Nothing Special   »   [go: up one dir, main page]

GB2280194A - Radiation curable printing ink composition - Google Patents

Radiation curable printing ink composition Download PDF

Info

Publication number
GB2280194A
GB2280194A GB9413843A GB9413843A GB2280194A GB 2280194 A GB2280194 A GB 2280194A GB 9413843 A GB9413843 A GB 9413843A GB 9413843 A GB9413843 A GB 9413843A GB 2280194 A GB2280194 A GB 2280194A
Authority
GB
United Kingdom
Prior art keywords
block
polymer
diene
blocks
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9413843A
Other versions
GB9413843D0 (en
Inventor
James Robert Erickson
Michael Alan Masse
Steven Howard Dillman
Esther Marie Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of GB9413843D0 publication Critical patent/GB9413843D0/en
Publication of GB2280194A publication Critical patent/GB2280194A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A radiation curable printing ink composition comprises a liquid viscous epoxidized diene polymer and a pigment. The polymer may be a star polymer or block copolymer.

Description

RADIATION CURABLE PRINTING INK COMPOSITION This invention relates to radiation curable printing ink compositions. More specifically, the invention relates to such compositions made using liquid viscous epoxidized diene polymers.
Printing inks have been made using film forming materials such as drying and non-drying oils, cyclised rubber, natural resins such as rosin and shellac, alkyd resins, copolymers of polystyrene, terpene resins, vinyl resins, acrylate resins, bisphenol epoxy resins and various chemical curing agents. Such compositions also include, of course, colour pigment. Block polymers of conjugated dienes have not been widely used in printing ink compositions because of their very high viscosity. However, if such materials could be used, they would provide certain advantages, including improved flexibility and adhesion.
Thus, it would be advantageous to provide printing ink compositions which incorporate conjugated diene polymers. The present invention uses low viscosity epoxidized versions of conjugated diene polymers in printing ink compositions.
The present invention is a radiation curable printing ink compósition which comprises a liquid viscous epoxidized diene polymer and a pigment. One preferred polymer for use in the printing ink composition of the present invention is a block copolymer comprising at least interior and exterior diene blocks wherein the exterior diene blocks contain a greater concentration of di-, tri- and tetra-substituted olefinic epoxides than the interior blocks and wherein the copolymer contains from 0.1 to 3.0 Meq of olefinic epoxides per gram of copolymer and the molecular weights of the exterior blocks are from 300 to 2000 and the molecular weights of the interior blocks are from 2000 to 10,000.Another preferred polymer for use in the printing ink composition of the present invention is a star polymer having a random distribution of from 0.5 to 5 Meq of di-, tri- and tetrasubstituted olefinic epoxides per gram of polymer and greater than four arms wherein the molecular weights of the arms are from 1500 to 15,000.
The general methods of making block copolymers are reviewed by R. P. Quirk and J. Kim, "Recent Advances in Thermoplastic Elastomer Synthesis,'2 Rubber Chemistry and Technology, volume 64 No. 3 (1991), which is incorporated herein by reference. Especially useful is the method of sequential anionic polymerization of monomers. The types of monomers that will undergo living polymerization are relatively limited for the anionic method, with the most favourable being conjugated diolefins and monoalkenyl aromatic hydrocarbon monomers. Generally, a hydrogenation step is needed to prepare a saturated polymer. Hence, a polymer of this invention that is both epoxidized and saturated usually requires both an epoxidation and a hydrogenation step.However, polymers made by sequential polymerization of a suitable diolefin monomer and a monomer having only one carbon-carbon double bond or by sequential polymerization of two different mixtures (ratios) of such monomers, using either a monofunctional initiator, a monofunctional initiator and a coupling agent, or a multi functional initiator, may be epoxidized and would not have to be hydrogenated to produce an epoxidized polymer of this invention that is saturated.
Polymers containing di-, tri- or tetra-substituted olefinic unsaturation can be prepared by polymerizing one or more olefins, particularly diolefins by themselves or with one or more alkenyl aromatic hydrocarbon monomers. The polymers containing such olefinic unsaturation may be prepared using anionic initiators.
Such polymers may be prepared using bulk, solution or emulsion techniques.
Preferably, the polymer is epoxidized under conditions that enhance the epoxidation of the more highly substituted olefinic double bonds, such as by the use of peracetic acid, wherein the rate of epoxidation is generally greater the greater the degree of substitution of the olefinic double bond (rate of epoxidation: tetrasubstituted > trisubstituted > disubstituted > monosubstituted olefinic double bond). Sufficient epoxidation is done to achieve the desired level of epoxidation in the polymer. H NMR can be used to determine the loss of each type of double bond and the appearance of epoxide.
If a substantially saturated polymer is desired, the epoxidized polymer is hydrogenated to remove substantially all remaining olefinic double bonds (ODB) and normally leaving substantially all of the aromatic double bonds. Alternatively, selective partial hydrogenation of the polymer may be carried out before epoxidation such that from 0.05 to 5 Meq of olefinic double bonds are left intact for subsequent epoxidation. In this case, the epoxidized polymer may be partially hydrogenated in a selective manner with a suitable catalyst and conditions (like those in Re 27,145, U.S. Patents 4,001,199 and 4,879,349 or with a titanium catalyst such as is disclosed in U.S.Patent 5,039,755, all of which are incorporated by reference; or by fixed bed hydrogenation) that favour the hydrogenation of the less substituted olefinic double bonds (rate or hydrogenation: monosubstituted > disubstituted > tri-substituted > tetrasubstituted olefinic double bonds) and also leaves aromatic double bonds intact, so as to leave some of the unsaturation intact.
