Nothing Special   »   [go: up one dir, main page]

GB2563738B - Caster wheel - Google Patents

Caster wheel Download PDF

Info

Publication number
GB2563738B
GB2563738B GB1807351.0A GB201807351A GB2563738B GB 2563738 B GB2563738 B GB 2563738B GB 201807351 A GB201807351 A GB 201807351A GB 2563738 B GB2563738 B GB 2563738B
Authority
GB
United Kingdom
Prior art keywords
axle
brake
wheel
arm
swivel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
GB1807351.0A
Other versions
GB2563738A (en
GB201807351D0 (en
Inventor
T Sharp William
A Doerflinger David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snap On Inc
Original Assignee
Snap On Inc
Snap On Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/952,931 external-priority patent/US11654715B2/en
Application filed by Snap On Inc, Snap On Tools Corp filed Critical Snap On Inc
Publication of GB201807351D0 publication Critical patent/GB201807351D0/en
Publication of GB2563738A publication Critical patent/GB2563738A/en
Application granted granted Critical
Publication of GB2563738B publication Critical patent/GB2563738B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/0078Castors in general; Anti-clogging castors characterised by details of the wheel braking mechanism
    • B60B33/0084Castors in general; Anti-clogging castors characterised by details of the wheel braking mechanism acting on axle end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/02Castors in general; Anti-clogging castors with disengageable swivel action, i.e. comprising a swivel locking mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/121Resisting forces
    • B60B2900/1212Resisting forces due to friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/561Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Description

