermore, it is considered that this intermetallic compound is mainly composed of Mn and Si, and is formed at a relatively early stage of the process of solidifying from a molten state. Although it tends to dissolve again and disappear, it will remain without completely disappearing in a general cooling process.
【0010】形状記憶合金は、事前に冷間で変形を与え
ておくことにより、次に加熱されたときにその変形と逆
の方向への動作を形状回復として得ることができる。そ
のため冷間での変形は必須である。冷間変形時の割れは
この金属間化合物を起点に発生していた。発明者らは、
このような金属間化合物を消失させるために1060〜
1200℃の熱処理が有効であることを見いだした。こ
れが第1の発明である。すなわち、溶融後仕上がり形状
に近い素部材に鋳造して室温まで冷却した形状記憶合金
を、1060〜1200℃の熱処理を10分以上、3時
間以下行うことにより、金属間化合物を消失させる方法
である。When the shape memory alloy is previously deformed in a cold state, an operation in a direction opposite to the deformation when heated next time can be obtained as shape recovery. Therefore, cold deformation is essential. Cracks at the time of cold deformation originated from this intermetallic compound. The inventors have
In order to make such intermetallic compounds disappear,
It has been found that a heat treatment at 1200 ° C. is effective. This is the first invention. That is, this method is a method in which an intermetallic compound is eliminated by performing a heat treatment at 1060 to 1200 ° C. for 10 minutes or more and 3 hours or less on a shape memory alloy that has been cast into an element member having a finished shape after melting and cooled to room temperature. .
【0011】熱処理温度を1060℃以上としたのは、
1060℃未満では、先に述べた金属間化合物が少量で
はあるが存在するためであり、加熱温度の上限を120
0℃としたのは、1200℃を超えると材料の降伏強度
が低下し、締結部材として十分な強度を維持できないた
めである。また、処理時間を10分以上としたのは10
分未満だと材料全体が十分加熱されず、金属間化合物が
残存する危険性があるためであり、3時間以下としたの
は、3時間を超えると結晶粒の粗大化が起こり、材料の
降伏強度が低下するためである。The reason why the heat treatment temperature is set to 1060 ° C. or more is as follows.
If the temperature is lower than 1060 ° C., the above-mentioned intermetallic compound is present in a small amount.
The reason why the temperature is set to 0 ° C. is that if the temperature exceeds 1200 ° C., the yield strength of the material decreases, and sufficient strength as a fastening member cannot be maintained. The reason why the processing time is set to 10 minutes or more is 10 minutes.
If the heating time is less than 3 minutes, the entire material is not sufficiently heated, and there is a risk that the intermetallic compound may remain. The reason why the heating time is 3 hours or less is that if the heating time exceeds 3 hours, the crystal grains become coarse and the material yields. This is because the strength is reduced.
【0012】以上の如く第1の発明は、鋳造後一旦室温
まで冷却し、熱処理によって金属間化合物を再溶解させ
る方法である。As described above, the first invention is a method of once cooling to room temperature after casting and re-dissolving the intermetallic compound by heat treatment.
【0013】次に、鋳造後室温までの冷却を省き、冷却
途中で熱処理を実施する第2の発明のようにしても、金
属間化合物の溶解は支障無く行われる。鋳造された素形
材が保有している顕熱を有効に利用できるので、こちら
の方が実用上の利点は大きいともいえる。ただ、特に遠
心鋳造の場合のように鋳込み寸法を最終製品寸法よりか
なり大きく(特に肉厚に関して大きく)作るケースで
は、熱処理前に鋳造上がりの形状から粗加工を実施し
て、製品仕上がり寸法に近い形状にした上で熱処理を行
う方が良い場合もあり、このケースでは鋳造後に一度室
温まで冷却する第1の発明に従って、粗加工を実施した
後に熱処理をする方法の方が有効となることも希でな
い。Next, even if the cooling to room temperature is omitted after the casting, and the heat treatment is performed during the cooling, the dissolution of the intermetallic compound can be performed without any trouble. Since the sensible heat possessed by the cast shaped material can be used effectively, it can be said that this has a greater practical advantage. However, in cases where the casting size is significantly larger than the final product size (especially with respect to wall thickness), such as in the case of centrifugal casting, rough processing is performed from the finished shape before heat treatment, and it is close to the finished product size. In some cases, it is better to perform the heat treatment after forming the shape. In this case, it is rarely effective to perform the heat treatment after performing the roughing according to the first invention in which the casting is once cooled to room temperature. Not.
