Nothing Special   »   [go: up one dir, main page]

GB2241101A - Data storage system with device dependent flow of cooling air - Google Patents

Data storage system with device dependent flow of cooling air Download PDF

Info

Publication number
GB2241101A
GB2241101A GB9003473A GB9003473A GB2241101A GB 2241101 A GB2241101 A GB 2241101A GB 9003473 A GB9003473 A GB 9003473A GB 9003473 A GB9003473 A GB 9003473A GB 2241101 A GB2241101 A GB 2241101A
Authority
GB
United Kingdom
Prior art keywords
data storage
storage system
type
housing
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9003473A
Other versions
GB9003473D0 (en
Inventor
Ivor William Bolton
Albert Norman Hamper
David Sydney Gaunt
David John Gray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHWORK
International Business Machines Corp
Original Assignee
TECHWORK
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHWORK, International Business Machines Corp filed Critical TECHWORK
Priority to GB9003473A priority Critical patent/GB2241101A/en
Publication of GB9003473D0 publication Critical patent/GB9003473D0/en
Priority to US07/618,781 priority patent/US5119270A/en
Priority to EP91300880A priority patent/EP0442640B1/en
Priority to DE69111483T priority patent/DE69111483T2/en
Priority to JP3036665A priority patent/JPH0656717B2/en
Publication of GB2241101A publication Critical patent/GB2241101A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S360/00Dynamic magnetic information storage or retrieval
    • Y10S360/90Disk drive packaging
    • Y10S360/903Physical parameter, e.g. form factor