CASTER WHEEL
Technical Field of the Invention
The presently disclosed embodiments relate generally to caster wheels. More particularly, the presently disclosed embodiments relate to methods and devices for reducing the friction around a caster wheel lever.
Background of the Invention
Caster wheels are a common structure used with mobile enclosures such as roll cabinets or carts. Caster wheels are easily attached to the cabinet and are often movable between a fixed mode in which the wheels align in one direction, and a rotatable position in which the wheels can swivel and allow more free steering of the mobile enclosure. The wheels are typically rotatable about an axle, where the axle is held in place by two support arms on opposite ends of the axle.
Caster wheel brakes are also popular as they allow the mobile enclosure to be selectively fixed in one position. The brakes often include a lever that, when engaged, prevents one or more of the wheels from moving to thereby maintain the mobile enclosure in one place. The brake arm can be spring loaded such that, when disengaged, the brake arm can rotate back to its original position.
The brake arm rotates against normal friction applied to the brake arm due to the manner in which the brake arm is coupled to the support arm. This friction can require increased force to fully engage the brake and fix the mobile enclosure in one place.
Summary of the Invention
The presently disclosed embodiments broadly comprise a system and method for reducing friction on a brake arm of a caster wheel brake. The caster wheel includes a washer positioned, between the brake arm and the support arm. In addition to the above, the caster wheel can include lubricant provided between the brake arm and the support arm, and also between the brake arm and the brake cam.
In particular, according to a first aspect, there is provided a caster wheel as set forth in the accompanying claim 1.
According to a second aspect there is provided a method of lubricating a caster wheel as set forth in the accompanying claim 9.
Brief Description of the Drawings
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated. FIG. 1 is a partially exploded front perspective view of a caster wheel according to at least some of the presently disclosed embodiments. FIG. 2 is a front view of a caster wheel according to at least some of the presently disclosed embodiments. FIG. 3 is a flow chart illustrating a manner of reducing friction on a brake according to at least some of the presently disclosed embodiments.
Detailed Description of the Embodiments
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings, and will herein be described in detail, a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to embodiments illustrated. As used herein, the term “present invention” is not intended to limit the scope of the claimed invention and is instead a term used to discuss exemplary embodiments of the invention for explanatory purposes only.
The presently disclosed embodiments broadly comprise devices and methods that reduce friction when a user actuates a brake arm of a caster wheel. A washer made of a high-lubricity material is provided between the brake arm and the support arm In this manner, the brake arm can be actuated with less force as compared to if the washer were not implemented, creating a more fluid actuation of the brake arm and better user experience.
As shown in FIGs. 1 and 2, a caster wheel 100 includes a wheel 105 coupled to a base llObyaswivel 115. For example, the wheel 105 can be coupled to the swivel 115byapair of opposing support arms 120. The wheel 105 can be selectively held in a fixed position by a brake 125. As discussed below in more detail, various methods and devices can be implemented to decrease the tension required to initiate the brake, therefore requiring less force to place the caster wheel 100 in the braked position.
The swivel 115 can serve as the component of the caster wheel 100 that couples the wheel 105 and support arms 120 to the base 110. The swivel 115 includes a swivel bracket 130 that extends to the outsides of the support arms 120 and couples to the support arms 120. For example, a support pin 135 can extend from a first side to the second side of the swivel bracket 130 and couple the support arms 120 to the swivel 115, as shown in FIG. 1. The support pin 135 can take the form of a bolt, with a support head 140, for example a hexagonal head, located on a first end of the support pin 135; and a standard nut located opposite the support head 140 on a second end of the support pin 135 opposite the first end. The support pin 135 can extend through the pair of support arms 120 and the nut can couple to threads on the second end to couple the support pin 135 to the support arms 120.
The caster wheel 100 can operate in a swivel mode, where the wheel 105 is allowed to swivel, i.e. rotate about an axis perpendicular to the base; and a fixed mode, where the wheel 105 is fixed in a predetermined alignment. To select the swivel mode, a user can remove a locking pin 145 from a lock mechanism, and to select the fixed mode, the user can insert the locking pin 145 into the lock mechanism.
The brake 125 can include a lever 150 coupled to a handle 155, collectively termed the brake arm 160. The brake arm 160 is rotatably coupled to an axle 165, as shown in FIG. 1. For example, the brake arm 160 can include a hole through which the axle 165 extends and about which the brake arm 160 rotates to actuate the brake and cause the caster wheel 100 to enter or exit the braked position. Similar to the support pin 135, the axle 165 can include an axle head 170 on a first end, with a shaft 175 connecting the axle head 170 to threads 180 at a second end. The threads 175 can then couple to a nut in a well-known manner and can be tightened until the brake 125 is sufficiently coupled to the support arms 120 and the wheel 105. In some embodiments, the wheel 105 can also rotate about the same axle 165 as the brake arm 160. For example, the wheel 105 can have a hole at its radial center and the axle 165 can extend through the hole. The brake arm 160 can include a first side facing the axle head 170 and a second side opposite the first side, facing the support arm 120.
As discussed above, the brake arm 160 can rotate downward to place the caster wheel 100 in a locked position in which the wheel 105 will not substantially rotate. In conventional caster wheels 100 the brake arm 160 actuates a cam brake where the brake arm 160 rotates and uses a cam to tighten a caster rig against a wheel. This method is effective but causes friction surrounding the brake arm 160. The presently disclosed embodiments implement a washer 185 to reduce this friction. The washer 185 is placed on the axle 165 between the brake arm 160 and the support arm 120. The washer 185 is made of a high-lubricity material such as polytetrafluoroethylene (PTFE) to improve the friction reducing capabilities of the washer 185 with respect to the brake arm 160. In this manner, the user can implement the brake arm 160 and cause the caster wheel 100 to be engaged in the locked position, and subsequently release the brake arm 160, with less force and greater ease due to the friction-reducing qualities of the washer 185.
As shown in FIG. 3, a second method which is disclosed but not independently claimed, can be implemented to reduce the friction surrounding the brake arm 160 using lubricant, such as grease. The method 300 of FIG. 3 can be implemented with the washer 185 system discussed above or separate and apart from any washer.
As shown, the method 300 begins and proceeds to step 305, where a caster wheel 100 is provided. This caster wheel 100 can be similar to the caster wheel discussed above and include any or all of the elements discussed above. The method 300 then proceeds to step 310 where the axle 165 is partially unscrewed. In doing so, the nut on the axle 165 is not to be removed entirely, but that the axle 165 is only partially unscrewed to allow for the lubricant to be inserted.
The method 300 then proceeds to step 315 where lubricant is provided between the brake arm 160 and the support arm 120. Similarly, in step 320, lubricant is provided between the brake arm 160 and the brake cam. The bolt is re-tightened in step 325 and the method 300 then ends.
As used herein, the term “coupled” and its functional equivalents are not intended to necessarily be limited to direct, mechanical coupling of two or more components. Instead, the term “coupled” and its functional equivalents are intended to mean any direct or indirect mechanical, electrical, or chemical connection between two or more objects, features, work pieces, and/or environmental matter. “Coupled” is also intended to mean, in some examples, one object being integral with another object.
The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of the inventors’ contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.

Claims (9)