【0014】第3の発明について以下に詳しく述べる。
まず、所望の成分からなる形状記憶合金を溶解した後、
これを仕上がり形状に近い円筒形状の締結部材に鋳造す
る。鋳造方式は、砂型鋳造、ロストワックス、シェルモ
ールド、遠心鋳造等の方法のいずれでも良いが、異方性
のない円筒形状の部材を鋳造するには、遠心鋳造法が最
も適している。鋳造後、1060〜1200℃の温度で
10分以上、3時間以下加熱した後熱間加工を行う。熱
間加工とは、例えばリング圧延やリング鍛造などのこと
を指す。リング圧延は図1に示すように、円筒1の内側
と外側に圧延ロール2を挿入し圧延するものである。温
度を1060〜1200℃とした理由及び加熱時間を1
0分〜3時間とした理由は、第1の発明で説明した理由
と全く同じである。また、熱間加工を行う理由は以下に
示す二つである。The third invention will be described in detail below.
First, after melting the shape memory alloy consisting of the desired components,
This is cast into a cylindrical fastening member close to the finished shape. The casting method may be any of sand casting, lost wax, shell mold, centrifugal casting and the like, but centrifugal casting is most suitable for casting a cylindrical member having no anisotropy. After casting, it is heated at a temperature of 1060 to 1200 ° C for 10 minutes or more and 3 hours or less, and then hot-worked. Hot working refers to, for example, ring rolling or ring forging. In the ring rolling, as shown in FIG. 1, rolling rolls 2 are inserted into the inside and outside of a cylinder 1 to perform rolling. The reason for setting the temperature to 1060 to 1200 ° C. and the heating time to 1
The reason for 0 minute to 3 hours is exactly the same as the reason explained in the first invention. The reasons for performing hot working are the following two.
【0015】遠心鋳造は一般に製品の肉厚に対し、外径
側には約1.5mm、内径側には約3mm程度厚く製造し、
後工程のいずれかの段階で内外を切削加工して製品に仕
上げるのが普通である。これらの切削除去される部分
は、凸凹やミクロな偏析があって通常はそのまま製品に
しては好ましくないとされている。しかし、熱間で圧延
加工を行いかつ適切な熱処理を加えれば、これらの部分
も製品として遜色のない状態に改質できることが明らか
になった。遠心鋳造材のような円筒状の素材を熱間加工
するにはリング圧延が最も適しており、この工程により
素材歩留まりを著しく向上させることができるからであ
る。これが第1の理由である。In general, centrifugal casting is manufactured to be about 1.5 mm thicker on the outer diameter side and about 3 mm thicker on the inner diameter side with respect to the thickness of the product.
It is common to cut the inside and outside at any stage of the post-process to finish the product. These portions to be removed by cutting have irregularities and micro-segregation, and are usually considered to be undesirable as products. However, it has become clear that these parts can be reformed to a comparable state as a product by performing hot rolling and appropriate heat treatment. This is because ring rolling is most suitable for hot working a cylindrical material such as a centrifugally cast material, and this step can significantly improve the material yield. This is the first reason.