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

1 Data Storage System with device dependent flow of cooling air
Technical Field of the Invention
This invention relates to the field of cooling of data storage devices in a data storage system.
Background of the Invention
In the field of mass data storage systems, there is an ongoing requirement to provide large storage capacity while at the same time improving reliability and allowing the customer to tailor such systems to his own requirements. These criteria can be satisfied with known modular system configurations wherein a number of data storage devices, e.g. magnetic disk drives, are mounted side by side in a box which also incorporates cooling fans, a power supply and some form of controller for controlling input and output of data to and from the disk files. Thus is provided a self contained unit capable of storing large amounts of data. The disk drives may be used together to provide higher reliability by, for example, allowing duplication of information or else by increasing storage capacity. If the storage devices are removable this has the added advantage of allowing the user to remove and replace defective devices or to lock away devices containing especially sensitive information.
Enclosing one or more devices and power supply within a single box imposes restrictions on the ability to maintain the devices within safe operating temperatures. Thus forced air cooling will usually be necessary, with the type of cooling system depending on the cooling requirements of the different elements within the box. one example of a modular data storage system is described in EP 320 107 wherein five 5.25 inch disk drives each mounted within a subassembly are removably inserted in the front of a drawer,'the rear of which contains a power 2 supply. Cooling of the power supply and devices is provided by two fans fixed into the rear bulkhead of the drawer which pull air past the devices and over the power supply. In such a system because the devices are of the same type, each device.presumably has the same cooling requirements and therefore no provision for devices having different cooling requirements is needed.
A second example is described in EP 328 260 wherein two customer removable data storage units are mounted in canisters in the front of a drawer. A power supply and control circuitry are located at the rear of the drawer and separated from the devices by an internal bulkhead. Conventional fans provide forced air cooling of the devices and power supply. Different device types may be housed in the uniform canisters but no modification of the cooling arrangements is provided.
Disclosure of the Invention
In a multi media data storage system, different device types can be housed in the box e.g. tape drives along side disk drives. Greater system flexibility is provided if the devices are interchangeable. However in such a multi-media system, the cooling system will need to cope with the variety of cooling requirements of the different device types. Prior art data storage systems make no provision for devices having different cooling requirements.
Accordingly, the present invention provides a data storage system including a housing for interchangeably mounting a plurality of data storage devices of at least two types in a corresponding plurality of bays defined within a housing; fan means for causing airflow through the bays past such devices when mounted in the housing; the housing defining a plurality of primary apertures at the front of the bays permitting airflow past a first device type but being obstructed by a second device type, the housing further including secondary apertures which enable airflow past the second type of device.
3 in this way, when a particular device is of a type which obstructs air flow through the bay in which it is situated, extra provision in the form of secondary apertures in the housing enables air to flow past the device thereby providing adequate cooling.
X In one possible system configuration, the devices are inserted into the primary apertures defined by dividing walls within the housing, the front of the devices forming the front surface of the system. In this case, the secondary apertures would be situated in at least one surface of the housing to allow cooling air past the second device type.
However, in a preferred system configuration, the housing comprises a chassis in which the devices are mounted and a cover frame removably attached to the front of the chassis, the primary and secondary apertures being situated in the cover frame.
While a system may be envisaged wherein there are different numbers of devices and primary apertures, it is preferred that there is one primary aperture in the cover frame for each device bay with the front of the second device type fitting into the corresponding aperture in the cover frame. It is further preferred that the frame includes secondary apertures corresponding to each device bay. Thus the means for cooling the devices of the second type is provided for any of the device bays. In an alternative system configuration, complete interchangeability of the devices may be neither necessary nor desirable. Thus it would be necessary to position the secondary cooling holes only where the second device type is capable of being positioned.
A preferred data storage system further includes a removable panel which can be mounted into any one of the primary apertures in the cover frame. When the cover frame is in place at the front of the chassis, the removable panel is mounted into each of the primary apertures corresponding to a bay containing a device of the first type. The removable panel includes openings in its front surface to allow flow of 4 cooling air past the device. On removing a device of the first type to a different bay, it is a simple operation to move the removable panel into the corresponding aperture.
In an alternative configuration, the front portion of the first type of device fits into the corresponding primary aperture and openings in the front surface of the device allow passage of cooling air.
In some system configurations, it may be the case that it is desirable or indeed necessary to allow air through the secondary apertures associated with the first type of device in order to ensure adequate cooling of that device. However, in a preferred system, sufficient cooling is provided by passage of cooling air through the openings in the removable panel (or through the openings in the device front for the system configuration where the front of the first type of device fills the primary aperture). In such a system, it may be desirable to stop the radiation of device and/or cooling fan noise through the secondary apertures. Thus in a preferred system, means are included for blocking off the secondary apertures associated with the primary aperture corresponding to a device position containing a device of the first type.
Blocking of the secondary apertures may be achieved by any one of a number of means e.g. sticky tape. In the system configuration wherein the front of the first device type sits in the primary aperture, part of the device itself may be used to block off the associated secondary apertures in the housing. However in the preferred system configuration including the removable panel, it is preferred that the blocking means comprises a blanking member on the panel. In a preferred system, the secondary apertures are located in a surface of the cover frame which is turned back from the cover frame front surface. The blanking member extends backwards substantially perpendicularly from the panel front surface and blocks off the secondary apertures associated with that device position.
In this way, a device of the first type may be mounted into any device bay with the removable panel located in the corresponding primary aperture acting as a front cover for the device while allowing passage of cooling air through the holes in its front surface, at the same time closing off the secondary apertures associated with that position. The second type of device filling the corresponding primary aperture would then be cooled solely by air passing through the open secondary apertures.
The invention will now be described by way of example only with reference to the accompanying drawings.
Brief Description of the Drawings
Figure 1 is an exploded isometric view of a data storage system according to the present invention (with the top cover removed for clarity); Figure 2 is an exploded isometric view (looking from the front) of the front part of a data storage system according to the present invention; Figure 3 is an exploded isometric view (looking from the rear) of the front part of a data storage system according to the present invention; Figure 4 is a perspective view of a data storage system according to the present invention; Detailed Description of the Invention
