Nothing Special   »   [go: up one dir, main page]

JP2000042373A - Sterilization method in reverse osmosis membrane separation process - Google Patents

Sterilization method in reverse osmosis membrane separation process

Info

Publication number
JP2000042373A
JP2000042373A JP10212759A JP21275998A JP2000042373A JP 2000042373 A JP2000042373 A JP 2000042373A JP 10212759 A JP10212759 A JP 10212759A JP 21275998 A JP21275998 A JP 21275998A JP 2000042373 A JP2000042373 A JP 2000042373A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
treated
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10212759A
Other languages
Japanese (ja)
Inventor
Toshitaka Tanaka
利孝 田中
Kazuhide Nitta
和秀 仁田
Masaaki Sekino
政昭 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10212759A priority Critical patent/JP2000042373A/en
Publication of JP2000042373A publication Critical patent/JP2000042373A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To hardly generate a halogenated organic material in water to be treated and to make the ability of trihalomethane generation in permeated water of a reverse osmosis membrane small by adding free chlorine just before the reverse osmosis membrane in a membrane separation process using the reverse osmosis membrane by using free chlorine as a sterilizing agent for the water to be treated. SOLUTION: Relating to a desalination equipment as an experimental plant of reverse osmosis, suspension particles are removed by adding a flocculant into the water to be treated sucked up by an intake pump 1 by a fixed delivery pump 2 and passing the water through a sand filtration bed 3. After that, the water to be treated reserved in a treating water tank 4 is send by a sending pump 5 and is adjusted in pH by adding sulfuric acid using a fixed delivery pump 6. And the water is passed through a cartridge filter 7, sterilized by adding chlorine by a fixed delivery pump 6, increased in the pressure by a pressure pump 9 and fed to the reverse osmosis membrane module 10. At this time, the ejecting point of free chlorine is suitably just before the high pressure pump 9 or just before the cartridge filter 7 and the contact time is preferably <180 sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は殺菌剤として遊離塩
素を添加した被処理水を逆浸透膜モジュールを用いて膜
分離するプロセスにおいて、被処理水および透過水中に
トリハロメタンに代表されるような消毒副生成物を低減
化するための殺菌方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for separating water to be treated to which free chlorine has been added as a disinfectant using a reverse osmosis membrane module. The present invention relates to a sterilization method for reducing by-products.

【0002】[0002]

【従来の技術】逆浸透法は海水及びかん水の淡水化、半
導体工業及び医薬品工業用の純水、超純水の製造、都市
排水処理等の幅広い分野で利用されている。逆浸透法
は、蒸発法、電気透析法と比較して省エネルギーの点で
有利でこれまでに大きな実績をあげている。
2. Description of the Related Art Reverse osmosis is used in a wide range of fields such as desalination of seawater and brackish water, production of pure water and ultrapure water for the semiconductor and pharmaceutical industries, and municipal wastewater treatment. The reverse osmosis method is advantageous in terms of energy saving as compared with the evaporation method and the electrodialysis method, and has achieved great results so far.

【0003】この様な逆浸透膜モジュールを長期間安定
して運転するためには、被処理水の殺菌が不可欠であ
る。殺菌が不十分な場合、膜が微生物に侵食されたり、
膜表面に付着した微生物、有機物等により製造水量が減
少したり、逆浸透膜モジュールの圧力損失が増大すると
いう問題が生じる。
In order to operate such a reverse osmosis membrane module stably for a long period of time, sterilization of water to be treated is indispensable. If sterilization is insufficient, the membrane may be eroded by microorganisms,
There are problems that the amount of production water decreases due to microorganisms and organic substances attached to the membrane surface, and the pressure loss of the reverse osmosis membrane module increases.

【0004】殺菌剤としては、通常、塩素ガスや次亜塩
素酸ナトリウム、次亜塩素酸カルシウム、また電解塩素
などのいわゆる遊離塩素が用いられている。
As a disinfectant, so-called free chlorine such as chlorine gas, sodium hypochlorite, calcium hypochlorite, and electrolytic chlorine is generally used.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれらの
殺菌剤を用いた場合には、トリハロメタン等のハロゲン
化有機物質が生成し問題である。被処理水の殺菌プロセ
スで生成したハロゲン化有機物質は、逆浸透膜モジュー
ルで完全には除去できず透過水に含まれ好ましくない。
また、ハロゲン化有機物質を多く含む濃縮水をそのまま
放流した場合には、環境に対して悪い影響を及ぼすこと
が予想される。
However, when these fungicides are used, there is a problem in that halogenated organic substances such as trihalomethane are formed. The halogenated organic substances generated in the sterilization process of the water to be treated cannot be completely removed by the reverse osmosis membrane module, and are not preferable because they are contained in the permeated water.
Also, if concentrated water containing a large amount of halogenated organic substances is discharged as it is, it is expected that it will have a bad influence on the environment.