Generally, if a hydrogenation step is used, sufficient improvement of the polymer's chemical and heat stability should be achieved to justify the extra expense and effort involved. For greatest heat stability, all of the olefinic double bonds, anyplace in the polymer, that are not epoxidized should be removed so that less than 1 Meq of ODB per gram of polymer remain, more preferably less than 0.6 Meq/g, and most preferably less than about 0.3 Meq/g of polymer.
In general, when solution anionic techniques are used, conjugated diolefin polymers and copolymers of conjugated diolefins and alkenyl aromatic hydrocarbons are prepared by contacting the monomer or monomers to be polymerized simultaneously or sequentially with an anionic polymerization initiator such as group IA metals, their alkyls, amides, silanolates, naphthalides, biphenyls and anthracenyl derivatives. It is preferred to use an organo alkali metal (such as sodium or potassium) compound in a suitable solvent at a temperature within the range from about -150 C to about 3000C, preferably at a temperature within the range from about OOC to about 1000C.Particularly effective anionic polymerization initiators are organo lithium compounds having the general formula: Rtin wherein R is an aliphatic, cycloaliphatic, aromatic or alkylsubstituted aromatic hydrocarbon radical having from 1 to about 20 carbon atoms and n is an integer of 1 to 4.
One group of useful block copolymers are based on at least one conjugated diolefin monomer and contain a greater concentration of di-, or tri-, or tetrasubstituted olefinic epoxides in exterior blocks, and lesser concentrations of these epoxides in interior blocks of the polymer. The polymer contains such epoxides within the concentration range of 0.1 to 3.0 milliequivalents per gram of polymer and the ratio of the concentration of such epoxide groups in the exterior blocks to the concentration in the interior blocks is at least 3:1.
Preferred block copolymers of the type described in the preceding paragraph which are useful in the present invention have the formula (A-B-Ap)n-Yr- (Aq~B)m wherein Y is a coupling agent, or coupling monomers, or initiator, and wherein A and B are polymer blocks which may be homopolymer blocks of conjugated diolefin monomers, copolymer blocks of conjugated diolefin monomers or copolymer blocks of diolefin monomers and monoalkenyl aromatic hydrocarbon monomers. These polymers are described in more detail in allowed copending application Serial No. 692,839, filed April 29, 1991, entitled "Viscous Conjugated Diene Block Copolymers," which is herein incorporated by reference. Generally, the A blocks should have a greater concentration of more highly substituted aliphatic double bonds than the B blocks have.The A blocks will have a greater o concentration of di-, tri-, or tetra-substituted ODB's. For example, in one embodiment, the A blocks will have a greater number of tertiary (tri-substituted) unsaturation (TU) sites per unit of block mass than the B blocks, where a TU site is defined to be an ODB between a tertiary carbon atom and either a primary or secondary carbon atom. The A blocks have a molecular weight of from about 100 to about 3,000 and the B blocks have a molecular weight of from about 1000 to about 15,000. n is greater than 0, r is 0 or 1, m is greater than or equal to 0, and n + m ranges from 1 to 100. p and q may be 0 or 1. When either p or q or both are 1, extra di-, tri-, or tetra-substituted sites are available in the interior of the polymer chain.By way of example, polymer block A could be polyisoprene having about 14.7 milliequivalents of residual ODB's per gram, all of which would be TU sites (14.7 Meq TU/g), and polymer block B could be polybutadiene having 18.5 milliequivalents of residual ODB's per gram, none of which would be TU sites (0 Meq TU/g).
As described above, in general, the advantages of the present invention may be achieved by utilizing an A block which contains more highly substituted olefinic double bonds than the B blocks which should contain less highly substituted double bonds. One preferred specific example of this is the case where the A blocks are formed from isoprene monomer and the B blocks are formed from butadiene monomer. Another special case is the situation wherein the A blocks are formed from 1,4 addition of butadiene monomer and the B blocks are formed from 1,2 addition of butadiene monomer.
Another special case is wherein the A blocks are formed from 2,3dimethyl butadiene (tetra-substituted) and the B blocks are formed from either isoprene or butadiene.
Useful randomly epoxidized star polymers are described in allowed copending application Serial No. 901,349, filed June 19, 1992, entitled "Randomly Epoxidized Small Star Polymers," which is herein incorporated by reference. That application describes randomly epoxidized star polymers, based on at least one conjugated diolefin monomer, that contained di-, tri- and/or tetrasubstituted olefinic epoxides. The star polymers have greater than four arms or branches. Each arm has a molecular weight from 1500 to 15,000 and the concentration of di-, tri-, or tetrasubstituted olefinic epoxides (1,1-disubstituted, 1,2disubstituted, 1,1,2-trisubstituted and 1,1,2,2-tetrasubstituted olefinic epoxides) is from 0.05 to 5 milliequivalents of epoxide per gram of polymer.