1 Figure 1 shows a multi-media data storage system including data storage devices of two different types i.e. tape drive 10 and disk 6 drive 12. Each device is removably mounted into one of four bays 14 defined by dividing walls 16 in a first compartment 18 of a drawer 20. Because each device is of a standard size (5.25 inch form factor), it would be theoretically possible to put a device into any one of the bays. When the drawer of figure 1 is assembled, there are two disk drives in the two left hand bays and two tape drives in the two right hand bays. A mounting plate 22 fixed onto the side of each device locates in guide rails 24 fixed to the top and bottom (not shown) inner surfaces of the drawer. A handle 11 on the front of the disk drive is used to insert and remove the unit from the drawer. The system also includes a power switch and indicator lamp in a unit 25 fixed at the front left-hand side of the drawer.
Behind the front compartment of the drawer is a central fan chamber 26, the rear wall of which is defined by a central bulkhead 28 onto which are mounted two dual side entry centrifugal fans 30. The central bulkhead is attached to a picture frame 32 fixed in position in the drawer. Behind the central bulkhead is a third compartment 34 which houses the power supply unit 36 which provides power for the devices and the fans. Providing the interface between the drawer and any external device is a card 37 located above the power supply 37 which includes a number of connectors. Tape cabling (not shown for clarity) attaches to the connectors on the card and passes through the central bulkhead and connects to each of the devices. When the storage system is in operation, cooling air is forced around the devices, through the fans and through and over the power supply, exiting through slots in the rear bulkhead 38 of the drawer, only the upper slots 39 being visible.
Figures 1, 2 and 3 show a cover frame 40 which fits onto the front of the drawer by means of two bullnose catches 23 located on two flanges 27 extending either side of the drawer front. The catches engage with two clips located in the cover frame. The cover frame has four apertures 42, each aperture corresponding to one storage device. In figure 2, two tape drives are shown in the rightmost bays, the front -: 1 7 surface 44 of each tape drive protruding beyond the front of the drawer. When the drawer is assembled, and the cover frame is fixed to the drawer, the front surface of each tape drive fits into and entirely fills the corresponding aperture. The tape drive front surface sits flush with the front surface of the frame and is visible from the front of the system.
In figure 2, it can be seen that each disk drive is mounted in the bay such that a gap is defined between the front of the device and the front of the drawer. In front of each disk drive, a removable snap-in panel 46, 48 fits into the corresponding aperture in the cover frame. Each snap-in panel includes a louvred portion 50 comprising a number of horizontal slots 52 through which air passes to cool the disk drive when in operation.
Because the indicator unit 25 (shown in figure 1 but omitted from figures 2 and 3 for clarity) obscures part of the leftmost bay at the drawer front, it is not possible in the embodiment shown to position a tape drive in that particular bay. A disk drive sits in the leftmost bay, with the unit 25 taking up some of the space between the front of the drive and the front of the drawer. As can be seen in any of the figures, the shape of the leftmost aperture in the cover frame is modified by the inclusion of a corner portion 45 in the frame. Included in this portion is a viewing slot 47 through which the indicator lamp in unit 25 can be seen. The snap-in panel 4-8, described in more detail below, is suitably shaped to fit the modified aperture. In a different system design wherein there is no necessity to include a similar corner portion, and wherein the dimensions of each aperture are identical, then it would be possible to mount each device into any of the drawer device positions.
Figures 2 and 3 show the frame and snap-in panel in more detail. As can be seen in figure 2, twenty holes 54 (divided into four groups of five) are cut into the lower turned back surface 56 of the frame, perpendicular to the front surface 58. As can be seen in figure 3, each 8 group of holes corresponds to one device aperture (one of the groups is obscured by panel 48).
Each snap in panel 46, 48 has a pair of resilient tangs 60 extending backwards from the top of the panel front surface. When the panel is mounted in the frame the tangs are forced downwards and engage with corresponding features on the top inner surface of the cover frame. Extending from the bottom of each panel front surface is a substantially flat member 62, divided into three sections by two slots. When the panel is mounted in the frame (shown in figure 3) the three sections engage with the lower inner surface of the frame, the slots mating with two raised ridges 64 in the frame lower surface thereby locating the panel correctly in the frame. In this way the flat member blocks off one of the four groups of holes in the cover frame, the central section covering the three holes between the ridges and the two outer sections each covering one of the holes.
For the reasons already described, snap-in panel 48 has a different shape to the other panel type 46. The louvred front portion (66) is reverse 'L' shaped and stands proud of a flat portion 68 including an oblong shaped aperture 70 through which the indicator lamp can be seen at the front of the system. Panel 48 fits into the frame in the same way as the other panel type 46, the flat portion sitting behind the corner portion 45 of the cover frame.
The data storage system is assembled as follows; the devices are connected to signal and power cables (not shown) from the rear, inserted into the desired bay positions and secured in place. Each snap-in panel is mounted in the cover frame in the aperture corresponding to each disk drive position and then the cover frame is fixed onto the chassis. As has been described previously, the front of each tape drive sits in its corresponding device aperture.
When the data storage system is in operation, each disk drive is cooled by air passing through the louvred portion 50 in the 9 j worresponding panel. Air passes through a grille behind handle 11 and around the device through the gaps 13 between the disk drive and the walls of the bay in which the disk drive is located. Because the tape drive entirely fills the corresponding aperture in the frame and there are no openings in the front of the tape drive, the method of cooling used for the disk drives is not possible. The fans draw air through the five cooling holes 54 in the lower surface of the cover frame and along the lower surface of the tape drive. A baffle located in the lower surface of the drawer deflects the cooling air passing along the lower surface of the tape drive over heat producing electronic components on circuit boards at the rear of the tape drive. In embodiments other than that described herein, suitably placed baffles could deflect cooling air wherever it is required.
In the embodiment described, sufficient cooling of the disk drive is obtained by the passage of air through the louvred section of the snap-in panel and flow of cooling air through the frame cooling holes is not required. Noise emanating from both fan and device radiates from these holes. In order to reduce the amount of noise at the front of the drawer, it is thus desirable that the secondary holes 54 associated with each disk drive position should be blocked off. This is achieved by means of blanking plate 62 as already described. Other provision, not detailed here, may be required to reduce the amount of noise radiating from the louvred section of each removable panel.
In some multimedia systems it may be that a particular device does include air intakes in its front surface but these are not sufficient to cool the device satisfactorily. In this case the frame cooling holes may be used to assist with the cooling of the device, the cooling holes being designed to provide adequate cooling while reducing the amount of noise radiating from these holes.
While the embodiment described shows two tape and disk drives it will be apparent that this invention would prove equally effective in drawers containing a different combination of the two types of device. The system could also incorporate other types of storage device not described e.g. optical disk drives.
1 i 1 1 1 i