【0016】第2の理由は、遠心鋳造法により製造した
材料の鋳造組織を熱間加工により全て破壊し、加熱によ
り再結晶した結晶粒を引き延ばし、細かく分断すること
により降伏強度及び引張強度の高い材料を得るためであ
る。仕上り形状が円筒である場合、円筒に圧延を施すた
めにはリング圧延が適している。600℃以上の温度で
仕上げる理由は、円筒形状に鋳造した形状記憶合金に円
筒の形状を記憶させるためである。これより低い温度で
は形状の記憶が不十分で回復時の収縮率(拡径した場
合)が小さくなるためである。The second reason is that the cast structure of the material produced by the centrifugal casting method is completely destroyed by hot working, and the crystal grains recrystallized by heating are stretched and finely divided, thereby increasing the yield strength and tensile strength. To get the material. When the finished shape is a cylinder, ring rolling is suitable for rolling the cylinder. The reason for finishing at a temperature of 600 ° C. or more is to memorize the shape of the cylinder in the shape memory alloy cast into a cylindrical shape. If the temperature is lower than this, the memory of the shape is insufficient and the shrinkage ratio (when the diameter is expanded) at the time of recovery becomes small.
【0017】尚、円筒形状とは、径が途中で異なる異径
円筒や径が連続的に変化し、テーパーのついた形状のも
のも本発明に含まれることは明らかである。また、断面
が多角形をしているなど真円でない中空の筒について
も、本発明より容易に想像がつくことも明らかである。It is clear that the present invention includes a cylindrical shape having a different diameter and a diameter varying continuously along the way, and a tapered shape is also included in the present invention. It is also clear that a hollow cylinder having a non-circular shape such as a polygonal cross section can be easily imagined from the present invention.
【0018】第4の発明は第3の発明において熱間加工
の仕上げ温度条件を規定しない製造方法である。加工前
の加熱条件や仕上がり温度が600℃未満となったよう
な場合でも、円筒の形状を記憶させる処理(形状記憶処
理)として600℃以上1050℃以下の温度で熱処理
を施せば、締結部材として実用に供せるものとなる。6
00℃以上の温度での加熱は、円筒形状に鋳造した形状
記憶合金に円筒の形状を記憶させるものである。600
℃以上としたのは、これより低い温度では形状の記憶が
不十分で回復時の収縮率(拡径した場合)が小さくなる
ためである。1050℃以下としたのは、これを超える
と材料の降伏強度が著しく低下し、締結後の使用環境に
おける振動等で締結部がはずれやすくなるためである。
加熱時間を10分〜3時間とした理由は、10分未満で
は材料全体が十分に加熱されず、形状の記憶が不十分で
あるためであり、3時間以下としたのは、これを超える
長時間の熱処理は、3時間以下の熱処理に比較して特段
の効果はなく、不必要だからである。A fourth invention is a manufacturing method according to the third invention, wherein the finishing temperature conditions for hot working are not specified. Even if the heating conditions before processing and the finishing temperature are lower than 600 ° C., if the heat treatment is performed at a temperature of 600 ° C. or more and 1050 ° C. or less as a process for storing the shape of the cylinder (shape memory process), the member as a fastening member It will be practical. 6
Heating at a temperature of 00 ° C. or more causes the shape memory alloy cast into a cylindrical shape to memorize the shape of the cylinder. 600
The reason why the temperature is set to not less than ° C. is that at a temperature lower than this, the memory of the shape is insufficient and the shrinkage rate at the time of recovery (when the diameter is expanded) becomes small. The reason why the temperature is set to 1050 ° C. or less is that if the temperature exceeds this, the yield strength of the material is significantly reduced, and the fastening portion is likely to come off due to vibrations in the use environment after fastening.
The reason why the heating time is set to 10 minutes to 3 hours is that if the heating time is less than 10 minutes, the entire material is not sufficiently heated and the shape memory is insufficient. This is because heat treatment for a long time has no particular effect compared with heat treatment for 3 hours or less and is unnecessary.
