IES86367B2 - A blade for a rotary machine - Google Patents
A blade for a rotary machineInfo
- Publication number
- IES86367B2 IES86367B2 IES20130233A IES20130233A IES86367B2 IE S86367 B2 IES86367 B2 IE S86367B2 IE S20130233 A IES20130233 A IE S20130233A IE S20130233 A IES20130233 A IE S20130233A IE S86367 B2 IES86367 B2 IE S86367B2
- Authority
- IE
- Ireland
- Prior art keywords
- blade
- dimples
- leading edge
- aerofoil
- area
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241001137251 Corvidae Species 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/32—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/20—Geometry three-dimensional
- F05B2250/28—Geometry three-dimensional patterned
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/60—Structure; Surface texture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Wind Motors (AREA)
Abstract
A blade for use in rotary machines such as a wind turbine blade 10 has a plurality of dimples 18 distributed over an area of a low pressure or suction surface of the blade 10 which preferably extends from immediately adjacent to a leading edge 12 of the blade at least partially towards a rear or trailing edge 14 of the blade 10. <Figure 1>
Description
A Blade For a Rotary Machine
Field of the invention
The present invention is concerned with a blade for a rotary machine, which in use undergoes driven or driving rotation, and is particularly but not exclusively concerned with such blades when used in air or gas driven applications such as a wind turbines, or air or gas driving or displacing applications such as fans, compressors, and blowers, and in particular blades having improved flow characteristics, for example reduced boundary layer separation, reduced turbulence, etc.
Background ofthe invention
Rotating blades are used in a large number of applications and in particular rotary machines as described above, and in many of those applications it is desirable to improve the efficiency and/or performance of the blade through various means, in one application aerofoil blades are utilised in augmented wind turbine systems, for example comprising a shroud surrounding a set of aerofoil blades such as to take advantage of the higher velocity profile. By improving the performance and/or efficiency of such blades a greater power output can be achieved and/or the turbines can be located in a more diverse range of locations. It will also be appreciated that the invention can be used in conventional wind turbine systems or other rotational blade applications or machines.
As a further example, blades of various size, shape and design are used in air displacers such as fans, compressors, blower based applications, for exampie HVAC applications, refrigeration applications, or any other applications requiring air or other fluid such as gas to be displaced. Such blades may have a full or partial aerofoil section, or may define a simple paddle/vane style blade design
It is therefore an object of the present invention to provide a blade or set of blades for a rotary machine having improved performance and/or efficiency.
Summary of the invention
According to the present invention there is provided a blade having a plurality of dimples distributed over an area of at least one surface of the blade which extends from at or adjacent a leading edge of the blade at least partially towards a rear edge of the blade.
Preferably, the blade comprises an aerofoil blade.
Preferably, the aerofoil comprises a low pressure or suction surface and an opposed high pressure or pressure surface, and the dimples are distributed over at least an area of the low pressure surface.
Preferably, the aerofoil is asymmetric.
Preferably, the leading edge is rounded and the trailing edge is sharp.
Preferably, the area of dim pies extends along at least a major part of the length of the blade.
Preferably, the dimples are generally teardrop-shaped with a wider end facing towards the leading edge of the blade.
Preferably, the dimples vary in distribution density.
Preferably, the dimples vary in depth.
Preferably, the dimples vary in cross section with depth.
Preferably, the plurality of dimples comprises dimples of different size.
Preferably, the trailing edge of the blade has a localised rearward or downstream extension.
Preferably, the localised rearward extension is at a free end of the blade.
Preferably, the blade is a wind turbine blade.
Preferably, dimples are also provided on the pressure surface of the blade.
As used herein, the term “dimple” is Intended to mean a localised depression in a surface, and which may vary in cross section with depth, and may be of any suitable shape and orientation.