Claims (10)

Claims
1. A data storage system including a housing for interchangeably mounting a plurality of data storage devices of at least two types (10,12), in a corresponding plurality of bays (16) defined within the housing; fan means (30) for causing airflow through the bays past such devices when mounted in the housing; the housing defining a plurality of primary apertures (42) in front of the bays permitting airflow past a first device type (12) but being obstructed by a second device type (10), the housing further including secondary apertures (54) which enable airflow past the second type of device.
2. A data storage system as claimed in claim 1, wherein there is one primary aperture for each device bay (16).
3. A data storage system as claimed in claim 1 or claim 2, the housing comprising a chassis (20) and a cover frame (40) removably attached to the front of the chassis, the primary apertures (42) being located in the cover frame.
4. A data storage system as claimed in claim 2 or claim 3, the secondary apertures being located in at least one surface (56) of the cover frame, there being at least one secondary aperture associated with each device bay.
5. A data storage system as claimed in any of claims 2 to 4, which includes at least one device of said first type, further comprising a removable panel (46,48) mounted in each primary aperture which 12 corresponds to a bay containing a device of the first type (12), the front surface of the panel including holes (52) through which air passes to cool the device.
t
6. A data storage system as claimed in any preceding claim, including means for blocking off the secondary apertures.
7. A data storage system as claimed in claim 6 as dependant on claim 5, the blocking means comprising a blanking member (62) on the removable panel (46,48).
B. A data storage system as claimed in claim 7, wherein the primary apertures are located in the front surface (58) of the frame and the secondary apertures are located in a second surface (56) of the frame substantially perpendicular to the front surface, the blanking member comprising a flange (62) extending rearwards from the panel front surface, thereby blocking the secondary holes.
9. A data storage system as claimed in any preceding claim including a mixture of said first and second types of data storage device.
10. A data storage system as claimed in any preceding claim wherein the first device type is a disk file (12) and the second device type is a magnetic tape drive (10).
Published 1991 at The Patent Office. State House. 66171 High Holborn. London WC 1 R 47P. Further copies may be obtained from Sales Branch. Unit 6. Nine Mile Point. Cwmfehnfach. Cross Keys. NmWrL NPI 7HZ. Printed by Multiplex techniques lid. St Mary Cray. Kent.
GB9003473A 1990-02-15 1990-02-15 Data storage system with device dependent flow of cooling air Withdrawn GB2241101A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB9003473A GB2241101A (en) 1990-02-15 1990-02-15 Data storage system with device dependent flow of cooling air
US07/618,781 US5119270A (en) 1990-02-15 1990-11-27 Data storage system with device dependent flow of cooling air
EP91300880A EP0442640B1 (en) 1990-02-15 1991-02-04 Data storage system with device dependent flow of cooling air
DE69111483T DE69111483T2 (en) 1990-02-15 1991-02-04 Data storage system with device-dependent cooling air flow.
JP3036665A JPH0656717B2 (en) 1990-02-15 1991-02-07 Data storage system with cooling airflow adapted to data storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9003473A GB2241101A (en) 1990-02-15 1990-02-15 Data storage system with device dependent flow of cooling air