In general, any of the solvents known in the prior art to be useful in the preparation of such polymers may be used. Suitable solvents, then, include straight- and branched chain hydrocarbons such as pentane, hexane, heptane, octane and the like, as well as alkyl-substituted derivatives thereof; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and the like, as well as alkyl-substituted derivatives thereof; aromatic and alkylsubstituted derivatives thereof; aromatic and alkyl-substituted aromatic hydrocarbons such as benzene, naphthalene, toluene, xylene and the like; hydrogenated aromatic hydrocarbons such as tetralin, decalin and the like; linear and cyclic ethers such as methyl ether, methylethyl ether, diethyl ether, tetrahydrofuran and the like.
More specifically, the polymers of the present invention are made by the anionic polymerization of conjugated diene monomers and alkenyl aromatic hydrocarbon monomers in a hydrocarbon solvent at a temperature between 0 and 100 OC using an alkyl lithium initiator.
The living polymer chains are usually coupled by addition of divinyl monomer to form a star polymer. Additional monomers may or may not be added to grow more branches or to terminally functionalize the polymer and the living chain ends are quenched with a proton source.
Diblock molecular weights are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated. Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown diblock polymers that are measured. For anionically polymerized diblock polymers, diblock polymer is essentially monodisperse and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. Measurement of the true molecular weight of the final coupled star polymer is not as straightforward or as easy to make using GPC.This is because the star shaped molecules do not separate and elute through the packed GPC columns in the same manner as do the linear polymers used for the calibration, and, hence, the time of arrival at a W or refractive index detector is not a good indicator of the molecular weight. A good method to use for a star polymer is to measure the weight average molecular weight by light scattering techniques.
The sample is dissolved in a suitable solvent at a concentration less than 1.0 gram of sample per 100 millilitres of solvent and filtered using a syringe and porous membrane filters of less than 0.5 microns pore size directly into the light scattering cell. The light scattering measurements are performed as a function of scattering angle and of polymer concentration using standard procedures. The differential refractive index (DRI) of the sample is measured at the same wave length and in the same solvent used for the light scattering. The following references are herein incorporated by reference: 1. Modern Size-Exclusion Liquid Chromatography, W. W. Yau, J. J. Kirkland, D. D. Bly, John Wiley & Sons, New York, NY, 1979.
2. Light Scattering from Polymer Solution, M. B. Huglin, ed., Academic Press, New York, NY, 1972.
3. W. Kaye and A. J. Havlik, Applied Optics, 12, 541 (1973).
4. M. L. McConnell, American Laboratory, 63, May, 1978.
There are a wide variety of coupling agents that can be employed. Any polyfunctional coupling agent which contains at least two reactive sites can be employed. Examples of the types of compounds which can be used include the polyepoxides, polyisocyanates, polyimines, polyaldehydes, polyketones, polyanhydrides, polyesters, polyhalides, and the like. These compounds can contain two or more types of functional groups such as the combination of epoxy and aldehyde groups, isocyanate and halide groups, and the like. Many suitable types of these polyfunctional compounds have been described in U.S. Patent Nos.
3,595,941; 3,468,972, 3,135,716; 3,078,254; 4,096,203 and 3,594,452 which are herein incorporated by reference. When the coupling agent has two reactive sites such as dibromoethane, the polymer will have a linear ABA structure. When the coupling agent has three or more reactive sites, such as silicon tetrachloride, the polymer will have a branched structure, such as (AB)nY. Coupling monomers are coupling agents where several monomer units are necessary for every chain end to be coupled. Divinylbenzene is the most commonly used coupling monomer and results in star polymers.
Epoxidation of the base polymer can be effected by generally known methods such as by reaction with organic peracids which can be preformed or formed in situ. Suitable preformed peracids include peracetic and perbenzoic acids. In situ formation may be accomplished by using hydrogen peroxide and a low molecular weight carboxylic acid such as formic acid. Alternatively, hydrogen peroxide in the presence of acetic acid or acetic anhydride and a cationic exchange resin will form a peracid. The cationic exchange resin can optionally be replaced by a strong acid such as sulphuric acid or p-toluenesulfonic acid.The epoxidation reaction can be conducted directly in the polymerization cement (polymer solution in which the polymer was polymerized) or, alternatively, the polymer can be redissolved in an inert solvent such as toluene, benzene, hexane, cyclohexane, methylenechloride and the like and epoxidation conducted in this new solution or can be epoxidized neat. Epoxidation temperatures on the order of about 0 to 130 OC and reaction times from about 0.1 to 72 hours may be utilized.
When employing hydrogen peroxide and acetic acid together with a catalyst such as sulphuric acid, the product can be a mixture of epoxide and hydroxy ester. The use of peroxide and formic acid in the presence of a strong acid may result in diolefin polymer blocks containing both epoxide and hydroxy ester groups. Due to these side reactions caused by the presence of an acid, it is preferable to carry out the epoxidation at the lowest possible temperature and for the shortest time consistent with the desired degree of epoxidation.