【0019】第1〜4の発明における形状記憶合金とし
ては、Fe−Mn−Si系の形状記憶合金が好ましい。
第5の発明は、第1〜4のいずれかの発明にFe−Mn
−Si系の形状記憶合金を用いた製造方法である。Fe
−Mn−Si系形状記憶合金とは、Mn:10〜40重
量%、Si:4〜7重量%、Cr:0〜15重量%、N
i:0〜15重量%、残部Feを主成分として成る合金
であり、好ましくは、例えば、Fe−32Mn−6Si
合金、Fe−28Mn−6Si−5Cr合金、Fe−2
0Mn−5Si−8Cr−5Ni合金、Fe−16Mn
−5Si−12Cr−7.5Cr合金等(数字は重量%
を示す)、Fe−Mn−Siをベースとした合金に、耐
食性向上のためCrやNiを添加した合金のことを指
す。Fe−Mn−Si系の形状記憶合金を用いる理由
は、直径100mm以上の大型の円筒型締結部材を作製す
る場合、TiNiやCu−Zn−Al、Cu−Al−N
i等の他の形状記憶合金に比べ素材コストが安いため、
大量生産に特に適しているためである。As the shape memory alloy in the first to fourth inventions, an Fe-Mn-Si based shape memory alloy is preferable.
The fifth invention is directed to any one of the first to fourth inventions, wherein Fe-Mn is used.
This is a manufacturing method using a Si-based shape memory alloy. Fe
—Mn—Si based shape memory alloys are Mn: 10 to 40% by weight, Si: 4 to 7% by weight, Cr: 0 to 15% by weight, N
i: an alloy containing 0 to 15% by weight and the balance being Fe as a main component, preferably, for example, Fe-32Mn-6Si
Alloy, Fe-28Mn-6Si-5Cr alloy, Fe-2
0Mn-5Si-8Cr-5Ni alloy, Fe-16Mn
-5Si-12Cr-7.5Cr alloy etc.
), And an alloy obtained by adding Cr or Ni for improving corrosion resistance to an alloy based on Fe-Mn-Si. The reason for using the Fe-Mn-Si based shape memory alloy is that when manufacturing a large cylindrical fastening member with a diameter of 100 mm or more, TiNi, Cu-Zn-Al, Cu-Al-N
Because the material cost is lower than other shape memory alloys such as i,
This is because it is particularly suitable for mass production.
【0020】第6の発明は、第1〜5のいずれかの発明
に示した製造方法を用いて製造した、締結信頼性が高
く、かつ、安価な形状記憶合金製鋳造部材である。A sixth aspect of the present invention is an inexpensive shape memory alloy cast member having high fastening reliability and manufactured by using the manufacturing method according to any one of the first to fifth aspects.
【0021】第7の発明は、第1、または第2の発明に
よって製造した形状記憶合金製鋳造部材であって、円筒
形状をした形状記憶合金製鋳造部材である。Fe−Mn
−Si系形状記憶合金のような面心立方構造の合金では
〈100〉方向が最大の結晶成長速度を持ち、この方向
に主幹(第1アーム)が発達し、次に2次アーム、3次
アームと枝分かれが進み凝固して行く。本発明材の凝固
組織の特徴は、図2に円筒の断面図を示すように樹枝状
の凝固組織3が円筒の外側から内側に向かって(矢印
4)形成されており、かつ、鋳造部材全体の組成が均一
で、金属間化合物などのマトリクスと異なる別の組成の
物質が混在していないことである。本鋳造部材は冷間加
工時に割れを生じないという利点を有する。A seventh invention is a shape memory alloy cast member manufactured according to the first or second invention, which is a cylindrical shape memory alloy cast member. Fe-Mn
In an alloy having a face-centered cubic structure such as a Si-based shape memory alloy, the <100> direction has the maximum crystal growth rate, and the main trunk (first arm) develops in this direction, and then the secondary arm and the tertiary arm The arm and the branch progress and solidify. The solidification structure of the material of the present invention is characterized in that a dendritic solidification structure 3 is formed from the outside to the inside of the cylinder (arrow 4) as shown in the cross-sectional view of the cylinder in FIG. Is homogeneous, and a substance having another composition different from the matrix such as an intermetallic compound is not mixed. This cast member has the advantage that it does not crack during cold working.