Publications (2)

Publication Number Publication Date
GB9003473D0 GB9003473D0 (en) 1990-04-11
GB2241101A true GB2241101A (en) 1991-08-21

Family

ID=10671074

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9003473A Withdrawn GB2241101A (en) 1990-02-15 1990-02-15 Data storage system with device dependent flow of cooling air

Country Status (5)

Country Link
US (1) US5119270A (en)
EP (1) EP0442640B1 (en)
JP (1) JPH0656717B2 (en)
DE (1) DE69111483T2 (en)
GB (1) GB2241101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276275A (en) * 1993-03-20 1994-09-21 Ibm Cooling modular electrical apparatus

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274516A (en) * 1990-09-29 1993-12-28 Victor Company Of Japan, Ltd. Multi-cassette recording and reproducing apparatus
US5321813A (en) 1991-05-01 1994-06-14 Teradata Corporation Reconfigurable, fault tolerant, multistage interconnect network and protocol
DE9108160U1 (en) * 1991-07-03 1991-10-10 Electronicon-GmbH, O-6500 Gera Magneto-optical mass storage for digital recordings (MO)
JPH0824222B2 (en) * 1992-04-10 1996-03-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Cooling device with air-mixer cooling plate
DE4218007C2 (en) * 1992-06-01 1995-04-20 Schroff Gmbh casing
US5385487A (en) * 1993-08-30 1995-01-31 At&T Corp. Apparatus for electrically operating devices in a controlled environment
US5784644A (en) * 1995-02-02 1998-07-21 Larabell; Henri J. Carrier for connecting device using electrical display device for indicating SCSI ID and controller ID of the attached device on the carriers facial assembly
DE19535492A1 (en) * 1995-09-23 1997-03-27 Winotek Handelsgesellschaft Mb Device for holding hard discs
US5542757A (en) * 1995-10-19 1996-08-06 Chang; Chia-Chi Front panel assembly of a diskdrive case
USD382549S (en) * 1995-11-06 1997-08-19 Apple Computer, Inc. Ventilation cover
US5768101A (en) * 1996-12-20 1998-06-16 Compaq Computer Corporation Portable computer docking base with ducted interior cooling air passsage
KR19980019402A (en) * 1998-03-16 1998-06-05 천기완 CPU COOLING DEVICE OF PC
US6650535B1 (en) * 1999-07-23 2003-11-18 Dell Products L.P. Fanless power supply
US6259601B1 (en) 1999-09-30 2001-07-10 Dell Usa, L.P. Apparatus for providing docking station assisted cooling of a portable computer
US6418526B1 (en) 1999-11-15 2002-07-09 Ncr Corporation Method and apparatus for synchronizing nodes in massively parallel systems
US6412002B1 (en) 1999-11-15 2002-06-25 Ncr Corporation Method and apparatus for selecting nodes in configuring massively parallel systems
US6519697B1 (en) 1999-11-15 2003-02-11 Ncr Corporation Method and apparatus for coordinating the configuration of massively parallel systems
US6401805B1 (en) 1999-12-22 2002-06-11 Ncr Corporation Integrated venting EMI shield and heatsink component for electronic equipment enclosures
US6549405B2 (en) * 2000-06-09 2003-04-15 Vertex Electronic Products, Inc. Electronic chassis
US6437976B1 (en) * 2000-06-15 2002-08-20 Compaq Information Technologies Group, L.P. Readily attachable and removable faceplates for a computer housing
US6392884B1 (en) * 2000-08-01 2002-05-21 Shin Jiuh Corp. Housing assembly for extractable redundant array of independent disks
US6480379B1 (en) * 2000-09-29 2002-11-12 Hewlett-Packard Company Removable component filter
DE20018740U1 (en) * 2000-10-26 2000-12-28 DeTeWe-Deutsche Telephonwerke Aktiengesellschaft & Co., 10997 Berlin Housing for telecommunications systems
US6523916B2 (en) 2000-12-22 2003-02-25 Aurora Networks, Inc. Chassis with repositionable plates
US6459578B1 (en) 2001-04-24 2002-10-01 Agilent Technologies, Inc. Chassis having reduced acoustic noise and electromagnetic emissions and method of cooling components within a chassis
US6522537B2 (en) * 2001-07-18 2003-02-18 Portwell Inc. Snap-in computer casing structure
US20030090182A1 (en) * 2001-11-14 2003-05-15 Johnson Kristianne E. Interchangeable customized bezel