Brief description of the drawings
Embodiments of the invention will now be described, byway of example, with reference to the accompanying drawings, in which:
Figure 1 is a perspective view of an embodiment of aerofoil blade according to the invention, having particular application in a wind turbine;
Figure 2 is a schematic partial cross section through the blade of Figure 1;
Figure 3 is a partial top view of the blade of Figure 1; and 5
Figure 4 is a perspective view of a modification of the aerofoil blade of Figure 1.
Detailed description of the drawings
Referring to Figures 1 to 3, an aerofoil blade for use with a wind turbine is illustrated, and comprises an outwardly tapered blade 10 with a rounded leading edge 12, and a sharp or narrow trailing edge 14 and an outer free end or tip 16, It will however be appreciated that the size, shape and profile of the blade 10 may be varied as required, depending on the particular application with which the blade
is to be employed. A large number or array of dimples 18 are distributed over a lower pressure or suction” surface 20 of the blade 10, and as will be described in detail hereinafter, are arranged to augment the flow of air around the blade 10 in order to improve the performance and/or efficiency of the blade 10.
In this particular embodiment the dimples 18 extend fully from the leading edge 12 of the blade to the trailing edge 14 and from the root to the tip of the biade 10, i.e. they cover substantially the entire suction surface 20. In general, however, the dimpled area of the upper or suction surface 12 may extend rearwardly from immediately adjacent to the leading edge 12 of the blade 10 only partially to the trailing edge 14, preferably at least one quarter the way to the trailing edge. In addition the dimples may not extend all the way to the root or the tip, and further alternatively the suction surface 12 may have one or more regions devoid of dimples.
Also, the dimpled area does not necessarily need to extend along the full length of the leading edge 12 of the blade 10, although it preferably extends along at least a major part of the length of the leading edge.
In this embodiment the dimples 18 are generally concave teardrop-shaped depressions aligned with their wider ends facing upstream towards the leading edge 12 of the blade, as shown in Figure 3, and the narrow or tapered ends facing downstream towards the trailing edge 14. The dimples 18 are preferably closely spaced, but their distribution density may vary over the dimpled area. The dimples may aiso vary in depth, and may vary in cross section with depth, it will also be appreciated that the dimples 18 may be of any other suitable shape or size in order to generate a desired augmentation of the air flowing around the blade 10, In addition dimples 18 of different size, shape and/or depth may be used on the same biade 10.
The dimples 18 can be created directly in the upper or suction surface 20 of the blade, or by using blade protection tape 22 {Figure 2) or any other suitable carrier (not shown) which is embossed with the teardrop or other shaped dimples 18 and applied to the upper surface 20. This allows the array of dimples 18 to be quickly and easily retrofitted to an existing blade.
In the embodiment shown in Figures 1 to 3 the length of the blade 10 was 2.45m with an average chord of 300mm. The dimples are 15mm long by 9mm wide at their widest part, with a maximum depth of 0.33mm. These particular dimensions are suited to wind turbine blades, and may of course be varied to suit the intended application. For example in HVAC or refrigeration applications, the blade 10 may be employed with refrigeration fans, blowers and/or compressors (not shown) and will therefore be dimensioned accordingly, with the profile of the blade 10 being altered to suit the velocity profile of the gas being displaced.
The above turbine blade design serves to accelerate airflow, increase lift, reduce the wake created and/or increase the air displaced by the blade 10. The dimples 18 serve to create a micro-turbuient layer across the blade 10 which in turn causes the wind-force acting on the blade to be greater. The dimples delay boundary layer separation thereby reducing the wake of the blade 10. The dimples 18, when in an inverted teardrop shape, may also act as mini-augmenters and give the air direction. The depth, size, shape and distribution density of the dimples 18 may vary with blade characteristics or other system parameters.
In a modification of the above embodiment, Figure 4, the trailing edge 14 of the blade 10 has a localised rearward or downstream paddle-like extension 24, preferably at its free end or tip 16. The extended paddle-like tip 24 of the blade 10 serves to increase the surface area. However the dimples 18 can still work effectively on a conventional aerofoil blade which does not have the projection, i.e. as shown in Figure 1.