Epoxidation may also be accomplished by treatment of the polymer with hydroperoxides in the presence of transition metals such as Mo, W, Cr, V and Ag. Epoxy functionality may also be created by direct oxidation of ethylenic unsaturation by 02 in the presence of tetra cyanoethylene. A temperature of about 150 OC and an oxygen partial pressure of about 58 atmospheres is suitable for this reaction.
As discussed above, in order for a polymer to be useful in a printing ink composition, it must have certain characteristics including a relatively low viscosity, i.e., such as about 5000 centipoise (cp) or less at 50 percent solids in toluene.
Furthermore, for many applications, it is important that the polymer be radiation curable because this method allows the ink to remain fluid without pot life concerns and yet be rapidly converted to a solid with excellent physical and chemical properties.
Further, quick curing allows fast turnaround time which is a vital element to a commercial printer's profitability. The polymers discussed above satisfy these requirements in that they are all viscous liquid materials with a viscosity of less than 5000 cp at 50 percent solids in toluene and they are all radiation curable.
The printing ink compositions of the present invention generally will comprise from 10 to 70 percent by weight of the epoxidized viscous liquid polymer and from 4 to 40 percent by weight of a colour pigment which provides the ink with its colour so that it can be seen. Examples of colour pigments which can be used herein include carbon black, phthalo blue, azoic yellow, and any other commonly used pigment for inks.
In addition to the above two components, it may be advantageous to include a high glass transition temperature (Tg) resin in the composition. We have found that high T epoxy resins g are highly compatible with and cure very well with the polymers of the present invention. Such high T epoxy resins include UVR-6110 g epoxy resin made by Union Carbide. When a high T resin is used, g it may comprise from 0 to 60 percent by weight of the overall composition.
Reactive (radiation curable) diluents then can be added to the composition of the present invention include alcohols, vinyl ethers, epoxides, acrylate and methacrylate monomers, oligomers and polymers. They may also be blended with other diene-based polymers. Examples of epoxides include bis(2,3-epoxycyclopentyl) ether, vinylcyclohexenedioxide, limonene dioxide, epoxidized soya and linseed oils and fatty acids. Vernonia oil has been found to cure well with these epoxidized polymers. When a reactive diluent is used, it may comprise from 0 to 30 percent by weight of the composition.
The composition may also contain from 0 to 3 percent by weight of a flow modifier which can prevent fisheyes and craters, and aid in wetting or film smoothness or gloss, such as Cabosil M-5 fumed silica and C-430 fluorocarbon surfactant from 3M. The composition may contain from 0 to 1 percent by weight of a defoamer and 0 to 2 percent by weight of a dispersant. As described above, photoinitiators may be used. If they are, they may comprise from 0 to about 10 percent by weight of the composition.
The compositions of this invention are preferably cured by ultraviolet or electron beam radiation, but radiation curing utilizing a wide variety of electromagnetic wavelength is feasible.
Either ionizing radiation such as alpha, beta, gamma, X-rays and high energy electrons or non-ionizing radiation such as ultraviolet, visible, infrared, microwave and radio frequency may be used.
The most common source of alpha, beta and gamma radiation are radioactive nuclei. A ionizing radiation source with commercial polymer cross-linking application is gamma radiation that is produced from either cobalt-60 or cesium-137 radioactive nuclei.
X-rays can be produced through deceleration of high speed electrons through the electric field of an atomic nucleus.
High voltage electron accelerators are preferred over gamma radiation and certain types of X-ray processing equipment. High energy electrons produced by machine acceleration, as opposed to radioisotopes, can be applied easily to industrial processes for the following reasons: easy on-off switching capability; less shielding is required than with gamma radiation; accelerator beams are directional and less penetrating than gamma or X-rays; and electron radiation provides high dose rates, i.e. maximum penetration per unit density of material, and is well suited for on-line, high speed processing applications. Commercially available high or low energy electron-processing equipment are the Dynamitron (Dynamitron is a trade mark) device, dynacote, insulating-core transformer, linear accelerator, Van de Graaff accelerator, pelletron, laddertron and linear cathode.
Manufacturers of high voltage electron-accelerator equipment are High Voltage Engineering Corporation, Burlington, Mass. and Radiation Dynamics, Inc., Westbury, N.Y. Manufacturers of low energy electron beam generating equipment include American International Technologies, Inc., of Torrance, California; RPC Industries of Hayward, California; and Energy Sciences of Wilmington, Massachusetts.
Ultraviolet light sources may be based on the mercury-vapour arc. Mercury is enclosed in a quartz tube and a potential is applied to electrodes at either end of the tube. The electrodes can be of mercury, iron, tungsten or other metals. The pressure in the mercury-vapour lamp may be less than 1 atm to more than 10 atm.
As the mercury pressure and lamp operating temperatures are increased, the radiation becomes more intense and the width of the emission lines increases. Other W light sources include electrodeless lamps, Xenon lamps, pulsed Xenon lamps, Argon ion lasers and Excimer lasers.
Visible light sources can be obtained from high pressure mercury arcs by addition of rare gases or metal halides, which increase the number of emission lines in the 350-600 nm region of the spectrum. Fluorescent lamps, tungsten halide lamps and visible lasers may also be utilized.