US7054144B2 (en) * 2003-05-23 2006-05-30 Dell Products L.P. Modular enclosure locking bezel and method of use
US7201651B2 (en) * 2004-12-22 2007-04-10 Chi-Min Su Louver heat vent for chassis of computer
US7344643B2 (en) * 2005-06-30 2008-03-18 Siemens Water Technologies Holding Corp. Process to enhance phosphorus removal for activated sludge wastewater treatment systems
CN200969073Y (en) * 2006-11-13 2007-10-31 鸿富锦精密工业(深圳)有限公司 Computer cabinet
US20090097197A1 (en) * 2007-10-11 2009-04-16 Ming-Chu Chen Side plate of housing
US7639486B2 (en) * 2007-12-13 2009-12-29 International Business Machines Corporation Rack system providing flexible configuration of computer systems with front access
US7996174B2 (en) 2007-12-18 2011-08-09 Teradyne, Inc. Disk drive testing
US8549912B2 (en) 2007-12-18 2013-10-08 Teradyne, Inc. Disk drive transport, clamping and testing
US8102173B2 (en) 2008-04-17 2012-01-24 Teradyne, Inc. Thermal control system for test slot of test rack for disk drive testing system with thermoelectric device and a cooling conduit
US8041449B2 (en) 2008-04-17 2011-10-18 Teradyne, Inc. Bulk feeding disk drives to disk drive testing systems
US8117480B2 (en) 2008-04-17 2012-02-14 Teradyne, Inc. Dependent temperature control within disk drive testing systems
US8160739B2 (en) 2008-04-17 2012-04-17 Teradyne, Inc. Transferring storage devices within storage device testing systems
US7945424B2 (en) 2008-04-17 2011-05-17 Teradyne, Inc. Disk drive emulator and method of use thereof
US8238099B2 (en) 2008-04-17 2012-08-07 Teradyne, Inc. Enclosed operating area for disk drive testing systems
US20090262455A1 (en) * 2008-04-17 2009-10-22 Teradyne, Inc. Temperature Control Within Disk Drive Testing Systems
US7848106B2 (en) 2008-04-17 2010-12-07 Teradyne, Inc. Temperature control within disk drive testing systems
US8305751B2 (en) 2008-04-17 2012-11-06 Teradyne, Inc. Vibration isolation within disk drive testing systems
US8095234B2 (en) 2008-04-17 2012-01-10 Teradyne, Inc. Transferring disk drives within disk drive testing systems
US8086343B2 (en) 2008-06-03 2011-12-27 Teradyne, Inc. Processing storage devices
US8116079B2 (en) 2009-07-15 2012-02-14 Teradyne, Inc. Storage device testing system cooling
US7995349B2 (en) 2009-07-15 2011-08-09 Teradyne, Inc. Storage device temperature sensing
US7920380B2 (en) 2009-07-15 2011-04-05 Teradyne, Inc. Test slot cooling system for a storage device testing system
US8466699B2 (en) 2009-07-15 2013-06-18 Teradyne, Inc. Heating storage devices in a testing system
US8628239B2 (en) 2009-07-15 2014-01-14 Teradyne, Inc. Storage device temperature sensing
US8547123B2 (en) 2009-07-15 2013-10-01 Teradyne, Inc. Storage device testing system with a conductive heating assembly
US8687356B2 (en) 2010-02-02 2014-04-01 Teradyne, Inc. Storage device testing system cooling
CN102244995A (en) * 2010-05-11 2011-11-16 鸿富锦精密工业(深圳)有限公司 Electronic device shell
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
US8687349B2 (en) 2010-07-21 2014-04-01 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US9372515B2 (en) 2013-03-14 2016-06-21 Evtron, Inc. Heat and airflow management in a data storage device
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
US9894807B2 (en) * 2015-01-27 2018-02-13 International Business Machines Corporation Changeable, airflow venting cover assembly for an electronics rack
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
US11754622B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Thermal control system for an automated test system
US11754596B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Test site configuration in an automated test system
US11953519B2 (en) 2020-10-22 2024-04-09 Teradyne, Inc. Modular automated test system
US11867749B2 (en) 2020-10-22 2024-01-09 Teradyne, Inc. Vision system for an automated test system
US12007411B2 (en) 2021-06-22 2024-06-11 Teradyne, Inc. Test socket having an automated lid

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380026A (en) * 1943-08-06 1945-07-10 Standard Telephones Cables Ltd Cooling device for metal rectifiers
US3188524A (en) * 1962-09-20 1965-06-08 Lockheed Aircraft Corp High density circuit card packaging
US3298195A (en) * 1965-10-15 1967-01-17 Nicholas M Raskhodoff Module cooling system
US3592260A (en) * 1969-12-05 1971-07-13 Espey Mfg & Electronics Corp Heat exchanger with inner guide strip
FR2343974A1 (en) * 1976-03-10 1977-10-07 Honeywell Bull Soc Ind VENTILATION ENCLOSURE
DE3019668A1 (en) * 1980-05-22 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München DEVICE FOR DETECTING AND PROCESSING ELECTRICAL SIGNALS
US4754397A (en) * 1985-02-15 1988-06-28 Tandem Computers Incorporated Fault tolerant modular subsystems for computers
GB8523161D0 (en) * 1985-09-19 1985-10-23 Bicc Vero Electronics Ltd Enclosure
US4728160A (en) * 1986-10-22 1988-03-01 Digital Equipment Corporation Cabinet for a computer assembly
US4702154A (en) * 1987-01-28 1987-10-27 Dodson Douglas A Cooling system for personal computer
US4748540A (en) * 1987-04-24 1988-05-31 Honeywell Bull Inc. Compact packaging of electronic equipment within a small profile enclosure
US4894749A (en) * 1987-08-31 1990-01-16 AT&T Information Systems Inc American Telephone and Telegraph Company Option slot filler board
US4888549A (en) * 1987-10-30 1989-12-19 Wilson Laboratories, Inc. System for testing individually a plurality of disk drive units
US4870643A (en) * 1987-11-06 1989-09-26 Micropolis Corporation Parallel drive array storage system
US4937806A (en) * 1988-02-12 1990-06-26 Mdb Systems, Inc. Shock-isolated portable mass data storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276275A (en) * 1993-03-20 1994-09-21 Ibm Cooling modular electrical apparatus

Also Published As

Publication number Publication date
EP0442640A3 (en) 1992-10-28
JPH0656717B2 (en) 1994-07-27
DE69111483D1 (en) 1995-08-31
JPH056652A (en) 1993-01-14
GB9003473D0 (en) 1990-04-11
EP0442640A2 (en) 1991-08-21
US5119270A (en) 1992-06-02
DE69111483T2 (en) 1996-03-07
EP0442640B1 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
EP0442640B1 (en) Data storage system with device dependent flow of cooling air
EP0442642B1 (en) Multi unit electrical apparatus with forced air cooling
EP0269479B1 (en) A cabinet for a computer assembly
EP0617570B1 (en) Modular housing
US5680295A (en) Ventilated backplane for mounting disk drives in computer systems
US5828546A (en) Device cover and ejection apparatus and method
US5828547A (en) Computer case having slidably insertable drive housing with U-shaped mounting bracket having inwardly projecting pins on two opposed legs
US5410448A (en) Adaptive cooling system
US10349554B2 (en) Apparatus, system, and method for directing air in a storage-system chassis
US6198633B1 (en) Computer system and enclosure thereof
US6018456A (en) Enclosure for removable computer peripheral equipment
US5333097A (en) Disk drive holder and interconnection system
EP0132152B1 (en) Modular computer system
US20070236880A1 (en) Electronic built-in system
US5524104A (en) Compact disk drive arrangement with one disk mounted on top of another
US20090135558A1 (en) Airflow module, data storage device enclosure and method of cooling electronics module
US6424526B1 (en) High-density disk-array packaging apparatus and method
GB2293279A (en) Housings for electronic equipment
US20080218949A1 (en) Enclosure for containing one or more electronic devices and cooling module
US6330156B1 (en) Card support and cooler bracket
CN1959835B (en) Driver shell frame and data storage system concluding the same
US20040001313A1 (en) Electrode apparatus having a front door covering a front surface of a housing
US20050018399A1 (en) Electronic apparatus with cooling fan
JP2758317B2 (en) Electronic device cooling structure
JPH04371000A (en) Cooling structure for electronic device unit

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)