If desired, similar dimples may be provided on the “high pressure” surface of the blade (not shown), again extending rearwardly from the leading edge.
Claims (5)
1. A blade having a plurality of dimples distributed over an area of at least one surface of the 5 blade which extends from at or adjacent a leading edge of the blade at least partially towards a rear edge of the blade.
2. A blade according to claim 1 comprising an aerofoil blade. 10
3. A blade as claimed in claim 1 or 2 comprising a low pressure or suction surface and an opposed high pressure or pressure surface, and the dimples are distributed over at least an area of the low pressure surface.
4. A wind turbine comprising at least one blade according to any of claims 1 to 3.
5. An air displacement system comprising at least one blade according to any of claims 1 to 3,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IES20130233A IES20130233A2 (en) | 2012-08-09 | 2013-08-07 | A blade for a rotary machine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IES20120347A IES86162B2 (en) | 2012-08-09 | 2012-08-09 | Aerofoil blades |
US13/897,766 US20140044552A1 (en) | 2012-08-09 | 2013-05-20 | Blade for a rotary machine |
IES20130233A IES20130233A2 (en) | 2012-08-09 | 2013-08-07 | A blade for a rotary machine |
Publications (2)
Publication Number | Publication Date |
---|---|
IES86367B2 true IES86367B2 (en) | 2014-03-26 |
IES20130233A2 IES20130233A2 (en) | 2014-03-26 |
Family
ID=47901525
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IES20120347A IES86162B2 (en) | 2012-08-09 | 2012-08-09 | Aerofoil blades |
IES20130233A IES20130233A2 (en) | 2012-08-09 | 2013-08-07 | A blade for a rotary machine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IES20120347A IES86162B2 (en) | 2012-08-09 | 2012-08-09 | Aerofoil blades |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140044552A1 (en) |
IE (2) | IES86162B2 (en) |
WO (1) | WO2014023739A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2407671B1 (en) * | 2009-03-10 | 2019-06-26 | Daikin Industries, Ltd. | Crossflow fan and air conditioner provided with same |
MX2017012325A (en) | 2015-04-08 | 2017-12-20 | Horton Inc | Fan blade surface features. |
WO2017052371A1 (en) * | 2015-09-21 | 2017-03-30 | Home Turbine B.V. | Device for converting wind energy into at least mechanical energy |
NL1041491B1 (en) * | 2015-09-25 | 2017-04-19 | Home Turbine B V | Device for converting wind energy into at least mechanical energy. |
GB2556110B (en) * | 2016-11-21 | 2020-04-01 | Dyson Technology Ltd | Compressor blade surface patterning |
DK3399182T3 (en) | 2017-05-05 | 2021-02-15 | Nordex Energy Se & Co Kg | TIP FOR ROTOR BLADES WITH LOW NOISE |
CN115750196B (en) * | 2022-11-17 | 2024-03-12 | 中材科技风电叶片股份有限公司 | Wind power blade and wind power generator |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3463418A (en) * | 1968-03-20 | 1969-08-26 | Edmond S Miksch | Vortex generator for airplane wing |
US4872484A (en) * | 1988-12-12 | 1989-10-10 | John Hickey | System for controlling the flow of a fluid medium relative to an object |
US5075564A (en) * | 1989-12-19 | 1991-12-24 | Hickey John J | Combined solar and wind powered generator with spiral surface pattern |
US4974633A (en) * | 1989-12-19 | 1990-12-04 | Hickey John J | System for controlling the flow of a fluid medium relative to an object |
