Nothing Special   »   [go: up one dir, main page]

JP2000047103A - Adjusting method of projection optical system - Google Patents

Adjusting method of projection optical system

Info

Publication number
JP2000047103A
JP2000047103A JP10226497A JP22649798A JP2000047103A JP 2000047103 A JP2000047103 A JP 2000047103A JP 10226497 A JP10226497 A JP 10226497A JP 22649798 A JP22649798 A JP 22649798A JP 2000047103 A JP2000047103 A JP 2000047103A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
adjusting
wavefront
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10226497A
Other languages
Japanese (ja)
Inventor
Toshihiko Ozawa
稔彦 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10226497A priority Critical patent/JP2000047103A/en
Publication of JP2000047103A publication Critical patent/JP2000047103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a projection optical system adjusting method capable of attaining comparatively high working efficiency and a comparatively high image forming performance. SOLUTION: As for the method for adjusting the projection optical system for forming a pattern image on an original plate onto photosensitive agent on a substrate, the method comprises a 1st process (a) for measuring the wave surface of radiation passing through the projection optical system, 2nd processes (d) to (f) for executing an image forming simulation in the projection optical system based on the measurement data on the wave surface and the adjustment quantity of the projection optical system so as to obtain an image forming evaluation quantity and then calculating the adjustment quantity required when the image forming evaluation quantity is put into the prescribed extent and a 3rd process (g) for adjusting the projection optical system based on the calculated adjustment quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体や液晶ディ
スプレー等の回路の製造に用いる投影露光装置における
投影光学系の調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting a projection optical system in a projection exposure apparatus used for manufacturing circuits such as semiconductors and liquid crystal displays.

【0002】[0002]

【従来の技術】従来より、投影露光装置の投影光学系を
調整するとき、実際に所定のパターンを投影光学系を介
して所定の露光条件で結像させながら投影光学系の調整
を行っている。すなわち、投影光学系を介したレジスト
像や空間像等の像を観察して、その像に発生する収差か
ら調整すべきレンズとその調整量を求め、それに基づい
て調整を行う。図10にて、従来の投影光学系の調整手
順について説明する。まず、投影光学系を介したレジス
ト像や空間像等の像を測定する(図10のu)。そし
て、その像の収差量を求める(同v)。次に、その収差
量に基づいて、調整すべきレンズ(調整手順)と、その
間隔補正量を計算で求める(同w)。そして、この計算
値に基づいてレンズを修正し(同g)、レジスト像を測
定する(同h)。この測定値が、予め定められた規格を
満足する場合には(同i)、その投影光学系は完成品と
して、露光装置に組み込まれる(同j)。これに対し
て、測定値が規格を満足しない場合には(同i)、その
測定値(同h)から再度収差量を求める(同v)。その
後、レジスト像の測定値が規格を満足し、投影光学系が
完成品となるまで、同図v〜iを繰り返す。ここで、規
格は、その投影光学系が組み込まれる露光装置に要求さ
れる精度等により決定されるものである。次に、図11
にて、従来の調整方法にて調整した投影光学系の像高と
諸収差との関係を示す。同図の横軸は像高を表し、縦軸
は収差量を表す。なお、縦軸の収差量の単位は、任意単
位である。点Aは球面収差を表し、線Bはコマ収差を表
し、線Cは非点収差を表し、線Dは像面湾曲を表し、線
Eは歪曲収差を表している。また収差の他に、同図の線
Rは、波面のRMSを各像高毎に表示したものである。
2. Description of the Related Art Conventionally, when adjusting the projection optical system of a projection exposure apparatus, the projection optical system is adjusted while actually forming a predetermined pattern under a predetermined exposure condition through the projection optical system. . That is, an image such as a resist image or an aerial image is observed through a projection optical system, a lens to be adjusted and an adjustment amount thereof are obtained from aberrations generated in the image, and adjustment is performed based on the lens. With reference to FIG. 10, a procedure for adjusting a conventional projection optical system will be described. First, an image such as a resist image or an aerial image via the projection optical system is measured (u in FIG. 10). Then, the aberration amount of the image is obtained (v). Next, based on the aberration amount, a lens to be adjusted (adjustment procedure) and an interval correction amount are calculated (w). Then, the lens is corrected based on the calculated value (g), and the resist image is measured (h). When the measured value satisfies a predetermined standard (i), the projection optical system is incorporated into an exposure apparatus as a finished product (j). On the other hand, when the measured value does not satisfy the standard (i), the aberration amount is obtained again from the measured value (h) (v). Thereafter, FIGS. 7A to 7I are repeated until the measured value of the resist image satisfies the standard and the projection optical system is a completed product. Here, the standard is determined by the accuracy required for an exposure apparatus in which the projection optical system is incorporated. Next, FIG.
The relationship between the image height of the projection optical system adjusted by the conventional adjustment method and various aberrations will be described below. The horizontal axis in the figure represents the image height, and the vertical axis represents the amount of aberration. The unit of the amount of aberration on the vertical axis is an arbitrary unit. Point A represents spherical aberration, line B represents coma, line C represents astigmatism, line D represents field curvature, and line E represents distortion. In addition to the aberrations, the line R in the figure shows the RMS of the wavefront for each image height.

【0003】[0003]

【発明が解決しようとする課題】上記従来の投影光学系
の調整方法は、作業効率が悪い上に、投影光学系の結像
性能もあまり高くなかった。すなわち、上記の調整方法
は、作業者の経験と勘に頼った調整方法であり、試行錯
誤が多い作業であった。実際に投影光学系を介して露光
した後にレンズ補正量を決めていくため、検査を含めた
調整工程に多くの時間を要していた。また、調整時の所
定の露光条件で見かけ上の収差を補正することができて
も、実際には大きい収差が残留している場合があった。
すなわち、調整時の露光条件と異なる露光条件では、収
差が生じてしまう場合があった。また、上記の調整方法
は、所定の露光条件による収差に対して、決められたレ
ンズを移動(間隔補正)しているだけなので、もともと
収差の追い込みに対して不利であった。したがって本発
明は、作業効率が比較的良く、投影光学系の結像性能の
比較的高い投影光学系の調整方法を提供することを課題
とする。
The above-mentioned conventional method of adjusting the projection optical system has a low working efficiency and does not have a very high imaging performance of the projection optical system. That is, the above-described adjustment method is an adjustment method that relies on the experience and intuition of the worker, and is a work that involves many trials and errors. Since the lens correction amount is determined after actually exposing through the projection optical system, much time is required for the adjustment process including the inspection. Further, even if apparent aberrations can be corrected under predetermined exposure conditions at the time of adjustment, large aberrations may actually remain in some cases.
That is, aberrations may occur under exposure conditions different from the exposure conditions at the time of adjustment. In addition, the above-described adjustment method is disadvantageous for driving in the aberrations, because the predetermined lens is only moved (interval correction) with respect to the aberration under the predetermined exposure condition. Therefore, an object of the present invention is to provide a method for adjusting a projection optical system having relatively high work efficiency and relatively high imaging performance of the projection optical system.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、添付図面の
図1に付した符号をカッコ内に付記すると、本発明は、
原版上のパターンの像を基板上の感光剤上に形成するた
めの投影光学系を調整する方法において、投影光学系を
通過する放射の波面を測定する第1工程(a)と、波面
の測定データと投影光学系の調整量とに基づいて投影光
学系の結像シミュレーションを行って結像評価量を求
め、結像評価量が予め定められた範囲内に追い込まれた
ときの調整量を算出する第2工程(d〜f)と、算出さ
れた調整量に基づいて投影光学系を調整する第3工程
(g)とを備えたことを特徴とする投影光学系の調整方
法である。その際、第1工程(a)と第2工程(d〜
f)との間に、波面の収差が予め定められた範囲内に追
い込まれたときの調整量を算出する工程(c)を備える
ことが好ましい。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. That is, when the reference numerals in FIG.
In a method of adjusting a projection optical system for forming an image of a pattern on an original onto a photosensitive agent on a substrate, a first step (a) of measuring a wavefront of radiation passing through the projection optical system, and measuring the wavefront Performs an imaging simulation of the projection optical system based on the data and the adjustment amount of the projection optical system to obtain an imaging evaluation amount, and calculates an adjustment amount when the imaging evaluation amount falls within a predetermined range. And a third step (g) of adjusting the projection optical system based on the calculated adjustment amount. At that time, the first step (a) and the second step (d to
Preferably, a step (c) of calculating an adjustment amount when the aberration of the wavefront is driven into a predetermined range is provided between the step (c) and the step (f).