Claims
1. A caster wheel comprising: a base; a swivel coupled to the base; a support arm coupled to the swivel at a first support end of the support arm, the support arm having a second support end opposite the first support end; a wheel rotatably coupled to the support arm at the second support end, the wheel having a hole at a radial center of the wheel; an axle extending through the hole of the wheel and coupling to the support arm; a brake arm rotatably disposed about the axle; and a washer disposed between the brake arm and the support arm wherein the washer is made of a high-lubricity material adapted to reduce friction between the brake arm and the support arm.
2. The caster wheel of claim 1, wherein the brake arm includes a first side and a second side opposite the first side, and further comprising lubricant provided on the first and second sides of the brake arm.
3. The caster wheel of claim 1, wherein the axle includes an axle head at a first axle end, threads at a second axle end opposite the first axle end, and a shaft extending between the first and second axle ends.
4. The caster wheel of claim 1, wherein the swivel is adapted to operate in a fixed mode, wherein the wheel is aligned in a predetermined position, and a swivel mode, wherein the wheel is rotatable about an axis perpendicular to the base.
5. The caster wheel of claim 4, further comprising a pin that is selectively insertable into the swivel to cause the caster wheel to operate in the fixed or swivel mode.
6. The caster wheel of claim 1, wherein the brake arm includes a lever and a handle extending from the lever, the lever receiving the axle.
7. The caster wheel of claim 1, wherein the swivel includes a swivel bracket having opposing first and second swivel bracket sides, and further comprising a support pin extending from the first swivel bracket side to the second swivel bracket side.
8. The caster wheel of claim 7, wherein the support pin couples the support arm to the swivel.
9. A method of lubricating a caster wheel comprising: providing the caster wheel having a base, a wheel rotatably coupled to the base by a support arm, a brake having a brake arm rotatably disposed about an axle with first and second axle ends, a head being located at the first axle end, and a nut being threadably coupled to threads at the second axle end, and a washer disposed between the brake arm and the support arm, wherein the washer is made of a high-lubricity material adapted to reduce friction between the brake arm and the support arm. loosening the nut without removing the nut from the axle; applying lubricant to the brake between the brake arm and the support arm; providing lubricant to the brake between the brake arm and a brake cam; and tightening the nut.
GB1807351.0A 2017-05-08 2018-05-04 Caster wheel Active GB2563738B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762503129P 2017-05-08 2017-05-08
US15/952,931 US11654715B2 (en) 2017-05-08 2018-04-13 Caster wheel

Publications (3)

Publication Number Publication Date
GB201807351D0 GB201807351D0 (en) 2018-06-20
GB2563738A GB2563738A (en) 2018-12-26
GB2563738B true GB2563738B (en) 2019-09-11

Family

ID=62598343

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1807351.0A Active GB2563738B (en) 2017-05-08 2018-05-04 Caster wheel

Country Status (1)

Country Link
GB (1) GB2563738B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619286A (en) * 2020-06-06 2020-09-04 东阳市智林科技有限公司 Electrical cabinet caster device and installation and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH350775A (en) * 1957-04-25 1960-12-15 Schnetzler Graf Anton Braking device on a swivel castor
US4336630A (en) * 1981-02-13 1982-06-29 Rose Truck And Caster Company Caster brake
CN204236134U (en) * 2014-10-29 2015-04-01 平湖市三得力脚轮制造有限公司 A kind of axle is stopped castor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH350775A (en) * 1957-04-25 1960-12-15 Schnetzler Graf Anton Braking device on a swivel castor
US4336630A (en) * 1981-02-13 1982-06-29 Rose Truck And Caster Company Caster brake
CN204236134U (en) * 2014-10-29 2015-04-01 平湖市三得力脚轮制造有限公司 A kind of axle is stopped castor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jeff Brady, 5 January 2017, "Caster Brake Assembly", YouTube [online], Available from: https://www.youtube.com/watch?v=ASLxeacONZI [accessed 10 October 2018] *
ServiceCasterCorp, 19 July 2012, "4-Position Swivel Lock - Locking Caster Review", YouTube [online], Available from: https://www.youtube.com/watch?v=r6KASTLRYVQ [accessed 10 October 2018] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619286A (en) * 2020-06-06 2020-09-04 东阳市智林科技有限公司 Electrical cabinet caster device and installation and use method thereof

Also Published As

Publication number Publication date
GB2563738A (en) 2018-12-26
GB201807351D0 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
AU2021107600A4 (en) Caster wheel
US5556222A (en) Quick release mechanism
US5887486A (en) Locking device for a bicycle brake system
FR3012187A3 (en) LOCKING DEVICE, TELESCOPIC ROD AND MOWER EQUIPPED WITH SAID LOCKING DEVICE
GB2563738B (en) Caster wheel
CN107234924B (en) Device for mounting a wheel on a bicycle frame
US9227690B1 (en) Axle adapter assembly
WO2017013349A1 (en) Assembly comprising a locked securing stud
US9669753B1 (en) Cargo tiedown tensioner
CA2814734A1 (en) Pivot connection with motion dampener
US5673773A (en) Structure of a drum brake for bicycles
US20210001666A1 (en) Brake device for swivel caster
EP2798232A1 (en) Anti-rotation device for pivot and hinge device having anti-rotation device
FR2712049A1 (en) Device for fastening a member to a steering shaft, particularly of a motor vehicle
US20150001831A1 (en) Tightening mechanism for trailer drawbar hinge assembly and method of using same
EP0774399B1 (en) System for holding the position of a clamping element
EP3710309B1 (en) Device for securing a tie down
US20180297662A1 (en) Mechanical brake caliper for a bicycle
EP3019430B1 (en) Lifting ring
FR3057920A1 (en) METHOD FOR INSTALLING BOLT WITH TORSION PRECONTROLLE
US20150226268A1 (en) Geared Motor
US7707915B2 (en) Double acting spanner wrench
TWM504766U (en) Steering handle stem for bike
KR200448408Y1 (en) Fixing apparatus for preventing sling from being slidably separated
SE1951376A1 (en) Wheel locking device

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261406

Country of ref document: HK