【0006】本発明者らは、逆浸透法膜分離プロセスの
被処理水中にハロゲン化有機物を発生しにくい殺菌プロ
セスを鋭意検討した結果、遊離塩素を逆浸透膜直前で添
加する事により上記目的を達成できる事を見いだし、本
発明に到達した。
The present inventors have conducted intensive studies on a sterilization process in which halogenated organic substances are less likely to be generated in the water to be treated in the reverse osmosis membrane separation process. As a result, the above object was achieved by adding free chlorine immediately before the reverse osmosis membrane. We have found what we can achieve and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】本発明は、被処理水の殺
菌剤として遊離塩素を用いる逆浸透膜を用いた膜分離プ
ロセスにおいて、遊離塩素を逆浸透膜の直前で添加する
ことを特徴とする逆浸透法膜分離プロセスにおける殺菌
方法である。
The present invention is characterized in that in a membrane separation process using a reverse osmosis membrane using free chlorine as a disinfectant for water to be treated, free chlorine is added immediately before the reverse osmosis membrane. This is a sterilization method in the reverse osmosis membrane separation process.

【0008】通常、逆浸透法海水淡水化プロセスにおい
ては被処理水の取水部に殺菌剤を添加している。被処理
水の性状により遊離塩素の添加量は大きく変化するが、
通常0.5〜1.5mg/l 程度必要である。添加量は逆浸透膜
モジュールの供給水中の濃度が 0.1〜1.0mg/l になるよ
うに調整することが好ましい。
Usually, in the reverse osmosis seawater desalination process, a bactericide is added to the intake section of the water to be treated. The amount of free chlorine varies greatly depending on the properties of the water to be treated,
Usually about 0.5 to 1.5 mg / l is required. It is preferable to adjust the addition amount so that the concentration in the feed water of the reverse osmosis membrane module becomes 0.1 to 1.0 mg / l.

【0009】本発明では、遊離塩素添加量は逆浸透膜モ
ジュールの供給水中の濃度が 0.1〜1.0mg/lになるよう
に調整することが好ましい。0.1mg/l より低い場合は、
微生物により膜が汚染され好ましくない。また、1.0mg/
l 以上では膜の酸化劣化が生じるおそれがある。
In the present invention, the amount of free chlorine added is preferably adjusted so that the concentration in the feed water of the reverse osmosis membrane module becomes 0.1 to 1.0 mg / l. If lower than 0.1mg / l,
The membrane is contaminated by microorganisms, which is not preferable. In addition, 1.0mg /
Above l, oxidation degradation of the film may occur.

【0010】殺菌剤の注入方法としては、連続的に一定
濃度になるように注入する連続注入法と、例えば、特開
平7-171565号公報記載の一定時間のみ殺菌剤を注入する
間欠注入法との何れでも実施可能である。
As a method of injecting a disinfectant, a continuous injecting method in which the disinfectant is continuously infused so as to have a constant concentration, and an intermittent injecting method in which a disinfectant is injected only for a certain period of time described in Japanese Patent Application Laid-Open No. H7-171565, for example Any of the above can be implemented.

【0011】注入点は高圧ポンプの直前、またはカート
リッジフィルターの直前が適当で、接触時間180 秒未満
が好ましい。
The injection point is suitable immediately before the high-pressure pump or immediately before the cartridge filter, and the contact time is preferably less than 180 seconds.

【0012】被処理水は、逆浸透膜によって濃縮水と透
過水に分離されるが、遊離塩素は膜で除去されず透過水
中にも含まれる。しかし、トリハロメタンの前駆物質は
逆浸透膜モジュールで除去され、透過水にはほとんど含
まれないために、トリハロメタンは生成しない。
The water to be treated is separated into concentrated water and permeated water by a reverse osmosis membrane, but free chlorine is not removed by the membrane but is contained in the permeated water. However, trihalomethane is not generated because the precursor of the trihalomethane is removed in the reverse osmosis membrane module and hardly contained in the permeated water.