【0005】以上の構成によって、作業効率が比較的良
く、投影光学系の結像性能の比較的高い投影光学系の調
整方法を提供することができる。以下、投影光学系の調
整量算出方法について詳しく説明する。はじめに、測定
された波面Wに対し、それに対応するシミュレーション
による波面W0(計算処理可能な数値データとしての光
学系データの波面)を計算する。したがって、波面Wと
0の差分dWは、 dW=W−W0 (1) となる。そして、その後の計算では、シミュレーション
上の波面W0を計算する度に、(1)式の差分dWを加
える。これにより、波面W0を計算するだけで、次式の
ように測定波面Wが求まる。 W=W0+dW (2)
[0005] With the above configuration, it is possible to provide a method of adjusting a projection optical system having relatively high work efficiency and relatively high imaging performance of the projection optical system. Hereinafter, a method for calculating the adjustment amount of the projection optical system will be described in detail. First, with respect to the measured wavefront W, to calculate the wavefront W 0 simulated the corresponding (wavefront of the optical system data as computable numeric data). Therefore, the difference dW between the wavefronts W and W 0 is dW = W−W 0 (1). Then, in the subsequent calculations, every time the wavefront W 0 in the simulation is calculated, the difference dW of the equation (1) is added. Thus, simply by calculating the wavefront W 0, is obtained measurement wavefront W as follows. W = W 0 + dW (2)

【0006】更に、光学系の調整量に何らかの変更を加
える場合には、それによって変化するシミュレーション
上の波面W0′は、同様の変更を実光学系に対して加え
る場合と同様の変化分がW0に加わっている。したがっ
て、(2)式のように単に差分dWを加えるだけで、次
式のように実光学系が持つであろう波面W′を算出でき
る。 W′=W0′+dW=W0′+(W−W0) (3) ここで、一般に、計算に用いる波面は、XY座標と瞳座
標による4次元の関数である。
Further, when any change is made to the adjustment amount of the optical system, the simulated wavefront W 0 ′ that changes by the change has the same change as that when the same change is made to the actual optical system. Joins W 0 . Therefore, by simply adding the difference dW as in the equation (2), the wavefront W ′ that the real optical system will have can be calculated as in the following equation. W ′ = W 0 ′ + dW = W 0 ′ + (W−W 0 ) (3) Here, in general, a wavefront used for calculation is a four-dimensional function based on XY coordinates and pupil coordinates.

【0007】なお、実光学系が持つであろう波面W′を
算出する別の方法としては、次式のシミュレーション上
の波面の変化分dW0、 dW0=W0′−W0 (4) を、次式のように測定された波面Wに加える方法が考え
られる。 W′=W+dW0=W+(W0′−W0) (5) しかしながら、計算の効率を考えたとき、(3)式の計
算の方が(5)式より効率が良い。すなわち、(3)式
の計算では、差分dWが後の光学系データの変形に依存
しない。(1)式にて差分dWを1回求めてしまえば、
その後の処理は、変化した光学系データの波面W0
に、差分dWを加算していくだけである。これに対し
て、(5)式の計算では、(4)式の光学系データの波
面の変化分dW0が、光学系データの変形に依存してい
る。そのため、W0′が変化する度に、(4)式にてd
0を求めなければならない。このように、(3)式を
用いるのが効率が良い。
[0007] Note that 'Another way of calculating the wavefront of the variation dW of the simulation of the formula 0, dW 0 = W 0' wavefront W would actual optical system has -W 0 (4) Is added to the wavefront W measured as follows. W ′ = W + dW 0 = W + (W 0 ′ −W 0 ) (5) However, considering the efficiency of the calculation, the calculation of the expression (3) is more efficient than the expression (5). That is, in the calculation of the expression (3), the difference dW does not depend on the later deformation of the optical system data. Once the difference dW is obtained by the equation (1),
Subsequent processing is performed on the wavefront W 0 ′ of the changed optical system data.
Only the difference dW is added. On the other hand, in the calculation of Expression (5), the wavefront change dW 0 of the optical system data of Expression (4) depends on the deformation of the optical system data. Therefore, every time W 0 ′ changes, d
W 0 must be determined. Thus, it is efficient to use equation (3).

【0008】次に、波面収差による自動修正(追い込
み)を行う。波面収差の自動修正とは、波面収差をター
ゲットとして、評価しうる諸量を選択したもので、例え
ば、それは波面のRMSであり、或いはRMSが最小と
なる最適なフォーカス・シフト量であり、或いは波面の
詳細なうねりをツェルニケ関数などの関数系列に成分分
解したときの各成分に対する係数である。もちろん成分
分解した後で波面を、回転対称成分、偶対称成分、奇対
称成分に分けて、それぞれのRMSをターゲットにして
も良い。
Next, automatic correction (run-in) by wavefront aberration is performed. The automatic correction of the wavefront aberration is to select various quantities that can be evaluated with the wavefront aberration as a target. For example, it is the RMS of the wavefront, or the optimal focus shift amount at which the RMS is minimized, or This is a coefficient for each component when the detailed wavefront undulation is decomposed into a function series such as a Zernike function. Of course, after the component decomposition, the wavefront may be divided into a rotationally symmetric component, an even symmetric component, and an odd symmetric component, and each RMS may be targeted.

【0009】このような波面収差による自動修正によっ
て、投影光学系の結像性能はおおよそ満足される。しか
しながら、実際の投影光学系の露光条件では、光源の強
度分布が瞳内で一様ではなく、瞳の中心付近にのみ分布
していたり、その分布の大きさが露光条件によって変化
する場合がある。その結果、波面が初期の状態と比べて
数値上改善されていても、それが十分に小さな値となっ
ていなければ、結像性能を満足していない場合がある。
したがって、更に、結像シミュレーションを用いた自動
修正によって、パラメータの微調整を行う。
By such automatic correction based on the wavefront aberration, the imaging performance of the projection optical system is almost satisfied. However, under the actual exposure condition of the projection optical system, the intensity distribution of the light source may not be uniform in the pupil, but may be distributed only near the center of the pupil, or the size of the distribution may vary depending on the exposure condition. . As a result, even if the wavefront is numerically improved as compared with the initial state, if it is not a sufficiently small value, the imaging performance may not be satisfied.
Therefore, fine adjustment of parameters is further performed by automatic correction using an imaging simulation.

【0010】波面収差による自動修正を行った後に行う
結像シミュレーションは、ホプキンス(H.H.Hopkins)
による部分コヒーレント結像理論(Proc.Roy.Soc.,A,20
8(1951),263)に基づいたものである。結像シミュレー
ションには、大別して、計算処理の速い空間像シミュレ
ーションと、処理速度は遅いがフォトリソグラフィーを
より良く再現するレジストシミュレーションの2つがあ
る。また、両者の中間的なものとして潜像シミュレーシ
ョンがある。これらのいずれもが、前述した投影光学系
の露光条件を忠実にシミュレーションできるものであ
る。このような結像シミュレーションを用いた自動修正
を行い、光学系の収差を更に追い込んでいく。そして、
最後に、実光学系に対する具体的な調整量を計算にて求
める。なお、調整量は、投影光学系を構成する光学部材
の形状(曲率、非球面形状等)、間隔、偏芯、傾き等の
量である。
[0010] The imaging simulation performed after the automatic correction by the wavefront aberration is performed by HH Hopkins.
Coherent Imaging Theory (Proc. Roy. Soc., A, 20
8 (1951), 263). The image forming simulations are roughly classified into two types: an aerial image simulation in which the calculation processing is fast, and a resist simulation in which the processing speed is slow but the photolithography is better reproduced. A latent image simulation is intermediate between the two. Any of these can faithfully simulate the above-described exposure conditions of the projection optical system. Automatic correction using such an imaging simulation is performed to further drive the aberration of the optical system. And
Finally, a specific adjustment amount for the actual optical system is calculated. The adjustment amount is an amount such as the shape (curvature, aspherical shape, and the like), interval, eccentricity, inclination, and the like of the optical member constituting the projection optical system.

【0011】結像シミュレーションの自動修正に用いる
手法は、例えば、DLS法に代表される局所最適化手法
や、GA法(遺伝的アルゴリズム)やシミュレーテッド
・アニーリングに代表される大域的最適化手法等があげ
られる。局所最適化手法の場合、一般に、光学系の諸収
差をターゲットとする。そして、曲率や面間隔、硝子屈
折率のように、その光学系の結像性能に関係する物理量
をパラメータとして、それらパラメータによるターゲッ
トの変化率を計算する。そして、変化率を計算した時点
での光学系の持つ収差を、最小にするようなパラメータ
の修正量を、逐次近似的に求めていく。この方法の詳細
については、例えば、文献「レンズ設計」(高橋友刀
著、東海大学出版)に記述されている。
Examples of a method used for automatic correction of the imaging simulation include a local optimization method represented by the DLS method and a global optimization method represented by the GA method (genetic algorithm) and simulated annealing. Is raised. In the case of the local optimization method, generally, various aberrations of the optical system are targeted. Then, using a physical quantity related to the imaging performance of the optical system as a parameter, such as a curvature, a surface interval, or a glass refractive index, a change rate of the target by the parameter is calculated. Then, the amount of parameter correction that minimizes the aberration of the optical system at the time when the rate of change is calculated is sequentially and approximately determined. The details of this method are described, for example, in the document “Lens Design” (written by Tomotaka Takahashi, published by Tokai University).

【0012】次に、結像シミュレーションを用いた自動
修正のターゲットについて説明する。結像シミュレーシ
ョンを用いた自動修正のターゲットは、結像評価量その
ものである。例えば、次にあげるザイデルの5収差に対
応した結像評価量である。 A.球面収差:同一点上の周期の異なる2種類以上の結
像パターンのべストフォーカスの差。 B.コマ収差:孤立5本線の左右両端の線幅差の比率。 C.非点収差:同一点上の異なる2方向のライン・アン
ド・スペース・パターンのべストフォーカスの差。 D.像面湾曲:露光フィールド中心点と周辺との結像パ
ターンのべストフォーカスの差。 E.歪曲収差:露光フィールドの中心点を原点とする結
像パターンの相対位置ずれ量。
Next, a description will be given of a target of automatic correction using an imaging simulation. The target of the automatic correction using the imaging simulation is the imaging evaluation amount itself. For example, it is an imaging evaluation amount corresponding to the following five Seidel aberrations. A. Spherical aberration: the difference between the best focuses of two or more types of image patterns having different periods on the same point. B. Coma: the ratio of the line width difference between the left and right ends of the five isolated lines. C. Astigmatism: the difference between the best focuses of line and space patterns in two different directions on the same point. D. Field curvature: the difference in the best focus of the image pattern between the center point of the exposure field and the periphery. E. FIG. Distortion: The relative displacement of an image forming pattern with the origin at the center of the exposure field.

【0013】なお、以上述べたザイデル収差以外にも様
々な評価量があり、それらをターゲットとして設定する
こともできる。これらの評価量について、パラメータに
対する変化率を計算して、前述した波面収差の場合と同
様に、局所最適化手法にて自動修正を行う。このとき、
波面を劣化させないために、波面のRMS等もターゲッ
トとして設定しておくとより効果的である。
It should be noted that there are various evaluation quantities other than the Seidel aberration described above, and these can be set as targets. For these evaluation amounts, the rate of change with respect to the parameter is calculated, and automatic correction is performed by the local optimization method, as in the case of the wavefront aberration described above. At this time,
In order not to deteriorate the wavefront, it is more effective to set the RMS or the like of the wavefront as a target.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1、2、3にて、本発明による投影光学
系の調整方法の第1実施例を説明する。図1は、本発明
の第1実施例による投影光学系の調整方法を示すフロー
チャートである。まず、フィゾー干渉計等によって、投
影光学系の波面収差の測定を行う(図1のa)。そのと
きの波面測定データ(同b)に基づいて、収差の追い込
みを行う(同c)。ここで、追い込みとは、計算機にて
投影光学系の収差を最適化する作業をいう。また、同図
のbでは、光学系データの波面と測定波面の差分dWを
求めている。
Embodiments of the present invention will be described with reference to the drawings. A first embodiment of a method for adjusting a projection optical system according to the present invention will be described with reference to FIGS. FIG. 1 is a flowchart showing a method for adjusting a projection optical system according to a first embodiment of the present invention. First, the wavefront aberration of the projection optical system is measured by a Fizeau interferometer or the like (FIG. 1A). Based on the wavefront measurement data at that time (b), aberration correction is performed (c). Here, the drive-in refers to an operation of optimizing the aberration of the projection optical system by a computer. Further, in FIG. 3B, the difference dW between the wavefront of the optical system data and the measured wavefront is obtained.