【0022】[0022]
【実施例】(実施例1)Fe−28Mn−6Si−5C
r(数字は重量%)の形状記憶合金を100kg大気炉で
溶製した後、ロストワックス法、シェルモールド法、遠
心鋳造法、砂型法の4種類の方法によって種々のサイズ
の円筒形締結部材を製造した。表1に鋳造方法、作製し
た円筒の寸法と鋳造後の加熱温度及び、冷却後の冷間変
形の変形率(内径の拡径率)、変形時の割れの有無、形
状回復時の収縮率、円筒の材料の一部から取った試験片
により調べた降伏強度を示した。尚、備考欄には方法の
視点から各実施例がどの発明に該当しているかを示し
た。本発明の方法で得られた部材は、比較例と比べて、
いずれも割れの発生がなく、良好な仕上がりを示すこと
が分かった。また、鋳造後に熱間圧延(リング圧延)を
施した部材では降伏強度が向上していることが分かっ
た。(Example 1) Fe-28Mn-6Si-5C
After melting r (weight%) shape memory alloy in a 100 kg atmosphere furnace, cylindrical fastening members of various sizes are produced by four methods: lost wax method, shell mold method, centrifugal casting method, and sand mold method. Manufactured. Table 1 shows the casting method, dimensions of the produced cylinder, heating temperature after casting, deformation rate of cold deformation after cooling (expansion rate of inner diameter), presence or absence of cracks during deformation, shrinkage rate at shape recovery, Yield strength as determined by specimens taken from a part of the material of the cylinder is indicated. The remarks column indicates which invention each embodiment corresponds to from the viewpoint of the method. The member obtained by the method of the present invention, compared with the comparative example,
It was found that there was no occurrence of cracks in each case and a good finish was exhibited. Further, it was found that the yield strength was improved in the member subjected to hot rolling (ring rolling) after casting.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【発明の効果】本発明に関わる形状記憶合金製部材の製
造方法によれば、次の効果が得られる。 (1)鋳造後、形状記憶合金としての冷間加工で標準的
な7%以上の変形量を伴う強加工においても割れが発生
せず、十分な形状回復の得られる形状記憶合金製部材が
得られる。 (2)材料の降伏強度・引張強度が高く締結後の信頼性
の高い形状記憶合金製部材が得られる。 (3)内径100mm以上の大型の円筒形形状記憶合金製
部材が安価に大量生産可能となる。According to the method of manufacturing a shape memory alloy member according to the present invention, the following effects can be obtained. (1) After casting, a shape memory alloy member is obtained which does not crack even in strong working with a standard deformation of 7% or more in cold working as a shape memory alloy, and which can obtain sufficient shape recovery. Can be (2) It is possible to obtain a shape memory alloy member having high yield strength and tensile strength of the material and high reliability after fastening. (3) Large-sized cylindrical shape memory alloy members having an inner diameter of 100 mm or more can be mass-produced at low cost.
【図1】本発明の第3と第4の発明に関わるリング圧延
の概略図である。FIG. 1 is a schematic view of ring rolling according to third and fourth inventions of the present invention.
【図2】本発明の第7の発明に関わる(a)円筒形状の
形状記憶合金製鋳造部材の結晶組織と凝固の方向を表す
断面図、及び(b)結晶組織の部分拡大図である。FIGS. 2A and 2B are a cross-sectional view showing a crystal structure and a direction of solidification of a cylindrical shape memory alloy casting member according to a seventh embodiment of the present invention, and FIG. 2B is a partially enlarged view of the crystal structure.