【0013】遊離塩素は強力な酸化剤である。それゆえ
遊離塩素で殺菌された被処理水を逆浸透膜モジュールに
供給する場合、耐酸化剤性を有する逆浸透膜を用いる必
要がある。このような観点から、本発明に使用する逆浸
透膜モジュールとしては耐酸化剤性、耐塩素性を有する
三酢酸セルロース膜からなるものや特開昭62-244404に
開示されているような実質的な耐塩素性を有するポリア
ミド膜が好ましい。
[0013] Free chlorine is a strong oxidizing agent. Therefore, when supplying the water to be treated sterilized with free chlorine to the reverse osmosis membrane module, it is necessary to use a reverse osmosis membrane having oxidation resistance. From such a viewpoint, the reverse osmosis membrane module used in the present invention includes an oxidizing agent-resistant, chlorine-resistant cellulose triacetate membrane, and a substantial one as disclosed in JP-A-62-244404. A polyamide film having excellent chlorine resistance is preferred.

【0014】逆浸透膜モジュールの形態としては特に限
定はなく、中空糸型、スパイラル型、チューブラー型等
どのような形態の逆浸透膜モジュールにでも適用が可能
である。
The form of the reverse osmosis membrane module is not particularly limited, and the present invention can be applied to any type of reverse osmosis membrane module such as a hollow fiber type, a spiral type, and a tubular type.

【0015】[0015]

【実施例】以下の実施例によってさらに詳細に説明する
が、本発明はこれら実施例により何ら限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0016】逆浸透法の実験プラントとして、図1のよ
うな淡水化装置を用いた。以下図中の番号を用いて説明
する。取水ポンプ(1)により汲み上げられた被処理水
に、定量ポンプ(2)により凝集剤を添加し、砂ろ過槽
(3)に通水する。ここで懸濁粒子が除去される。その
後、一旦、処理水タンク(4)に蓄えられた被処理水は
ポンプ(5)により送水され、定量ポンプ(6)を用い
て硫酸を添加され、pH調整が行われる。
As an experimental plant for the reverse osmosis method, a desalination apparatus as shown in FIG. 1 was used. Description will be made below using the numbers in the figure. A coagulant is added to the water to be treated pumped up by the water intake pump (1) by the metering pump (2), and the water is passed through the sand filtration tank (3). Here, suspended particles are removed. Thereafter, the water to be treated once stored in the treated water tank (4) is fed by a pump (5), and sulfuric acid is added using a metering pump (6) to adjust the pH.

【0017】その後、カートリッジフィルター(7)を
通した後、定量ポンプ(8)により塩素(次亜塩素酸ナ
トリウム)を添加し殺菌を行い、高圧ポンプ(9)で昇
圧され、逆浸透膜モジュール(10)に供給される。
Then, after passing through a cartridge filter (7), chlorine (sodium hypochlorite) is added and sterilized by a metering pump (8), the pressure is increased by a high-pressure pump (9), and the reverse osmosis membrane module ( 10).

【0018】遊離塩素の分析は上水試験方法(日本水道
協会、1993年版)に記載されているDPD法を用い
た。
The analysis of free chlorine was carried out by the DPD method described in the method for testing clean water (Japan Water Works Association, 1993).

【0019】トリハロメタンおよびトリハロメタン生成
能の分析は上水試験方法(日本水道協会、1993年
版)に記載されているヘッドスペース−ガスクロマトグ
ラフ−質量分析法により実施した。
The analysis of trihalomethane and trihalomethane-producing ability was carried out by a headspace-gas chromatograph-mass spectrometry method described in a method for testing water supply (Japan Water Works Association, 1993 edition).

【0020】一般細菌数の測定は、ASTM記載の方法
に準拠して行った。
The measurement of the number of general bacteria was performed according to the method described in ASTM.