【0015】次に、結像シミュレーションによる投影光
学系の結像評価を行い、その結像評価に基づいて、収差
の追い込みを行う(同d)。そして、波面収差と結像シ
ミュレーションによって得た収差が、十分な値となって
いるか判定する(同e)。収差が予め定められた範囲に
入っている場合は、投影光学系の構成レンズの間隔修正
量を算出する(同f)。収差が予め定められた範囲に入
っていない場合は、収差が予め定められた範囲に入るま
で、波面収差と結像シミュレーションによる追い込みを
行う(同c〜e)。
Next, an image formation evaluation of the projection optical system is performed by an image formation simulation, and aberration is driven in based on the image formation evaluation (d). Then, it is determined whether the wavefront aberration and the aberration obtained by the imaging simulation have sufficient values (e). If the aberration falls within a predetermined range, the correction amount of the distance between the constituent lenses of the projection optical system is calculated (f). If the aberration does not fall within the predetermined range, the wavefront aberration and the imaging simulation are performed until the aberration falls within the predetermined range (c to e).

【0016】次に、図1のc〜fにて算出した間隔修正
量に基づいて、レンズを修正し(同g)、レジスト像を
測定する(同h)。この測定値が、予め定められた規格
を満足する場合には(同i)、その投影光学系は完成品
として、露光装置に組み込まれる(同j)。これに対し
て、測定値が規格を満足しない場合には(同i)、再
度、波面収差を測定する(同a)。その後、レジスト像
の測定値が規格を満足し、投影光学系が完成品となるま
で、同図のa〜iを繰り返す。このような工程を経て、
最終的に投影露光装置が製造される。なお、図1では、
投影光学系の補正のパラメータを、レンズの間隔修正量
のみとしたが、その他、例えば、レンズの回転量や偏芯
量等をパラメータとして選択しても良い。
Next, the lens is corrected based on the distance correction amount calculated in c to f in FIG. 1 (g), and the resist image is measured (h). When the measured value satisfies a predetermined standard (i), the projection optical system is incorporated into an exposure apparatus as a finished product (j). On the other hand, when the measured value does not satisfy the standard (i), the wavefront aberration is measured again (a). Thereafter, a to i in the same drawing are repeated until the measured value of the resist image satisfies the standard and the projection optical system is a completed product. Through these steps,
Finally, a projection exposure apparatus is manufactured. In FIG. 1,
Although the correction parameter of the projection optical system is only the correction amount of the distance between the lenses, for example, the rotation amount or the eccentric amount of the lens may be selected as the parameter.

【0017】次に、図2にて、図1の調整方法にて調整
された後の投影光学系の収差を示す。前述した図11と
同様に、図2の横軸は像高を表し、縦軸は収差量を表
す。なお、図2と図11の縦軸の各収差のスケールは同
じである。点Aは球面収差を表し、線Bはコマ収差を表
し、線Cは非点収差を表し、線Dは像面湾曲を表し、線
Eは歪曲収差を表している。また収差の他に、同図の線
Rは、波面のRMSを各像高毎に表示したものである。
ここで、この図2に示す本第1実施例における調整方法
によって調整された投影光学系の諸収差(A〜E)及び
RMS(R)と、図11に示す従来技術における諸収差
及びRMSを比較する。RMSについては、本第1実施
例にて顕著に改善されている。また、諸収差について
も、従来技術と比較して、本第1実施例の方が、全体の
バランスが均一となっている。
Next, FIG. 2 shows the aberration of the projection optical system after being adjusted by the adjustment method of FIG. As in FIG. 11 described above, the horizontal axis of FIG. 2 represents the image height, and the vertical axis represents the amount of aberration. The scale of each aberration on the vertical axis in FIGS. 2 and 11 is the same. Point A represents spherical aberration, line B represents coma, line C represents astigmatism, line D represents field curvature, and line E represents distortion. In addition to the aberrations, the line R in the figure shows the RMS of the wavefront for each image height.
Here, various aberrations (A to E) and RMS (R) of the projection optical system adjusted by the adjustment method in the first embodiment shown in FIG. 2 and various aberrations and RMS in the prior art shown in FIG. Compare. The RMS is significantly improved in the first embodiment. Also, with respect to various aberrations, the first embodiment has a more uniform overall balance than the conventional technology.

【0018】また、上述した諸収差及びRMSについて
の効果に加え、本第1実施例の作業効率は、従来技術に
比べ大幅に向上する。例えば、図1に示すフローチャー
トのループ回数は、図11のフローチャートのループ回
数の半分以下となる。ここで、図1のフローチャートに
示す結像シミュレーションによる評価、追い込み(図1
のd)の効果を確認するために、結像シミュレーション
による評価、追い込みを行わずに投影光学系を調整した
ときの収差図を図3に示す。図3と図11を比較する
と、RMSについては図11に比べて全体に改善されて
いる。しかし、諸収差については、図3のコマ収差Bが
低像高側で劣化しており、像面湾曲Dも高像高側で劣化
している。図11の非点収差Cは、高像高側で悪い結果
となっている。このように、図3と図11の諸収差につ
いては、どちらが優れているのか判然としない。したが
って、図1のフローチャートにおいて、結像シミュレー
ションによる微調整は、諸収差改善への効果が大きいこ
とが分かる。
Further, in addition to the above-mentioned effects on various aberrations and RMS, the working efficiency of the first embodiment is greatly improved as compared with the prior art. For example, the number of loops in the flowchart shown in FIG. 1 is less than half the number of loops in the flowchart in FIG. Here, evaluation and run-in by the imaging simulation shown in the flowchart of FIG.
FIG. 3 shows an aberration diagram when the projection optical system is adjusted without performing evaluation and focusing by image forming simulation in order to confirm the effect d). When FIG. 3 is compared with FIG. 11, the RMS is improved as a whole as compared with FIG. However, as for various aberrations, the coma aberration B in FIG. 3 is deteriorated on the low image height side, and the field curvature D is also deteriorated on the high image height side. The astigmatism C in FIG. 11 has a bad result on the high image height side. Thus, it is not clear which of the various aberrations in FIG. 3 and FIG. 11 is superior. Therefore, in the flowchart of FIG. 1, it can be seen that the fine adjustment by the imaging simulation has a great effect on the improvement of various aberrations.

【0019】以上のように本第1実施例では、測定され
た投影光学系の波面収差に基づき、自動最適化手法を用
いて調整量を算出して、それによって投影光学系の調整
を行っている。このとき、波面収差のみをターゲットと
した最適化を始めに行い、その後結像シミュレーション
を応用して結像評価量を算出し、それをターゲットとし
て再度収差バランスを取っている。このように本第1実
施例では、最初に測定した波面に基づいて、投影光学系
の最適な調整量を算出できるため、投影光学系の調整作
業が大幅に効率化される。
As described above, in the first embodiment, the adjustment amount is calculated by using the automatic optimization method based on the measured wavefront aberration of the projection optical system, and the projection optical system is adjusted accordingly. I have. At this time, optimization targeting only the wavefront aberration is performed first, and thereafter, an imaging evaluation amount is calculated by applying an imaging simulation, and the aberration is again balanced using the target as the target. As described above, in the first embodiment, since the optimum adjustment amount of the projection optical system can be calculated based on the wavefront measured first, the adjustment operation of the projection optical system is greatly improved.

【0020】次に、図4、5にて、本発明による投影光
学系の調整方法の第2実施例を説明する。図4は、本発
明の第2実施例による投影光学系の調整方法を示すフロ
ーチャートである。本第2実施例では、前記第1実施例
で行った投影光学系を構成するレンズの間隔修正に加え
て、非球面研磨を調整項目としている。まず、前記第1
実施例と同様に、投影光学系の波面収差の測定を行う
(図4のa)。そのときの波面測定データ(同b)に基
づいて、収差の追い込みを行う(同c)。
Next, a second embodiment of the method of adjusting the projection optical system according to the present invention will be described with reference to FIGS. FIG. 4 is a flowchart showing a method for adjusting a projection optical system according to a second embodiment of the present invention. In the second embodiment, in addition to the correction of the distance between the lenses constituting the projection optical system performed in the first embodiment, aspheric polishing is an adjustment item. First, the first
As in the embodiment, the wavefront aberration of the projection optical system is measured (FIG. 4A). Based on the wavefront measurement data at that time (b), aberration correction is performed (c).

【0021】次に、結像シミュレーションによる投影光
学系の結像評価を行い、その結像評価に基づいて、収差
の追い込みを行う(同d)。そして、波面収差と結像シ
ミュレーションによって得た収差が、十分な値となって
いるか判定する(同e)。収差が予め定められた範囲に
入っている場合は、投影光学系の構成レンズの間隔修正
量及び非球面研磨量を算出する(同f)。但し、このと
きの非球面研磨量はゼロとなる。一方、収差が予め定め
られた範囲に入っていない場合は、非球面研磨を実行す
るか否かの判定を行う(同k)。非球面研磨を実行する
場合は、非球面研磨を選択して(同m)、非球面研磨量
をパラメータに追加する(同n)。そして、再度、同図
のc〜eの工程を繰り返す。また、非球面研磨を実行し
ない場合は、間隔修正量のみをパラメータとして(同
l)、同様に、同図のc〜eの工程を繰り返す。
Next, an image formation evaluation of the projection optical system is performed by an image formation simulation, and aberrations are driven in based on the image formation evaluation (d). Then, it is determined whether the wavefront aberration and the aberration obtained by the imaging simulation have sufficient values (e). When the aberration is within a predetermined range, the distance correction amount and the aspherical polishing amount of the constituent lenses of the projection optical system are calculated (f). However, the aspheric polishing amount at this time is zero. On the other hand, if the aberration does not fall within the predetermined range, it is determined whether or not to perform aspherical polishing (k in the above). When performing aspherical surface polishing, aspherical surface polishing is selected (the same m), and the aspherical surface polishing amount is added to the parameter (the same n). Then, the steps c to e in the same drawing are repeated again. When the aspherical surface polishing is not performed, the steps c to e in FIG.

【0022】このような工程を、収差が予め定められた
範囲に入るまで繰り返し、収差が予め定められた範囲に
入ったとき、計算機にて算出した間隔修正量及び非球面
研磨量に基づいて、レンズを修正し(同g)、レジスト
像を測定する(同h)。この測定値が、予め定められた
規格を満足する場合には(同i)、その投影光学系は完
成品として、露光装置に組み込まれる(同j)。これに
対して、測定値が規格を満足しない場合には(同i)、
再度、波面収差を測定する(同a)。その後、レジスト
像の測定値が規格を満足し、投影光学系が完成品となる
まで、同図のa〜iを繰り返す。なお、本第2実施例で
は、非球面研磨をパラメータとした非球面最適化(同k
〜n)を、結像シミュレーションによる結像評価、追い
込みを行った後に実施しているが、実波面測定(同a)
後であれば、どの段階で実施しても良い。
These steps are repeated until the aberration falls within the predetermined range. When the aberration falls within the predetermined range, based on the interval correction amount and the aspherical polishing amount calculated by the computer, The lens is corrected (g), and the resist image is measured (h). When the measured value satisfies a predetermined standard (i), the projection optical system is incorporated into an exposure apparatus as a finished product (j). On the other hand, when the measured value does not satisfy the standard (i),
The wavefront aberration is measured again (a). Thereafter, a to i in the same drawing are repeated until the measured value of the resist image satisfies the standard and the projection optical system is a completed product. In the second embodiment, the aspherical surface optimization using the aspherical surface polishing as a parameter
To n) are performed after image formation evaluation and drive-in by image formation simulation are performed, but actual wavefront measurement (a) is performed.
It may be performed at any later stage.

【0023】次に、図5にて、図4の調整方法にて調整
された後の投影光学系の収差を示す。前記第1実施例の
図2と比較して、諸収差、RMSが、共に格段に向上し
ていることがわかる。すなわち、間隔修正量に加えて非
球面研磨量をパラメータとすることにより、結像性能が
格段に向上する。以上のように本第2実施例において
も、前記第1実施例と同様に、最初に測定した波面に基
づいて、投影光学系の最適な調整量を算出できるため、
投影光学系の調整作業が大幅に効率化される。
Next, FIG. 5 shows the aberration of the projection optical system after being adjusted by the adjustment method shown in FIG. It can be seen that both the various aberrations and the RMS are significantly improved as compared with FIG. 2 of the first embodiment. That is, by using the aspherical polishing amount as a parameter in addition to the interval correction amount, the imaging performance is remarkably improved. As described above, also in the second embodiment, the optimum adjustment amount of the projection optical system can be calculated based on the wavefront measured first, as in the first embodiment.
The adjustment work of the projection optical system is made much more efficient.

【0024】次に、図6、7、8にて、本発明による投
影光学系の調整方法の第3実施例を説明する。図6は、
本発明の第3実施例による投影光学系の調整方法を示す
フローチャートである。前記第2実施例では、レンズの
再研磨が必要となるが、本第3実施例では、レンズの再
研磨を行わずに結像性能を向上させるものである。投影
光学系は、波長オーダーの微小変形が生じると、その結
像性能が変化する。そして、光学系を組立てるときに発
生するレンズのたわみや、2次元的に発生するレンズの
研磨誤差や、レンズ内部の光学的不均一性は、光学系の
結像に大きな非対称誤差を発生させる原因となる。しか
し、このような誤差のデータを干渉計を用いて測定し
て、その誤差データを数値計算可能な光学系データに加
えた後、測定波面に基づいて修正を行えば、非対称な結
像をある程度回避することができる。
Next, a third embodiment of the method for adjusting the projection optical system according to the present invention will be described with reference to FIGS. FIG.
9 is a flowchart illustrating a method for adjusting a projection optical system according to a third embodiment of the present invention. In the second embodiment, the lens needs to be polished again. In the third embodiment, the imaging performance is improved without performing the lens repolishing. The imaging performance of the projection optical system changes when minute deformation on the order of wavelength occurs. The deflection of the lens that occurs when assembling the optical system, the polishing error of the lens that occurs two-dimensionally, and the optical non-uniformity inside the lens cause a large asymmetry error in the imaging of the optical system. Becomes However, if such error data is measured using an interferometer, and the error data is added to numerically calculable optical system data and then corrected based on the measured wavefront, an asymmetric image can be formed to some extent. Can be avoided.

【0025】具体的には、まず、前記第1実施例と同様
に、投影光学系の波面収差の測定を行う(図6のa)。
このときの波面測定データ(同b)に加えて、干渉計に
て測定した誤差データを計算機に入力する(同p)。こ
こで、誤差データは、投影光学系のレンズの面変形や誤
差非球面等のデータである。次に、波面測定データ及び
誤差データに基づいて、波面収差による間隔、レンズの
回転、偏芯の追い込みを行う(同q)。そして更に、結
像シミュレーションによる結像評価を行い、その結像評
価に基づいて、間隔、レンズの回転、偏芯の追い込みを
行う(同r)。そして、投影光学系の最適な間隔修正量
及び回転量、偏芯量を算出する(同s)。
More specifically, first, the wavefront aberration of the projection optical system is measured as in the first embodiment (FIG. 6A).
In addition to the wavefront measurement data at this time (b), error data measured by the interferometer is input to the computer (p). Here, the error data is data such as the surface deformation of the lens of the projection optical system and the error aspherical surface. Next, based on the wavefront measurement data and the error data, the interval due to the wavefront aberration, the rotation of the lens, and the eccentricity are adjusted (q). Further, an image formation evaluation is performed by an image formation simulation, and based on the image formation evaluation, the distance, the rotation of the lens, and the eccentricity are adjusted (r). Then, the optimum distance correction amount, rotation amount, and eccentric amount of the projection optical system are calculated (s).

【0026】そして、計算機にて算出した間隔修正量、
回転量、偏芯量に基づいて、レンズを修正し(同g)、
レジスト像を測定する(同h)。この測定値が、予め定
められた規格を満足する場合には(同i)、その投影光
学系は完成品として、露光装置に組み込まれる(同
j)。これに対して、測定値が規格を満足しない場合に
は(同i)、再度、波面収差を測定する(同a)。その
後、レジスト像の測定値が規格を満足し、投影光学系が
完成品となるまで、同図のa〜iを繰り返す。
Then, the interval correction amount calculated by the computer,
The lens is corrected based on the rotation amount and the eccentric amount (g),
The resist image is measured (h). When the measured value satisfies a predetermined standard (i), the projection optical system is incorporated into an exposure apparatus as a finished product (j). On the other hand, when the measured value does not satisfy the standard (i), the wavefront aberration is measured again (a). Thereafter, a to i in the same drawing are repeated until the measured value of the resist image satisfies the standard and the projection optical system is a completed product.

【0027】次に、図7、8にて、本第3実施例の効果
について説明する。図7は、図6の調整方法にて調整さ
れた後の投影光学系の各方向における収差の分布を示
す。図8は、図6の調整方法にて調整される前の投影光
学系の各方向における収差の分布を示す。図7、8の放
射状の線に付した数字(0〜330)は角度(°)を表
し、投影光学系での方位に対応している。点線Pは、投
影光学系が無収差であるときの仮想線である。線J〜N
は、像高の割り合い(%)を表し、それぞれ、線Jは2
0%、線Kは40%、線Lは60%、線Mは80%、線
Nは100%の像高を表す。2つの図を比較すると、明
らかに、図8よりも図7の方が、回転方向の対称性が良
い。このように、本第3実施例においては、回転対称性
の良い投影光学系を効率良く調整することができる。
Next, the effects of the third embodiment will be described with reference to FIGS. FIG. 7 shows the distribution of aberration in each direction of the projection optical system after being adjusted by the adjustment method of FIG. FIG. 8 shows the distribution of aberration in each direction of the projection optical system before being adjusted by the adjustment method of FIG. The numbers (0 to 330) attached to the radial lines in FIGS. 7 and 8 represent angles (°) and correspond to the azimuths in the projection optical system. The dotted line P is a virtual line when the projection optical system has no aberration. Lines J to N
Represents the percentage (%) of the image height, and the line J is 2
0%, line K represents 40%, line L represents 60%, line M represents 80%, and line N represents 100% image height. When the two figures are compared, it is clear that FIG. 7 has better symmetry in the rotation direction than FIG. Thus, in the third embodiment, a projection optical system having good rotational symmetry can be adjusted efficiently.

【0028】また、本第3実施例においても、前記第
1、2実施例と同様に、最初に測定した波面に基づい
て、投影光学系の最適な調整量を算出できるため、投影
光学系の調整作業が大幅に効率化される。なお、前述し
た第2実施例のように、非球面加工を導入した場合であ
っても、本第3実施例と同様に、非対称成分を抑えられ
る。しかし、その場合には回転非対称な非球面加工を実
施しなければならない。このような場合であっても、本
発明によれば、予めどのような非球面加工を施せば良い
かをシミュレーションできるので、確実に、効率良く投
影光学系を加工、調整することができる。
In the third embodiment, as in the first and second embodiments, the optimum adjustment amount of the projection optical system can be calculated based on the first measured wavefront. The adjustment work is made much more efficient. In addition, even when the aspherical surface processing is introduced as in the second embodiment described above, the asymmetric component can be suppressed as in the third embodiment. However, in that case, a rotationally asymmetric aspherical surface processing must be performed. Even in such a case, according to the present invention, it is possible to simulate or may be subjected in advance what the aspherical surface processing, reliably, processed efficiently projection optical system can be adjusted.

【0029】次に、図9にて、上記実施例に示す調整方
法にて調整された投影光学系を搭載した投影露光装置の
一実施例を示す。狭帯化素子を備えたKrFエキシマレ
ーザー光源1から発した光束は、照明光学系2を経て、
レチクルステージ3上に載置されたレチクルPのパター
ン面Paを、均一に照明する。レチクルPのパターン面
Paから発した露光光は、投影光学系4を介して、ウエ
ハステージ5上に載置されたウエハWの感光面Waに、
パターン面Paの像を結像する。投影光学系4は、上記
実施例に示す調整方法にて調整されている。したがっ
て、結像性能が極めて高い投影露光装置を提供すること
ができる。
Next, FIG. 9 shows an embodiment of a projection exposure apparatus equipped with a projection optical system adjusted by the adjustment method shown in the above embodiment. A light beam emitted from a KrF excimer laser light source 1 having a band-narrowing element passes through an illumination optical system 2,
The pattern surface Pa of the reticle P placed on the reticle stage 3 is uniformly illuminated. Exposure light emitted from the pattern surface Pa of the reticle P passes through the projection optical system 4 to the photosensitive surface Wa of the wafer W placed on the wafer stage 5,
An image of the pattern surface Pa is formed. The projection optical system 4 is adjusted by the adjustment method described in the above embodiment. Therefore, a projection exposure apparatus having extremely high imaging performance can be provided.

【0030】[0030]

【発明の効果】以上のように本発明では、投影光学系の
最適な調整量が算出されて、結像性能の高い投影光学系
の調整方法を提供することができる。また、作業効率が
極めて高いため、比較的安価な投影光学系の調整方法を
提供することができる。
As described above, according to the present invention, the optimum adjustment amount of the projection optical system is calculated, and a method of adjusting the projection optical system having high imaging performance can be provided. Further, since the working efficiency is extremely high, a relatively inexpensive method for adjusting the projection optical system can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による投影光学系の調整方
法を示すフローチャートである。
FIG. 1 is a flowchart showing a method for adjusting a projection optical system according to a first embodiment of the present invention.