The mechanism of the radiation cross-linking is believed to be generation of cations by removal of an electron from the polymer chain. The cation then readily reacts with an epoxy group, if an epoxy group is available. This reaction results in an ether crosslink between two polymer molecules and a new cation site on a polymer which formerly contained the epoxy functionality. The new cation will either propagate, forming another ether cross-link with another epoxy oxygen, or terminate by recapturing an electron.
The presence of water in the polymer composition during the radiation cross-linking is very undesirable due to the tendency of water to terminate the cross-linking. The radiation curing is therefore generally more effective if the polymeric composition is at a temperature near or above the boiling point of water at the time of the radiation curing.
The amount of radiation necessary for high gel formation varies with the thickness of the polymeric mass being irradiated, the amount of epoxy functianality, the extent to which the epoxy functionality is concentrated in specific regions within the polymeric mass and the type of radiation utilized. When electron beam radiation is utilized, radiation doses of 0.1 Mrads to 5 Mrads are preferred.
When using non-ionizing radiation it is necessary to employ a photoinitiator to initiate the cross-linking reaction. Useful photoinitiators include diaryliodonium, alkoxy-substituted diaryliodonium, triarylsulfonium, dialkylphenacylsulfonium, and dialkyl-4-hydrophenylsulfonium salts. The anions in these salts generally possess low nucleophilic character and include SbF6-, BF4-, PF6- and AsF6-. Specific examples include (4-octyloxy phenyl) -phenyl-iodium hexafluoroantimonate, WI-6990 (from Union Carbide), and FX-512 (3M Company). UVI-6974, an aryl sulfonium salt from Union Carbide, and W 9310 C from GE are especially effective. The salts can be used alone or in conjunction with a photosensitizer to respond to long wave length W and visible light.Examples of photosensitizers include thioxanthone, anthracene, perylene, phenothiazione, 1,2-benzathracene coronene, pyrene and tetracene. The photoinitiator and photosensitizer are chosen to be compatible with the polymer being cross-linked and the light source available.
The printing ink compositions of the present invention may be used in a wide variety of printing ink applications. Some of these applications include flexographic and gravure inks, letter press inks, and screen inks. A preferred use is for lithographic inks, especially radiation cured lithographic inks.
Example 1 Polymer 101 is an epoxidized (I-B)n DVB star polymer having a molecular weight of 100,000, arm molecular weights of 5800 and an epoxy equivalent weight of 440, with most of the epoxides concentrated in the I (isoprene) block. The viscosity of polymer 101 is about 1900 cp at 50percent in toluene. An ink was prepared by mixing the following ingredients and then dispersing in a yellow pigment using a standard laboratory mixer with an impellor mixing head.
Table 1 Ingredients Parts per Hundred Polymer 101 41.00 UVR 6110 (Union Carbide) 41.00 Fluorad FC-430 (3M) 1.00 BYK P104S (BYK Chemie) 0.50 WI 6974 (Union Carbide) 8.00 Perlyene 0.80 Azoic Yellow 9.00 101.3 In casting a thin film of the ink formulation, about 10 percent tetrahydrofuran was mixed in. A thin film was cast with a doctor blade onto a 1 mil Mylar film and the tetrahydrofuran was allowed to evaporate. The film was prebaked at 121 OC and then W cured using a photocure processor equipped with a single medium pressure mercury lamp using a 30 feet per minute belt speed. No post-bake was required. The liquid film immediately cured to a nontacky solid yellow film with excellent adhesion to the Mylar and had excellent flexibility. The film could be creased sharply with no cracking. It looked excellent through the Mylar.The film had excellent resistance to solvent (toluene). It is believed that the ink formulation could have been improved further by using only the WI 6974 photoinitiator without the use of the photosensitizer (perlyene), or that even faster cure could be achieved using photoinitiators UV-9310C (GE) and CTX (2-chloro-thioxanthen-9-one).
Example 2 The same polymer and procedure used in Example 1 was used to prepare an ink from the formulation set forth below.
Table 2 Ingredients Parts per Hundred Polymer 101 20.00 UVR 6110 (Union Carbide) 45.00 Vernonia Oil 16.00 Fluorad FC-430 (3M) 1.00 BYK P104S (BYK Chemie) 0.50 UVI 6974 (Union Carbide) 8.00 Perlyene 0.80 Azoic Yellow 7.00 98.3 The same procedure for casting a film as used in Example 1 was used herein. The results achieved were the same. The liquid film immediately cured to a nontacky solid yellow film with excellent adhesion to the Mylar. It also had excellent flexibility. The film could be creased sharply with no cracking and it looked excellent through the Mylar. The film had excellent resistance to the solvent. Again, it is believed that better results could have been achieved with the process modifications described at the end of Example 1.
Example3 Polymer 204 is an epoxidized and hydrogenated I-S/B-I linear polymer of 5600 molecular weight and 800 epoxy equivalent weight with all the epoxies on the isoprene endblocks. The polymer has 63 percent styrene content in the S/B random midblock. The 50 percent solution viscosity in toluene of this polymer is about 100 cp.
86 parts of polymer 204 and 10 parts of the azoic yellow pigment used in Examples 1 and 2 (Hostaperm yellow H3G) are mixed as described in Example 1. Four parts of the photoinitiator, UVI 6974, are then mixed in with the other two ingredients. A thin film is cast and cured as described in Example 1. The resultant film is a flexible ink with excellent solvent resistance.

Claims (7)

1. A radiation curable printing ink composition comprising a liquid viscous epoxidized diene polymer and a pigment.
2. The composition of claim 1 wherein the polymer is a block copolvmer comprising at least interior and exterior diene blocks wherein the exterior diene blocks contain a greater concentration of di-, tri- and tetrasubstituted olefinic epoxides than the interior blocks and wherein the copolymer contains from 0.1 to 3.0 Meq of olefinic epoxides per gram of copolymer and the molecular weights of the exterior blocks are from 300 to 2000 and the molecular weights of the interior blocks are from 2000 to 10,000.
3. The composition of claim 2 wherein the external diene block is 1,4-polyisoprene and the internal diene block is polybutadiene.
4. The composition of claim 2 wherein the external diene block is 1,4-polybutadiene and the internal diene block is 1,2polybutadiene.
5. The composition of claim 2 wherein the block copolymer is of the formula (A-B)k or A-(B-A)j - wherein A is an exterior diene block; and - wherein B is an interior diene block; and - wherein j is 1 to 6 and k is 2 to 6.
6. The composition of claim 2 wherein block copolymer is of the formula Dn-X-Cr - wherein D is A-B-Mp or (A-B)-M or A-(B-A)j-Mp; and - wherein A is an exterior diene block; and - wherein B is an interior diene block; and - wherein C is a block or multiblock segment which has a molecular weight of 100 to 18,000 and comprises A, B or methacrylate or mixtures thereof but is not identical to D; and - wherein the B block may contain a monoalkenyl aromatic hydrocarbon monomer and the A blocks may comprise up to 99* of a monoalkenyl aromatic hydrocarbon monomer; and - wherein M is a miniblock of a monomer selected from the group consisting of vinyl aromatic hydrocarbons and dienes and which has a molecular weight of 50 to 3000; and - wherein X is a coupling agent or coupling monomers or initiator, j is 1 to 6, n 2 2, r 2 0, n 2 r, n + r ranges from 3 to 100 and p is 0 or 1.
7. The composition of claim 15 wherein the star polymer is of the formula Dn-X-Cr - wherein D is (A-Mp); and - wherein A is a block comprising at least one diene and the molecular weight of A is from 1,500 to 15,000; and - wherein C is a block or multiblock segment which has a molecular weight of 50 to 15,000 and comprises at least one diene or vinyl aromatic hydrocarbon or methacrylate or combinations thereof but is not identical to D; and - wherein the A blocks may comprise up to 998 of a monoalkenyl aromatic hydrocarbon monomer; and - wherein M is a miniblock of a monomer selected from the group consisting of vinyl aromatic hydrocarbons and dienes and has a molecular weight of 50 to 1000; and - wherein X is a coupling agent or coupling monomers or initiator, n 2 2, r 2 0, n 2 r, n + r ranges from greater than 4 to 100 and p is 0 or 1.
GB9413843A 1993-07-12 1994-07-08 Radiation curable printing ink composition Withdrawn GB2280194A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/091,481 USH1517H (en) 1993-07-12 1993-07-12 Radiation curable printing ink composition

Publications (2)

Publication Number Publication Date
GB9413843D0 GB9413843D0 (en) 1994-08-24
GB2280194A true GB2280194A (en) 1995-01-25

Family

ID=22228012

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9413843A Withdrawn GB2280194A (en) 1993-07-12 1994-07-08 Radiation curable printing ink composition

Country Status (2)

Country Link
US (1) USH1517H (en)
GB (1) GB2280194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2336594A (en) * 1998-04-21 1999-10-27 Coates Brothers Plc Radiation-curable Ink Compositions
WO2011136084A1 (en) * 2010-04-29 2011-11-03 ダイセル化学工業株式会社 Curable resin composition for screen printing and printed wiring board

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721316A (en) * 1995-07-12 1998-02-24 Shell Oil Company Process for incorporation of expoxidized polydienes into epoxy resins
US6126731A (en) * 1998-08-21 2000-10-03 Idea Development Company Polymerizable ink composition
US20040238136A1 (en) * 2003-05-16 2004-12-02 Pankaj Patel Materials and methods for manufacturing cigarettes
US20030091807A1 (en) 2001-11-05 2003-05-15 The Procter & Gamble Company Stretch composites and methods of making the composite
US7037952B2 (en) 2002-08-02 2006-05-02 Seiren Co., Ltd. Ultraviolet ray curable ink, ink composition for ink jet and process for preparing ink jet printed matter using the same
KR20050083676A (en) * 2002-09-05 2005-08-26 복프리, 인크. Fast drying coatings
US8013075B2 (en) * 2003-02-28 2011-09-06 Kuraray Co., Ltd. Curable composition
US20050215972A1 (en) * 2004-03-29 2005-09-29 Roe Donald C Disposable absorbent articles with zones comprising elastomeric components
US8568382B2 (en) 2004-03-29 2013-10-29 The Procter & Gamble Company Disposable absorbent articles having co-elongation
US7820875B2 (en) 2004-03-29 2010-10-26 The Procter & Gamble Company Disposable absorbent articles being adaptable to wearer's anatomy
US8198200B2 (en) 2004-03-29 2012-06-12 The Procter & Gamble Company Web materials having both plastic and elastic properties
US7658811B2 (en) * 2004-03-29 2010-02-09 The Procter & Gamble Company Letterpress application of elastomeric compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074034A (en) * 1975-09-12 1978-02-14 Asahi Denka Kogyo K.K. Hardenable composition
US4100046A (en) * 1975-11-25 1978-07-11 Union Carbide Corporation Radiation polymerizable cycloalkenyl derivatives of acrylated epoxidized fatty oils or fatty acids
JPS60199024A (en) * 1984-03-24 1985-10-08 Nippon Soda Co Ltd Curable resin composition

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE249029C (en) *
DE219779C (en) * 1909-02-04
DE234166C (en) * 1913-01-13 1911-11-02
FR1503552A (en) * 1951-01-28 1967-12-01 Electrochimie Soc New oil resistant elastomers
DE1251537B (en) * 1965-03-12 1967-10-05 Chemische Werke Hüls Aktienge Seilschaft Marl Process for the production of low molecular weight butadiene / diolefin copolymers with a high content of medium-sized double bonds
FR1527043A (en) * 1967-04-10 1968-05-31 Aquitaine Petrole Graft copolymers
US3555112A (en) * 1968-03-20 1971-01-12 Shell Oil Co Hydroxylated styrene butadiene block copolymers
US3699184A (en) * 1968-09-12 1972-10-17 Shell Oil Co Blend of block copolymer, one of which is epoxidized
US3607977A (en) * 1968-09-12 1971-09-21 Shell Oil Co Block copolymer compositions exhibiting altered surface activity
US3652732A (en) * 1968-11-05 1972-03-28 Exxon Research Engineering Co Solventless encapsulating block copolymers
US3607982A (en) * 1970-06-17 1971-09-21 Shell Oil Co Hydroxylated block copolymers of butadiene and isoprene
US3899474A (en) * 1971-07-05 1975-08-12 Inst Francais Du Petrole Process for manufacturing hydrogenated polymers from conjugated diolefins
US3970608A (en) * 1974-04-05 1976-07-20 Bridgestone Tire Company Limited Epoxidized acetylene-conjugated diene random copolymer and the curable composition comprising the same
AT340549B (en) * 1975-08-08 1977-12-27 Koreska Ges Mbh W MELT ADHESIVE AND METHOD OF MANUFACTURING THEREOF
DE2550226C2 (en) * 1975-11-08 1984-12-13 Basf Ag, 6700 Ludwigshafen Branched block copolymers and process for their preparation
US4051199A (en) * 1976-03-04 1977-09-27 Phillips Petroleum Company Epoxidized copolymers of styrene, butadiene and isoprene
US4135037A (en) * 1977-06-15 1979-01-16 Phillips Petroleum Company Adhesives and laminates
US4131725A (en) * 1977-08-08 1978-12-26 Phillips Petroleum Company Polymer epoxidation process
US4131653A (en) * 1977-09-09 1978-12-26 Phillips Petroleum Company Epoxidized block copolymers
US4341672A (en) * 1977-12-19 1982-07-27 Phillips Petroleum Company Sulfur or peroxy cured epoxidized diene rubbers
US4237245A (en) * 1979-08-20 1980-12-02 The Firestone Tire & Rubber Company Hydrogenated block copolymers of butadiene containing a block of 1,4 and a block of 1,2-microstructure
US4477610A (en) * 1980-12-23 1984-10-16 Asahi Kasei Kogyo Kabushiki Kaisha Aqueous dispersion compositions
US4417029A (en) * 1981-08-03 1983-11-22 Atlantic Richfield Company Derivatization of star-block copolymers
US4391927A (en) * 1981-11-05 1983-07-05 The Gillette Company Erasable inks containing thermoplastic block copolymers
JPS6142504A (en) * 1984-08-03 1986-03-01 Kuraray Co Ltd Production of epoxidized polymer
JPS61136563A (en) * 1984-12-07 1986-06-24 Toyo Ink Mfg Co Ltd Photo-curing adhesive composition and bonding using same
GB8606808D0 (en) * 1986-03-19 1986-04-23 Malaysian Rubber Producers Elastoplastic compositions
US4981605A (en) * 1987-06-08 1991-01-01 Mitsui Petrochemical Industries, Ltd. Liquid modified ethylenic random copolymer and its uses
JPH01115978A (en) * 1987-10-29 1989-05-09 Asahi Chem Ind Co Ltd Adhesive
US4879349A (en) * 1987-11-05 1989-11-07 Shell Oil Company Selective hydrogenation process
US5001199A (en) * 1987-11-05 1991-03-19 Shell Oil Company Selective hydrogenation process
JP2692194B2 (en) * 1988-11-14 1997-12-17 日本合成ゴム株式会社 Hydrogenated block copolymer and composition thereof
US5149895A (en) * 1990-01-16 1992-09-22 Mobil Oil Corporation Vulcanizable liquid compositions
US5187236A (en) * 1990-01-16 1993-02-16 Mobil Oil Corporation Solid block and random elastomeric copolymers
US5210359A (en) * 1990-01-16 1993-05-11 Mobil Oil Corporation Vulcanizable liquid compositions
US5039755A (en) * 1990-05-29 1991-08-13 Shell Oil Company Selective hydrogenation of conjugated diolefin polymers
US5034470A (en) * 1990-09-04 1991-07-23 The Goodyear Tire & Rubber Company Process for the preparation of epoxidized synthetic cis-1,4-polyisoprene
US5066728A (en) * 1990-09-27 1991-11-19 Exxon Chemical Patents Inc. Radiation-reactive phenylbutadiene multiblock copolymers
US5229464A (en) * 1991-04-29 1993-07-20 Shell Oil Company Epoxidized viscous conjugated diene block copolymers
US5247026A (en) * 1992-06-19 1993-09-21 Shell Oil Company Randomly epoxidized small star polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074034A (en) * 1975-09-12 1978-02-14 Asahi Denka Kogyo K.K. Hardenable composition
US4100046A (en) * 1975-11-25 1978-07-11 Union Carbide Corporation Radiation polymerizable cycloalkenyl derivatives of acrylated epoxidized fatty oils or fatty acids
JPS60199024A (en) * 1984-03-24 1985-10-08 Nippon Soda Co Ltd Curable resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WPI Abstract Accession No 85-287683/46 & JP 60 199 024 A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2336594A (en) * 1998-04-21 1999-10-27 Coates Brothers Plc Radiation-curable Ink Compositions
WO2011136084A1 (en) * 2010-04-29 2011-11-03 ダイセル化学工業株式会社 Curable resin composition for screen printing and printed wiring board

Also Published As

Publication number Publication date
GB9413843D0 (en) 1994-08-24
USH1517H (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US5229464A (en) Epoxidized viscous conjugated diene block copolymers
USH1517H (en) Radiation curable printing ink composition
US5393818A (en) Solvent-free laminating adhesive composition from epoxidized block polymer
US5491193A (en) Crosslinked epoxy functionalized polydiene block polymers and adhesives
US5449718A (en) Epoxidized viscous conjugated diene block copolymers
US5247026A (en) Randomly epoxidized small star polymers
EP0653449B1 (en) Dissimilar arm asymmetric radial or star block copolymers for adhesive and sealants
EP0755415B1 (en) Epoxidized low viscosity rubber toughening modifiers for epoxy resins
EP0785971B1 (en) Epoxidized monohydroxylated rubber toughening modifiers for epoxy resins
US5446104A (en) Crosslinkable low viscosity star polymer blends
US5536772A (en) Radiation cured conjugated diene block copolymer compositions
US5686535A (en) Viscous conjugated diene block copolymers
US7632895B2 (en) Curable resin composition
AU699157B2 (en) Epoxidized low viscosity rubber toughening modifiers for epoxy resins
EP0785974A2 (en) Curable binders for pressure sensitive adhesives and sealants
US5420202A (en) Epoxidized low viscosity rubber toughening modifiers for cycloaliphatic epoxy resins
CA2219514C (en) Epoxides from dicyclopentadiene - unsaturated oil copolymers
USH1786H (en) Process for radiation cured conjugated diene-vinyl aromatic hydrocarbon block copolymers
JPH0753649A (en) Star polymer
CA2202275A1 (en) Epoxidized monohydroxylated rubber toughening modifiers for epoxy resins

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)