【0021】実施例1 被処理水として海水を使用した場合を示す。逆浸透膜モ
ジュールとしては、東洋紡製のホロセップHR8355
FI(三酢酸セルロース膜)を1本使用し、圧力55k
g/cm2 、回収率30%の条件で運転した。逆浸透膜
モジュールの性能は、塩除去率99.4%、透水量1
1.5m3 /日(25℃換算)であった。塩素添加濃度
を0.2mg/l とし、7日間の安定運転を実施した。逆浸透
膜モジュールの供給水の塩素濃度は0.13mg/l、pH6.5
、水温13.0℃であった。逆浸透膜モジュールの供給水
と透過水のトリハロメタン濃度を分析したところ1μg
/l以下であった。透過水のトリハロメタン生成能は4
μg/lであった。塩素添加点、供給水、透過水および
濃縮水における塩素および一般細菌数の測定値を表1に
示す。また、各ポイントのトリハロメタンおよびトリハ
ロメタン生成能の分析値を表2に示す。
Embodiment 1 A case where seawater is used as the water to be treated is shown. As a reverse osmosis membrane module, Toyobo Horosep HR8355
Using one FI (cellulose triacetate membrane), pressure 55k
The operation was performed under the conditions of g / cm 2 and a recovery rate of 30%. The reverse osmosis membrane module has a performance of salt removal of 99.4% and water permeability of 1
It was 1.5 m 3 / day (converted to 25 ° C.). The chlorine addition concentration was 0.2 mg / l, and stable operation was performed for 7 days. The chlorine concentration of the feed water of the reverse osmosis membrane module is 0.13 mg / l, pH 6.5
The water temperature was 13.0 ° C. When the concentration of trihalomethane in the feed water and permeate of the reverse osmosis membrane module was analyzed, it was 1 μg.
/ L or less. Trihalomethane generating ability of permeate is 4
μg / l. Table 1 shows measured values of chlorine and the number of common bacteria in the chlorine addition point, feed water, permeated water and concentrated water. Table 2 shows the analysis values of trihalomethane and trihalomethane generation ability at each point.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1 実施例1と同様の装置を使用し、添加濃度を変更した。
塩素添加濃度を0.05mg/lとし、7日間の安定運転を実施
した。逆浸透膜モジュールの供給水の塩素濃度は0.01g/
l 、pH6.5 、水温14.2℃であった。逆浸透膜モジュー
ルの供給水と透過水のトリハロメタン濃度を分析したと
ころ1μg/l以下であった。透過水のトリハロメタン
生成能は6μg/lであった。塩素添加点、供給水、透
過水および濃縮水における塩素および一般細菌数の測定
値を表3に示す。また、各ポイントのトリハロメタンお
よびトリハロメタン生成能の分析値を表4に示す。
Comparative Example 1 The same apparatus as in Example 1 was used, and the concentration of addition was changed.
The chlorine addition concentration was 0.05 mg / l, and stable operation was performed for 7 days. The chlorine concentration of the feed water of the reverse osmosis membrane module is 0.01 g /
l, pH 6.5, water temperature 14.2 ° C. The analysis of the feed water and permeate trihalomethane concentration of the reverse osmosis membrane module was 1 μg / l or less. The trihalomethane generating ability of the permeated water was 6 μg / l. Table 3 shows the measured values of chlorine and the number of common bacteria in the chlorine addition point, feed water, permeate water and concentrated water. Table 4 shows the analysis values of trihalomethane and trihalomethane generation ability at each point.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】比較例2 実施例1において塩素添加点を従来の海水取水部に変更
し、添加濃度を0.7mg/l とし、7日間の安定運転を実施
した。逆浸透膜モジュールの供給水の塩素濃度は0.13mg
/l、pH6.5 、水温12.9℃であった。逆浸透膜モジュー
ルの供給水と透過水のトリハロメタン濃度を分析したと
ころ、それぞれ27,24 μg/lであった。透過水のトリ
ハロメタン生成能は53μg/lであった。塩素添加点、
供給水、透過水および濃縮水における塩素および一般細
菌数の測定値を表5に示す。また、各ポイントのトリハ
ロメタンおよびトリハロメタン生成能の分析値を表6に
示す。
Comparative Example 2 In Example 1, the chlorine addition point was changed to the conventional seawater intake section, the addition concentration was 0.7 mg / l, and stable operation was performed for 7 days. Chlorine concentration of supply water of reverse osmosis membrane module is 0.13mg
/ l, pH 6.5, water temperature 12.9 ° C. Analysis of the feed water and permeate trihalomethane concentrations of the reverse osmosis membrane module was 27,24 μg / l, respectively. The trihalomethane generating ability of the permeated water was 53 μg / l. Chlorine addition point,
Table 5 shows the measured values of chlorine and the number of general bacteria in feed water, permeate water, and concentrated water. Table 6 shows the analysis values of trihalomethane and trihalomethane generation ability at each point.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】実施例2 被処理水としてかん水を使用した場合を示す。逆浸透膜
モジュールとしては、東洋紡製のホロセップHA835
5FI(三酢酸セルロース膜)を1本使用し、圧力30
kg/cm2 、回収率75%の条件で運転した。逆浸透
膜モジュールの性能は、塩除去率92.0%、透水量6
0m3/日(25℃換算)であった。塩素添加濃度を0.2
5mg/lとし、7日間の安定運転を実施した。逆浸透膜モ
ジュールの供給水の塩素濃度は0.10mg/l、pH6.6 、水
温18.0℃であった。逆浸透膜モジュールの供給水と透過
水のトリハロメタン濃度を分析したところ1μg/l以
下であった。透過水のトリハロメタン生成能は4μg/
lであった。塩素添加点、供給水、透過水および濃縮水
における塩素および一般細菌数の測定値を表7に示す。
また、各ポイントのトリハロメタンおよびトリハロメタ
ン生成能の分析値を表8に示す。
Example 2 A case where brackish water is used as the water to be treated is shown. As a reverse osmosis membrane module, Toyobo Horosep HA835
Use one 5FI (cellulose triacetate membrane) at a pressure of 30
The operation was performed under the conditions of kg / cm 2 and a recovery rate of 75%. The reverse osmosis membrane module has a salt removal rate of 92.0% and a water permeability of 6
It was 0 m 3 / day (converted to 25 ° C.). 0.2 chlorine concentration
The concentration was set to 5 mg / l, and stable operation was performed for 7 days. The chlorine concentration of the water supplied to the reverse osmosis membrane module was 0.10 mg / l, the pH was 6.6, and the water temperature was 18.0 ° C. The analysis of the feed water and permeate trihalomethane concentration of the reverse osmosis membrane module was 1 μg / l or less. The trihalomethane generating ability of the permeated water is 4 μg /
l. Table 7 shows the measured values of chlorine and the number of common bacteria in the chlorine addition point, the feed water, the permeated water, and the concentrated water.
Table 8 shows the analysis values of trihalomethane and trihalomethane generation ability at each point.