【図2】本発明の第1実施例による調整方法にて調整さ
れた後の投影光学系の収差図である。
FIG. 2 is an aberration diagram of the projection optical system after being adjusted by the adjustment method according to the first embodiment of the present invention.

【図3】本発明の第1実施例による調整方法にて結像シ
ミュレーションによる追い込みを省いて調整した場合の
投影光学系の収差図である。
FIG. 3 is an aberration diagram of the projection optical system when the adjustment is performed by the adjustment method according to the first embodiment of the present invention without performing a run-in by an imaging simulation.

【図4】本発明の第2実施例による投影光学系の調整方
法を示すフローチャートである。
FIG. 4 is a flowchart illustrating a method of adjusting a projection optical system according to a second embodiment of the present invention.

【図5】本発明の第2実施例による調整方法にて調整さ
れた後の投影光学系の収差図である。
FIG. 5 is an aberration diagram of the projection optical system after being adjusted by the adjustment method according to the second embodiment of the present invention.

【図6】本発明の第3実施例による投影光学系の調整方
法を示すフローチャートである。
FIG. 6 is a flowchart illustrating a method for adjusting a projection optical system according to a third embodiment of the present invention.

【図7】本発明の第3実施例による調整方法にて調整さ
れた後の投影光学系の各方向における収差量のレーダー
図である。
FIG. 7 is a radar diagram of the amount of aberration in each direction of the projection optical system after being adjusted by the adjustment method according to the third embodiment of the present invention.

【図8】本発明の第3実施例による調整方法にて調整す
る前の投影光学系の各方向における収差量のレーダー図
である。
FIG. 8 is a radar diagram of the amount of aberration in each direction of the projection optical system before adjustment by the adjustment method according to the third embodiment of the present invention.

【図9】本発明の一実施例による投影露光装置を示す概
略図である。
FIG. 9 is a schematic view showing a projection exposure apparatus according to one embodiment of the present invention.

【図10】従来の投影光学系の調整方法を示すフローチ
ャートである。
FIG. 10 is a flowchart showing a conventional method of adjusting a projection optical system.

【図11】従来の調整方法にて調整された後の投影光学
系の収差図である。
FIG. 11 is an aberration diagram of a projection optical system after being adjusted by a conventional adjustment method.

【符号の説明】[Explanation of symbols]

A…球面収差 B…コマ収差 C…非点収差 D…像面湾曲 E…歪曲収差 R…RMS 1…光源 2…照明光学系 3…レチクルステージ 4…投影光学系 5…ウエハステージ P…レチクル Pa…パターン面 W…ウエハ Wa…感光面 A: spherical aberration B: coma aberration C: astigmatism D: field curvature E: distortion R: RMS 1: light source 2: illumination optical system 3: reticle stage 4: projection optical system 5: wafer stage P: reticle Pa ... Pattern surface W ... Wafer Wa ... Photosensitive surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】原版上のパターンの像を基板上の感光剤上
に形成するための投影光学系を調整する方法において、 前記投影光学系を通過する放射の波面を測定する第1工
程と、 該波面の測定データと前記投影光学系の調整量とに基づ
いて前記投影光学系の結像シミュレーションを行って結
像評価量を求め、該結像評価量が予め定められた範囲内
に追い込まれたときの前記調整量を算出する第2工程
と、 該算出された調整量に基づいて前記投影光学系を調整す
る第3工程とを備えたことを特徴とする投影光学系の調
整方法。
1. A method for adjusting a projection optical system for forming an image of a pattern on an original on a photosensitive agent on a substrate, comprising: a first step of measuring a wavefront of radiation passing through the projection optical system; Based on the measurement data of the wavefront and the adjustment amount of the projection optical system, an imaging simulation is performed on the projection optical system to obtain an imaging evaluation amount, and the imaging evaluation amount is driven into a predetermined range. And a third step of adjusting the projection optical system based on the calculated adjustment amount.
【請求項2】前記第1工程と第2工程との間に、 前記波面の収差が予め定められた範囲内に追い込まれた
ときの前記調整量を算出する工程を備えたことを特徴と
する請求項1記載の投影光学系の調整方法。
2. The method according to claim 1, further comprising the step of calculating the adjustment amount when the aberration of the wavefront falls within a predetermined range between the first step and the second step. The method for adjusting a projection optical system according to claim 1.
【請求項3】前記第1工程による測定波面をWとし、該
測定波面Wを模擬した結像シミュレーションによる波面
をW0とし、調整量を調整した後の結像シミュレーショ
ンによる波面をW0′としたとき、 W′=W0′+(W−W0) によって、調整量を調整した後の測定波面W′を予測す
ることを特徴とする請求項1又は2記載の投影光学系の
調整方法。
3. A measurement wavefront by the first step and is W, the wave front by imaging simulation simulating the measurement wavefront W and W 0, the wave front by imaging simulation after adjusting the adjustment amount and W 0 ' when, W '= W 0' + (W-W 0) by a method of adjusting a projection optical system according to claim 1 or 2, wherein the predicting the measurement wavefront W 'after adjusting the adjustment amount .
【請求項4】前記結像シミュレーションは、前記パター
ンの空間像を計算することを特徴とする請求項1、2又
は3記載の投影光学系の調整方法。
4. The method according to claim 1, wherein the imaging simulation calculates an aerial image of the pattern.
【請求項5】前記結像シミュレーションは、前記感光剤
に形成される潜像又はレジスト像を計算することを特徴
とする請求項1、2又は3記載の投影光学系の調整方
法。
5. The method according to claim 1, wherein the image forming simulation calculates a latent image or a resist image formed on the photosensitive agent.
【請求項6】前記結像評価量は、球面収差、コマ収差、
非点収差、像面湾曲、歪曲収差のうちの少なくとも1つ
を含むことを特徴とする請求項1〜5のいずれか1項記
載の投影光学系の調整方法。
6. The imaging evaluation amount includes spherical aberration, coma aberration,
The method for adjusting a projection optical system according to any one of claims 1 to 5, wherein the method includes at least one of astigmatism, field curvature, and distortion.
【請求項7】前記結像シミュレーションによる追い込み
に用いる算出手法は、局所的最適化手法であることを特
徴とする請求項1〜6のいずれか1項記載の投影光学系
の調整方法。
7. The projection optical system adjusting method according to claim 1, wherein the calculation method used in the run-in by the imaging simulation is a local optimization method.
【請求項8】前記結像シミュレーションによる追い込み
に用いる算出手法は、大域的最適化手法であることを特
徴とする請求項1〜6のいずれか1項記載の投影光学系
の調整方法。
8. The method of adjusting a projection optical system according to claim 1, wherein the calculation method used in the run-in by the imaging simulation is a global optimization method.
JP10226497A 1998-07-27 1998-07-27 Adjusting method of projection optical system Pending JP2000047103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226497A JP2000047103A (en) 1998-07-27 1998-07-27 Adjusting method of projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226497A JP2000047103A (en) 1998-07-27 1998-07-27 Adjusting method of projection optical system

Publications (1)

Publication Number Publication Date
JP2000047103A true JP2000047103A (en) 2000-02-18

Family

ID=16846044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226497A Pending JP2000047103A (en) 1998-07-27 1998-07-27 Adjusting method of projection optical system

Country Status (1)

Country Link
JP (1) JP2000047103A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050506A1 (en) * 2000-12-18 2002-06-27 Nikon Corporation Wavefront measuring apparatus and its usage, method and apparatus for determining focusing characteristics, method and apparatus for correcting focusing characteristics, method for managing focusing characteristics, and method and apparatus for exposure
WO2002052620A1 (en) * 2000-12-22 2002-07-04 Nikon Corporation Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
WO2002054459A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Projection optical system and production method therefor, exposure system and production method therefor, and production method for microdevice
WO2002054036A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Imaging characteristics measuring method, imaging characteriatics adjusting method, exposure method and system, program and recording medium, and device producing method
WO2002077692A1 (en) * 2001-03-27 2002-10-03 Nikon Corporation Optical system manufacturing method and exposure device having an optical system manufactured by the manufacturing method
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
US6961115B2 (en) 2001-02-13 2005-11-01 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
US7088426B2 (en) 2002-03-01 2006-08-08 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US7230682B2 (en) 2002-01-29 2007-06-12 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
JP2011193022A (en) * 2007-08-22 2011-09-29 Asml Netherlands Bv Method of performing model-based scanner tuning

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
US7061671B2 (en) 2000-10-10 2006-06-13 Nikon Corporation Method for evaluating image formation performance
WO2002050506A1 (en) * 2000-12-18 2002-06-27 Nikon Corporation Wavefront measuring apparatus and its usage, method and apparatus for determining focusing characteristics, method and apparatus for correcting focusing characteristics, method for managing focusing characteristics, and method and apparatus for exposure
WO2002052620A1 (en) * 2000-12-22 2002-07-04 Nikon Corporation Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
US6975387B2 (en) 2000-12-22 2005-12-13 Nikon Corporation Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing micro device
JP4552337B2 (en) * 2000-12-28 2010-09-29 株式会社ニコン Projection optical system manufacturing method and exposure apparatus manufacturing method
JP2002258131A (en) * 2000-12-28 2002-09-11 Nikon Corp Projection optical system and its manufacturing method, aligner and its manufacturing method, and manufacturing method of micro device
WO2002054036A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Imaging characteristics measuring method, imaging characteriatics adjusting method, exposure method and system, program and recording medium, and device producing method
US7075651B2 (en) 2000-12-28 2006-07-11 Nikon Corporation Image forming characteristics measuring method, image forming characteristics adjusting method, exposure method and apparatus, program and storage medium, and device manufacturing method
WO2002054459A1 (en) * 2000-12-28 2002-07-11 Nikon Corporation Projection optical system and production method therefor, exposure system and production method therefor, and production method for microdevice
JP2008244494A (en) * 2000-12-28 2008-10-09 Nikon Corp Method of adjusting focusing characteristics, exposure method and exposure device, program, information recording medium, method of manufacturing device, and manufacturing method
CN100346150C (en) * 2000-12-28 2007-10-31 株式会社尼康 Imaging characteristics measuring method, imaging characteristics adjusting method, exposure method and equipment, program and recording medium, and device producing method
US6961115B2 (en) 2001-02-13 2005-11-01 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
KR100894238B1 (en) * 2001-02-13 2009-04-20 가부시키가이샤 니콘 Method of determining specification, method of manufacturing a projection optical system and method of adjusting a projection optical system, exposure apparatus and manufacturing method thereof, and computer system
US7215408B2 (en) 2001-02-13 2007-05-08 Nikon Corporation Specification determining method, projection optical system making method and adjusting method, exposure apparatus and making method thereof, and computer system
JP2002286989A (en) * 2001-03-27 2002-10-03 Nikon Corp Manufacturing method for optical system, and exposure device equipped with optical system produced by the manufacturing method
WO2002077692A1 (en) * 2001-03-27 2002-10-03 Nikon Corporation Optical system manufacturing method and exposure device having an optical system manufactured by the manufacturing method
US7405803B2 (en) 2002-01-29 2008-07-29 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7391497B2 (en) 2002-01-29 2008-06-24 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7230682B2 (en) 2002-01-29 2007-06-12 Nikon Corporation Image forming state adjusting system, exposure method and exposure apparatus, and program and information storage medium
US7102731B2 (en) 2002-03-01 2006-09-05 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US7088426B2 (en) 2002-03-01 2006-08-08 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
JP2011193022A (en) * 2007-08-22 2011-09-29 Asml Netherlands Bv Method of performing model-based scanner tuning
US9158208B2 (en) 2007-08-22 2015-10-13 Asml Netherlands B.V. Method of performing model-based scanner tuning
US9921485B2 (en) 2007-08-22 2018-03-20 Asml Netherlands B.V. Method of performing model-based scanner tuning
US10795266B2 (en) 2007-08-22 2020-10-06 Asml Netherlands B.V. Method of performing model-based scanner tuning
US11372337B2 (en) 2007-08-22 2022-06-28 Asml Netherlands B.V. Method of performing model-based scanner tuning

Similar Documents

Publication Publication Date Title
JP4352458B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, exposure apparatus manufacturing method, program, and device manufacturing method
US10241423B2 (en) Method of operating a projection exposure tool for microlithography
US6788389B2 (en) Production method of projection optical system
KR100893516B1 (en) Imaging characteristics measuring method, imaging characteristics adjusting method, exposure method and system, program and recording medium, and device producing method
US7061671B2 (en) Method for evaluating image formation performance
JP4771730B2 (en) Imaging performance optimization method
CN101101453B (en) Method of reducing a wave front aberration
KR102021450B1 (en) Process window identifier
CN102096331B (en) Polarization designs for lithographic apparatus
CN109283800A (en) The optimization method of processing window
CN106463434A (en) Computational wafer inspection
TWI633395B (en) Method and apparatus to correct for patterning process error
JP3673633B2 (en) Assembling and adjusting method of projection optical system
CN107436539A (en) The manufacture method of exposure device and article
JP2000047103A (en) Adjusting method of projection optical system
JP5969848B2 (en) Exposure apparatus, method for obtaining adjustment amount for adjustment, program, and device manufacturing method
JP7054365B2 (en) Evaluation method, exposure method, and article manufacturing method
CN107450277A (en) Determine method, information processor, exposure device and article manufacturing method
US20080123086A1 (en) Projection Optical System, Method of Manufacturing Projection Optical System, Exposure Apparatus, and Exposure Method
JP4650712B2 (en) Device design and manufacturing system, device manufactured by this system, and product manufactured by this device
JPH11297615A (en) Projection aligner and manufacture of semiconductor device using the aligner
JP2018092078A (en) Exposure device, exposure method, and production method for article
JP2022533184A (en) Measurement tools including aplanatic objective single lens
JP2003332200A (en) Method of measuring, correcting, and evaluating optical system, projection optical system, and its manufacturing method
JPH11223715A (en) Production of reflection type optical diffraction element for gaussian light flux