1…形状記憶合金鋳造円筒 2…圧延ロール 3…樹枝状の結晶組織 4…凝固の方向 DESCRIPTION OF SYMBOLS 1 ... Circular cylinder of shape memory alloy 2 ... Rolling roll 3 ... Dendritic crystal structure 4 ... Direction of solidification
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田巻 耐 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 丸山 忠克 東京都千代田区神田小川町2−3−13 M &Cビル4F 淡路産業株式会社内 (72)発明者 都丸 光紀 東京都千代田区神田小川町2−3−13 M &Cビル4F 淡路産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tanaki withstand 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Tadakatsu Maruyama 2-3-3 Kanda Ogawamachi, Chiyoda-ku, Tokyo 13M & C Building 4F Awaji Sangyo Co., Ltd. (72) Inventor Mitsuki Tomaru 2-3-13 Kanda Ogawamachi, Chiyoda-ku, Tokyo M & C Building 4F Awaji Sangyo Co., Ltd.
Claims (7)
近い素部材に鋳造した後室温まで冷却し、1060℃以
上、1200℃以下の温度で10分以上、3時間以下加
熱し、次に室温まで冷却した後に冷間で変形を付与する
ことを特徴とする形状記憶合金製鋳造部材の製造方法。1. Casting a molten shape memory alloy into an elementary member having a shape close to the finished shape, cooling to room temperature, heating at a temperature of 1060 ° C. to 1200 ° C. for 10 minutes to 3 hours, and then to room temperature A method for producing a cast member made of a shape memory alloy, wherein a deformation is imparted in a cold state after cooling.
近い素部材に鋳造した後、鋳造温度から室温までの冷却
途中において、1060℃以上、1200℃以下の温度
で10分以上、3時間以下加熱し、次に室温まで冷却し
た後に冷間で変形を付与することを特徴とする形状記憶
合金製鋳造部材の製造方法。2. After the molten shape memory alloy is cast into an element member having a shape close to the finished shape, heating is performed at a temperature of 1060 ° C. or more and 1200 ° C. or less for 10 minutes or more and 3 hours or less during cooling from the casting temperature to room temperature. A method for manufacturing a cast member made of a shape memory alloy, wherein the member is cooled to room temperature and then deformed in a cold state.
した後、1060℃以上、1200℃以下の温度で10
分以上、3時間以下加熱した直後に600℃以上で終了
するように熱間加工し、次に室温まで冷却した後に冷間
で変形を付与することを特徴とする形状記憶合金製鋳造
部材の製造方法。3. After the molten shape memory alloy is cast into a cylindrical shape, the temperature is raised to a temperature of 1060 ° C. or more and 1200 ° C. or less.
Production of a shape memory alloy cast member, characterized in that hot working is performed immediately after heating for at least 600 minutes or more immediately after heating for not less than minutes and not more than 3 hours, and then deformation is imparted cold after cooling to room temperature. Method.
した後、1060℃以上、1200℃以下の温度で10
分以上、3時間以下加熱した直後に熱間加工し、次い
で、600℃以上、1050℃以下の温度で10分以
上、3時間以下加熱し、次に室温まで冷却した後に冷間
で変形を付与することを特徴とする形状記憶合金製鋳造
部材の製造方法。4. After the molten shape memory alloy is cast into a cylindrical shape, it is heated at a temperature of not less than 1060 ° C. and not more than 1200 ° C.
Immediately after heating for not less than min and not more than 3 hours, then hot working at a temperature of not less than 600 ° C and not more than 1050 ° C for not less than 10 minutes and not more than 3 hours, and then cool to room temperature and then apply deformation in the cold A method for producing a shape memory alloy cast member.
形状記憶合金である請求項1〜4のいずれか1項に記載
の形状記憶合金製鋳造部材の製造方法。5. The method for manufacturing a shape memory alloy cast member according to claim 1, wherein the shape memory alloy is an Fe—Mn—Si based shape memory alloy.
た製造方法によって製造された形状記憶合金製鋳造部
材。6. A shape memory alloy cast member manufactured by the manufacturing method according to claim 1. Description:
に向かって形成された円筒形状をした鋳造部材であっ
て、かつ、金属間化合物から成る相が結晶組織中に混在
していないことを特徴とする形状記憶合金製鋳造部材。7. A cylindrical cast member in which a dendritic solidification structure is formed from the outside to the inside of the cylinder, and a phase composed of an intermetallic compound is not mixed in the crystal structure. A cast member made of a shape memory alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10220362A JP2000054023A (en) | 1998-08-04 | 1998-08-04 | Production of cast member made of shape memory alloy and cast member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10220362A JP2000054023A (en) | 1998-08-04 | 1998-08-04 | Production of cast member made of shape memory alloy and cast member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000054023A true JP2000054023A (en) | 2000-02-22 |
Family
ID=16749957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10220362A Pending JP2000054023A (en) | 1998-08-04 | 1998-08-04 | Production of cast member made of shape memory alloy and cast member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000054023A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7112302B2 (en) | 2003-05-23 | 2006-09-26 | Yoshimi Inc. | Methods for making shape memory alloy products |
JP2010185110A (en) * | 2009-02-12 | 2010-08-26 | Nippon Steel Corp | Method of producing iron-based shape memory alloy section |
-
1998
- 1998-08-04 JP JP10220362A patent/JP2000054023A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7112302B2 (en) | 2003-05-23 | 2006-09-26 | Yoshimi Inc. | Methods for making shape memory alloy products |
JP2010185110A (en) * | 2009-02-12 | 2010-08-26 | Nippon Steel Corp | Method of producing iron-based shape memory alloy section |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003268513A (en) | Method of molding magnesium alloy | |
JP2011111657A (en) | Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part | |
JP2007210017A (en) | Forged road wheel made of aluminum alloy, and manufacturing method therefor | |
JP4776751B2 (en) | Magnesium alloy sheet manufacturing method | |
JP2001288517A (en) | Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING | |
KR102423774B1 (en) | MANUFACTURING METHOD OF EXTRUDED Mg-Bi BASED MAGNESIUM ALLOY HAVING IMPROVED MECHANICAL PROPERTY VIA WARM HOMOGENIZATION HEAT TREATMENT | |
JP2004322206A (en) | Method for manufacturing magnesium alloy billet for semi-solidified forming | |
JP2000054023A (en) | Production of cast member made of shape memory alloy and cast member | |
JP3852915B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP2003126943A (en) | Manufacturing method of magnesium alloy slab for hot- rolling and method for hot-rolling magnesium alloy | |
JP2000087199A (en) | Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product | |
JP2807151B2 (en) | Hot upsetting forging | |
JPWO2004106577A1 (en) | Manufacturing method of high strength and superplastic material | |
JPH06248402A (en) | Production of member made of magnesium alloy | |
JPH1036943A (en) | Manufacture of iron-manganese-silicon shape memory alloy | |
JP6975421B2 (en) | Aluminum alloy manufacturing method | |
JP2007308780A (en) | Method for controlling structure of magnesium alloy, magnesium alloy with controlled structure, and wheel for vehicle | |
JPH04235261A (en) | Manufacture of co-base alloy stock | |
JP2003136198A (en) | Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine | |
JPH02294454A (en) | Manufacture of forging made of al alloy | |
JP3881793B2 (en) | Hot forging method for mold steel or tool steel | |
JP2002361399A (en) | Casting and forging method for aluminum alloy, and aluminum alloy for casting and forging | |
JPH0366387B2 (en) | ||
JP3380032B2 (en) | Method for producing high-strength steel wire with excellent drawability | |
JP2024134927A (en) | Manufacturing method of hollow member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051004 |