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【表8】 [Table 8]

【0033】[0033]

【発明の効果】本発明の方法により、被処理水の殺菌プ
ロセスでのトリハロメタン等のハロゲン化有機物が微量
で、かつ逆浸透膜の透過水のトリハロメタン生成能も従
来法に比べて小さくする事が可能である。
According to the method of the present invention, the amount of halogenated organic substances such as trihalomethane in the sterilization process of the water to be treated is very small, and the ability of the reverse osmosis membrane to produce trihalomethane in the permeated water can be reduced as compared with the conventional method. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の逆浸透法淡水化装置の外観
図。
FIG. 1 is an external view of a reverse osmosis method desalination apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 取水ポンプ 2 凝集剤添加用定量ポンプ 3 砂ろ過槽 4 処理水タンク 5 送水ポンプ 6 硫酸添加用定量ポンプ 7 カートリッジフィルター 8 塩素添加用定量ポンプ 9 高圧ポンプ 10 逆浸透膜モジュール 11 透過水出口 12 濃縮水出口 DESCRIPTION OF SYMBOLS 1 Intake pump 2 Metering pump for adding coagulant 3 Sand filtration tank 4 Treated water tank 5 Water pump 6 Metering pump for adding sulfuric acid 7 Cartridge filter 8 Metering pump for adding chlorine 9 High pressure pump 10 Reverse osmosis membrane module 11 Permeate outlet 12 Concentration Water outlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531M 540 540A 540B 550 550C 560 560E Fターム(参考) 4D006 GA03 HA01 HA21 HA61 KA03 KA33 KA64 KB14 KB15 KB30 KD06 KD08 KD11 KD23 KE30R MC18X MC54 PB02 PB03 PB05 PB08 PB24 PC02 PC42 PC51 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531M 540 540A 540B 550 550C 560 560E F term (Reference) 4D006 GA03 HA01 HA21 HA61 HA61 KA03 KA33 KA64 KB14 KB15 KB30 KD06 KD08 KD11 KD23 KE30R MC18X MC54 PB02 PB03 PB05 PB08 PB24 PC02 PC42 PC51

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理水の殺菌剤として遊離塩素を用い
る逆浸透膜を用いた膜分離プロセスにおいて、被処理水
と遊離塩素を逆浸透膜直前で接触させることを特徴とす
る逆浸透法膜分離プロセスにおける殺菌方法。
In a membrane separation process using a reverse osmosis membrane using free chlorine as a germicide for water to be treated, the water to be treated is contacted with free chlorine immediately before the reverse osmosis membrane. Sterilization method in the separation process.
【請求項2】 被処理水に対し残留塩素濃度として 0.1
〜1.0mg/l の範囲で、連続的または間欠的に殺菌剤を被
処理水と接触させることを特徴とする請求項1記載の膜
分離プロセスにおける殺菌方法。
2. The residual chlorine concentration of the water to be treated is 0.1
The sterilization method in the membrane separation process according to claim 1, wherein the sterilizing agent is brought into contact with the water to be treated continuously or intermittently in the range of 1.0 to 1.0 mg / l.
【請求項3】 逆浸透膜が三酢酸セルロースからなるこ
とを特徴とする請求項1記載の膜分離プロセスにおける
殺菌方法。
3. The method according to claim 1, wherein the reverse osmosis membrane is made of cellulose triacetate.
【請求項4】 逆浸透膜が耐塩素性を有するポリアミド
からなることを特徴とする請求項1記載の膜分離プロセ
スにおける殺菌方法。
4. The method for sterilizing in a membrane separation process according to claim 1, wherein the reverse osmosis membrane is made of a polyamide having chlorine resistance.
JP10212759A 1998-07-28 1998-07-28 Sterilization method in reverse osmosis membrane separation process Withdrawn JP2000042373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10212759A JP2000042373A (en) 1998-07-28 1998-07-28 Sterilization method in reverse osmosis membrane separation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10212759A JP2000042373A (en) 1998-07-28 1998-07-28 Sterilization method in reverse osmosis membrane separation process

Publications (1)

Publication Number Publication Date
JP2000042373A true JP2000042373A (en) 2000-02-15

Family

ID=16627944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212759A Withdrawn JP2000042373A (en) 1998-07-28 1998-07-28 Sterilization method in reverse osmosis membrane separation process

Country Status (1)

Country Link
JP (1) JP2000042373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
JP2013066850A (en) * 2011-09-22 2013-04-18 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
JP2014526957A (en) * 2011-07-14 2014-10-09 ナルコ カンパニー How to maintain process stream water quality
CN110342672A (en) * 2018-04-04 2019-10-18 中国石油天然气集团有限公司 Purify the processing system and its processing method of recovered water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
JP2014526957A (en) * 2011-07-14 2014-10-09 ナルコ カンパニー How to maintain process stream water quality
JP2013066850A (en) * 2011-09-22 2013-04-18 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
CN110342672A (en) * 2018-04-04 2019-10-18 中国石油天然气集团有限公司 Purify the processing system and its processing method of recovered water

Similar Documents

Publication Publication Date Title
EP1900417A1 (en) Method of bacteriostasis or disinfection for permselective membrane
JP2008183510A (en) Purified water production method and apparatus
JPH01104310A (en) Membrane separation
KR101840896B1 (en) Ultrapure water production process
WO2011125764A1 (en) Treatment method using reverse osmosis membrane
JP5190908B2 (en) Water treatment method and water treatment apparatus
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP2005185985A (en) Method and apparatus for producing water
JP6379571B2 (en) Fresh water generation method and fresh water generation apparatus
JP2009297611A (en) Hydrogen peroxide-containing organic water treatment method and apparatus
JP2000042373A (en) Sterilization method in reverse osmosis membrane separation process
JP2000300966A (en) Membrane sterilization method and membrane separation device
JPS6336890A (en) Apparatus for producing high-purity water
JP3087750B2 (en) Sterilization method of membrane
JPH0929075A (en) Reduction of disinfected byproduct in membrane separation process
JP3148849B2 (en) Seawater desalination method by reverse osmosis
JPH07124559A (en) Sterilization of water to be treated in seawater desalting process
JP2004244345A (en) Fungicide for water treatment, method for water treatment and apparatus for water treatment
JP3269496B2 (en) Sterilization method and fresh water method of membrane
JP3221801B2 (en) Water treatment method
JP2004130233A (en) Treatment method for high-concentration solution with reverse osmosis membrane
JP2000042544A (en) Pretreatment for desalination by reverse osmosis membrane method
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JP2015186773A (en) Fresh water generation method and fresh water generator
JP3353810B2 (en) Reverse osmosis seawater desalination system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090615

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111014