US5254876A (en) * | 1992-05-28 | 1993-10-19 | Hickey John J | Combined solar and wind powered generator with spiral blades |
US5386146A (en) * | 1993-04-22 | 1995-01-31 | Hickey; John J. | In-line auger driven charging system |
US5634613A (en) * | 1994-07-18 | 1997-06-03 | Mccarthy; Peter T. | Tip vortex generation technology for creating a lift enhancing and drag reducing upwash effect |
DE10301080A1 (en) * | 2002-10-22 | 2004-05-13 | Siemens Ag | Wind turbine |
EP1469198A1 (en) * | 2003-04-17 | 2004-10-20 | Eugen Radtke | Wind energy converter with lift improving surface structure. |
US20060110257A1 (en) * | 2004-11-23 | 2006-05-25 | Yu-Keng Huang | Ceiling fan blade |
US7604461B2 (en) * | 2005-11-17 | 2009-10-20 | General Electric Company | Rotor blade for a wind turbine having aerodynamic feature elements |
US8033794B2 (en) * | 2009-05-26 | 2011-10-11 | Jia-Yuan Lee | Wind turbine |
EP2258941A1 (en) * | 2009-06-05 | 2010-12-08 | Jia-Yuan Lee | Wind turbine |
GR1008803B (en) * | 2010-09-01 | 2016-07-01 | Εμμανουηλ Δημητριου Μιχαλης | Wind generator's blades |
US20120103430A1 (en) * | 2010-10-27 | 2012-05-03 | Zuei-Ling Lin | Method of reducing the object-traveling resistance |
US8864440B2 (en) * | 2010-11-15 | 2014-10-21 | Sauer Energy, Incc. | Wind sail turbine |
-
2012
- 2012-08-09 IE IES20120347A patent/IES86162B2/en not_active IP Right Cessation
-
2013
- 2013-05-20 US US13/897,766 patent/US20140044552A1/en not_active Abandoned
- 2013-08-06 WO PCT/EP2013/066495 patent/WO2014023739A1/en active Application Filing
- 2013-08-07 IE IES20130233A patent/IES20130233A2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2014023739A1 (en) | 2014-02-13 |
IES20120347A2 (en) | 2013-03-27 |
US20140044552A1 (en) | 2014-02-13 |
IES86162B2 (en) | 2013-03-27 |
IES20130233A2 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140044552A1 (en) | Blade for a rotary machine | |
US7914259B2 (en) | Wind turbine blades with vortex generators | |
US7637720B1 (en) | Turbulator for a turbine airfoil cooling passage | |
US10690112B2 (en) | Fluid turbine rotor blade with winglet design | |
BR102013025213A2 (en) | WIND TURBINE ROTOR BLADE, WIND TURBINE WITH NUMBER ROTOR BLADES AND AIRFLOW CORRECTION PROVISION | |
US20150233345A1 (en) | Wind turbine blade | |
CN108431428B (en) | Ultra-low noise axial flow fan for industry | |
JP2008025983A (en) | Outdoor unit for air conditioner | |
JP6167051B2 (en) | Wind turbine blade, wind turbine rotor and wind power generator | |
WO2005040559A1 (en) | High lift rotor or stator blades with multiple adjacent airfoils cross-section | |
US20140127030A1 (en) | A turbine blade system | |
JP2008157113A (en) | Blower | |
CN108953222B (en) | Centrifugal impeller | |
ES2894917T3 (en) | Shaped rotor blade to improve wake spread | |
JP4723264B2 (en) | 3D rotor blade and horizontal axis wind turbine | |
CN200985903Y (en) | Tube-axial fan | |
KR20080061427A (en) | Fan of an air conditioner | |
IES86367Y1 (en) | A blade for a rotary machine | |
EP3098436B1 (en) | Noise reducing flap with opening | |
CN211737551U (en) | Backward centrifugal section resistance-reducing centrifugal fan blade | |
JP6709741B2 (en) | Rotor | |
JP2009275696A (en) | Propeller fan, and air conditioner using it | |
JP7529708B2 (en) | Propeller fans and refrigeration equipment | |
IES86162Y1 (en) | Aerofoil blades | |
CN215409414U (en) | Axial flow fan blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed |